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Abstract

During Xenopus gastrulation a5b1 integrin function is modulated in a temporally and spatially restricted manner, however,
the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the
cytoplasmic domain of the a5 subunit and regulates the activity of a5b1 integrin. The interaction of kermit2 with a5b1 is
essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2
regulates a5b1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration
but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore,
we find that the a5b1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a
model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted
changes in adhesive properties of the a5b1 integrin through receptor endocytosis.
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Introduction

Cell adhesion is central to many biological processes including

development, cancer metastasis, and wound healing. Integrin

heterodimers are key regulators of cell adhesion and the

interaction of cell surface integrin receptors with the extracellular

matrix (ECM) has been well characterized [1]. Most integrins exist

on the cell surface in a low affinity state and through various

stimuli can be activated to a high affinity state that promotes cell

adhesion [2]. Once activated, integrins are capable of promoting

both ECM assembly as well as cell migration on ECM substrates.

However, the presence of activated integrins at the cell surface is

not sufficient to drive cell migration and there is growing evidence

that endocytic recycling of activated integrins is a key step in

regulating cell adhesion [3].

In the Xenopus laevis embryo the a5b1 integrin plays a number of

critical roles during gastrulation. Cells of the blastocoel roof use

a5b1 to assemble a fibronectin (FN) matrix just prior to

gastrulation [4–6]. Upon the initiation of gastrulation involuted

mesoderm cells use a5b1 integrin to adhere and migrate

directionally on this FN matrix [7–9]. As the expression of a5b1

integrin is ubiquitous in the Xenopus embryo, the differential use of

a5b1 by ectoderm, endoderm and mesoderm suggests that this

integrin exists in multiple activation states. Animal cap ectodermal

cells adhere to the Arg-Gly-Asp (RGD) sequence of Central Cell

Binding Domain (CCBD) of FN. Treatment of ectodermal cells

with activin induces a mesodermal cell fate and results in cell

spreading and migration on FN [10] using the RGD sequence in

conjunction with the neighboring synergy site [5,11,12]. The

spreading and migration of activin-treated ectodermal cells on FN

occurs with same temporal regulation as observed in involuted

mesoderm cells, indicating that in the embryo activation of the

a5b1 integrin is under strict temporal and spatial regulation [6].

Several lines of evidence point to the cytoplasmic domains of both

the a and b integrin subunits as being required for integrin

activation in Xenopus. Expression of a b1 cytoplasmic domain

dominant negative construct interferes with both FN assembly and

activin induced cell migration [13]. Chimeric integrin molecules

consisting of the a4 extra-cellular domain and a variety of a
subunit cytoplasmic domains reveal that while a number of a
subunit cytoplasmic domains can substitute in cell adhesion, the

a6 and a5 cytoplasmic domains are uniquely necessary for FN

assembly [14].

As a5 and a6 cytoplasmic domains confer the ability to

assemble FN and both contain a C terminal Class I PDZ binding

motif we decided to ask what role this domain plays in Xenopus

development. GIPC, a PDZ domain-containing protein, has

previously been identified as interacting with the PDZ binding

motif of the mammalian a5 and a6 integrin subunits [15,16].

GIPC has been demonstrated to interact with multiple trans-

membrane proteins with Class I PDZ binding motifs including

Tax [17], TrkA [18], Glut-1 [19], SemaF [20], neuropilin [21],

syndecan [22], gp75 [23], and the NMDA receptor [24]. GIPC

also acts as a scaffolding protein, interacting with itself and other

proteins through regions outside its PDZ domain. Recently,

Valdembri et al. (2009) demonstrated that GIPC provides a link

between the VEGF co-receptor neuropilin and a5b1 integrin in

endothelial cells. The interaction of nrp-1, a5b1, and GIPC results
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in the rapid turnover of activated a5b1 in migrating cells [21].

Their results suggest that GIPC may function to cluster cell surface

receptors within specific domains effectively compartmentalizing

the components of signal transduction pathways.

In Xenopus the only studies examining the role of GIPC

addressed the interaction between XGIPC/kermit2 and the IGF

receptor [25,26]. Here we look at the interactions between kermit2

and the a5 and a6 integrin subunits. We demonstrate that kermit2

binds the cytoplasmic domain of the a5 and a6 integrin subunits,

and that the interaction with a5b1 results in receptor endocytosis

during activin induced cell migration.

Results

The adhesive activity of the a5b1 integrin is regulated in both

time and space during Xenopus development. This change in

integrin activity can be attributed in part to the cytoplasmic

domain of the a subunit. To understand the molecular

mechanisms behind this regulation we asked what molecules

known to interact with the cytoplasmic domain of a5 are also

expressed during gastrulation. One of the molecules fitting these

criteria was XGIPC/kermit2, which has previously been impli-

cated in the regulation of IGF signaling [25].

XGIPC/kermit2 Interacts with The a5 and a6 Integrin
Subunits

It has previously been reported that GIPC binds to the C-

terminal region of the cytoplasmic domain of the mammalian a5

and a6 integrin subunit [15,16]. To characterize the potential

interactions between kermit2 and Xenopus a integrin subunits we

performed yeast two hybrid assays. We generated pEG-202

derived bait plasmids expressing either full-length kermit2, or a

version of kermit2 in which the central PDZ domain ALGL

sequence had been altered to AEEL (Kermit2mut). Bait plasmids

were expressed in combination with pJG4-6 derived prey plasmids

expressing the cytoplasmic domains of Xenopus integrin a5, a6, or

aV. Putative PDZ interacting consensus sequences are found in

both the integrin a5 (ASEA) and a6 (TSDA) subunits (Table 1

bold). We used the aV cytoplasmic domain as a negative control as

it does not contain a putative PDZ interacting domain (Table 1).

A robust interaction between kermit2 and the a5 and a6

subunits was observed in two hybrid assays. This interaction is

abolished when the central PDZ domain of kermit2 is mutated

from ALGL to AEEL (kermit2mut). As expected there was no

observable interaction between kermit2 and the aV cytoplasmic

domain (Figure 1A). The interaction between the a6 cytoplasmic

domain is stronger than that with the a5 cytoplasmic domain and

likely reflects the differences between the SEA and SDA motif as

steady state expression levels of both bait and prey constructs are

similar in all transformants (Figure S1). As the a6 subunit is not

expressed during gastrulation we concentrated our efforts on

further characterizing the a5 subunit interaction.

Given the interaction between kermit2 and the a5 cytoplasmic

domain in the yeast two-hybrid system we next asked if such an

association occurs in embryos. We used GST fusion constructs

encoding Xenopus a5 and b1 cytoplasmic domains to probe embryo

lysates obtained from stage 12 embryos expressing HA tagged

kermit2. The GST-a5 construct pulled down small amounts of

HA tagged kermit2. As expected the GST-b1 construct showed no

interaction with Kermit2 (Figure 1B). We then asked if integrin a5

interacted with kermit2 in vivo. When we over expressed HA

tagged kermit2 we could pull down kermit2 with an antibody

directed against a5b1 integrins (Figure 1C). Our results suggest

that kermit2 is able to interact with a5b1 in vivo.

Kermit2 is Required for FN Matrix Assembly
Having established that kermit2 interacts with the a5 cytoplas-

mic domain we then asked what role kermit2 may play in

development. The gastrula stage Xenopus embryo provides a

convenient assay for a5b1 integrin function as both the assembly

of FN and the cell movements that depend upon FN matrix are

well characterized [27]. We over expressed kermit2 and

kermit2mut in Xenopus embryos and monitored blastopore closure,

a process dependant upon a5b1 integrin activity and FN matrix

assembly [13]. Embryos over-expressing kermit2 close their

blastopores normally and assemble a dense FN ECM (Figure 2B,

F). Kermit2mut acts as a dominant negative as embryos fail to

close their blastopores, and have a dramatic decrease in FN matrix

lining the blastocoel roof (Figure 2C, F). Taken together these

results indicate that normal kermit2 function mediated through

the PDZ binding domain is required for FN matrix assembly and

gastrulation. In situ hybridizations with an Xbra probe reveal that

defects in gastrulation are not due to deficits in mesodermal

patterning but likely stem from defects in convergent extension

due to a disrupted FN matrix (Figure 2G–I). Kermit2 and

kermit2mut expressing embryos have similar amounts of FN

indicating that the lack of FN matrix assembly is not due to a

decrease in FN protein abundance (Figure 2K). RT_PCR

demonstrates no change in gene expression levels for EF1a,

chordin, Xbra, FN, or integrin a and b subunits (Figure S2).

Therefore, we conclude that the defects in gastrulation can be

attributed to a loss of integrin-mediated assembly of FN.

We then used animal cap assays to confirm these results. Animal

caps isolated from control and kermit2 expressing embryos extend

via convergent extension in the presence of 20 ng activin

(Figure 3A–D). Caps isolated from embryos over expressing

kermit2mut fail to extend in the presence of activin (Figure 3E–F).

Thus, kermit2 is required for FN matrix assembly and the cell

movements associated with convergent extension.

Kermit2 Morpholino Knockdowns
We used morpholino knockdowns to further elucidate the role

kermit2 plays in early development. A 5 mismatch control

morpholino (CO) has minor effects on FN assembly that are not

significant enough to block gastrulation (Figure 4B, E). The

kermit2 morpholino (MO) inhibits FN assembly and blocks

blastopore closure (Figure 4C, F). Western blots indicate GIPC

is a maternal protein and expressed throughout all stages of early

development (Figure 4G). The inhibiting morpholino reduces the

amount of kermit2 protein, particularly in the post gastrula stages.

In our hands injection of increasing amounts of morpholino

resulted in no further decrease in kermit2 protein levels (Figure 4H)

and increasing amounts of the control morpholino resulted in non-

specific inhibition (not shown). Injection of kermit2 mRNA in the

presence of the inhibiting morpholino rescues blastopore closure

and FN matrix assembly (Figure 5C, G). Embryos co-injected with

the morpholino and the dominant negative kermit2mut construct

cannot close their blastopores and have very little FN on the BCR

Table 1. Amino acid sequences of Xenopus a integrin
cytoplasmic domains.

a5 KVGFFKRSYQYGTAMEKAELKPQAASEA

a6 KVGFFRRDKKDAQFDATYHKAEIHAQPSDKERLTSDA

aV KVGFFKRVRPPQEETEREQLQPQENGEGITDT

doi:10.1371/journal.pone.0010665.t001

Xkermit2 in Integrin Adhesion
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(Figure 5D, H). Similar to the results we obtained with the

dominant negative construct, the defects in gastrulation are not

due to disruptions of mesodermal genes or molecules involved in

FN assembly (Supplemental material S 2). In our hands the

dominant negative kermit2mut construct has a more consistent

phenotype than the morpholino and we used this construct in most

of our experiments.

It has been shown that kermit2 binds the IGF receptor-1 and is

required for IGF signaling in the oocyte [25] and neurula stage

embryo [26]. Therefore the possibility existed that the lack of FN

assembly resulted from a disruption of IGF signaling in the late

blastula. When we express a dominant negative IGFR-1 construct

[28]we observe no effect on FN matrix assembly or blastopore

closure (Figure 6A–D). There is a reduction in notochord

extension and we occasionally see a delay in blastopore closure

at stage 11.5–12 (Figure 6F), however, by stage 13 embryos appear

normal. The dnIGFR-1 construct produces eye and anterior

neural defects that have been described previously [28] (arrow-

head Figure 6G). This indicates that kermit2 plays essential roles in

early embryogenesis and is required for FN matrix assembly

outside of it’s described role in regulating IGF signaling.

Kermit2 Mediates Cell Migration
Cells isolated from the animal cap region of Xenopus blastulae

can attach to FN and upon exposure to activin spread and migrate

[6,29]. As the cytoplasmic domains of a integrin subunits mediate

Figure 1. Kermit2 interacts with the cytoplasmic domain of the a5 and a6 integrin subunits. (A) Yeast two two-hybrid assays were
conducted using a5, a6 and aV cytoplasmic domains as bait in combination with kermit2 or kermit2mut as prey. The data is presented as average
normalized b-galactosidase activity (6SD). The interaction of kermit2 with a5 and a6 is abolished by the AEEL mutation in kermit2mut (* P,0.002).
The aV subunit does not interact with kermit2 or kermit2mut (** indicates P,0.001 between a5 or a6 and aV bait constructs). (B) GST pulldowns. HA
tagged Kermit2 is detected in lysates (lane 1 input), and is pulled down with a GST-a5 fusion construct (lane 2 GST-a5). Most of the kermit2 remains in
the supernatant (lane 3 sup). A control GST-b1 construct (lane 5 GST-b1) does not pull Kermit2 from lysates (lane 4 input, lane 6 sup). (C)
Coimmunoprecipitation of kermit2 with a5b1 integrin. HA tagged kermit2 is detected in lysates (lane 1 input). Kermit2 is found in association with
immunoprecipitated a5b1 (lane 2 P8D4), while a significant portion of kermit2 remains in the supernatant (sup).
doi:10.1371/journal.pone.0010665.g001

Xkermit2 in Integrin Adhesion
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this behavior [14] we asked if kermit2 played a role in the activin

promoted migration of animal cap cells on FN. Isolated animal

cap cells were treated with 20 ng/ml activin, plated on FN

substrates, and individual migration recorded. Cells derived from

embryos injected with water migrate persistently and translocate

significant distances (Figure 7A, E, F). Cells over-expressing

kermit2 show similar migration patterns (Figure 7B, E, F), while

cells expressing the kermit2mut construct show decreased

migration distances remaining close to their original site of

adhesion (Figure 7C, E, F). The decreased migration distances

observed in kertmit2mut expressing cells is not due to a lack of

adhesion as cells expressing either kermit2 construct adhere to FN

equally well (Figure 7D). Control and kermit2 injected cells show

similar average migratory velocities and radial displacements,

while cells expressing the dominant negative kermit2mut show

very little displacement and hence low velocities (Figure 7E, F).

Figure 2. Kermit2mut inhibits Xenopus gastrulation. (A) Control embryos injected with water close their blastopores and (D) assemble a dense
FN matrix. (B) Embryos injected with kermit2 also gastrulate and (E) assemble FN matrix normally. (C) Embryos injected with kermit2mut mRNA fail to
close the blastopore and (F) have a sparse FN matrix. (G–I) Xbra in situ hybridizations indicate normal mesodermal patterning in (G) control embryos,
as well as (H) embryos expressing kermit2, and in embryos expressing (I) kermit2mut. Note that axial extension is inhibited in (I). (J) Western blot
demonstrating equal expression of HA tagged kermit2 and kermit2 constructs. Embryos injected with water (cont) do not express the construct,
while embryos injected with RNA encoding kermit2 (k2) and kermit2mut (k2mut) express equal amounts of either construct. Molecular mass markers
are indicated on the right of the panel. (K) Kermit2mut expression does not inhibit FN protein accumulation. Western blots demonstrate that there is
no substantial change in FN protein expression (FN) in water injected embryos (cont), embryos expressing kermit2 (k2), or embryos expressing
kermit2mut (k2mut). Molecular mass markers are indicated on the right of the panel. (A–C) size marker = 200 mM. (D–F) size marker = 30 mM. (G–I)
size marker 100 mM.
doi:10.1371/journal.pone.0010665.g002

Xkermit2 in Integrin Adhesion
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Thus, kermit2 is required for cell migration on, but not adhesion

to, FN.

Kermit2 and Integrin a5b1 Endocytosis
GIPC has a well-established role in the endocytosis of a number

of transmembrane receptors. As integrin trafficking has been

described as an essential component in cultured cell migration so

we asked if kermit2 is involved in cell surface turnover of the a5b1

integrin during Xenopus embryonic cell migration. We initially

approached this problem using a Xenopus tissue culture model.

Xenopus kidney epithelial cells (A6 cells; ATCC # CCL 102) were

transfected with GFP tagged kermit2 or kermit2mut. We obtain

about 15–30% transfection rates and we have used un-transfected

cells from the same plate as controls. We followed integrin a5b1

endocytosis by monitoring the internalization of the anti-a5b1

antibody P8D4 (Figure 8). In cells expressing the kermit2 construct

significant quantities of a5b1 are found in cytoplasmic punctae

(Figure 8A, C). In contrast cells expressing the kermit2mut

construct show reduced levels of integrin endocytosis (Figure 8B,

D). We quantified endocytosis using the measurements and density

slice functions of Openlab on selected regions of interest (ROIs;

Figure 8 insets). Images were collected at the same exposure and

the same threshold values were used to quantify all images.

Control and kermit2 expressing cells have similar rates of integrin

endocytosis, while cells transfected with kermit2mut have fewer

P8D4 positive vesicles than non-transfected cells in the same dish.

This suggests that kermit2 plays a role in the endocytosis of

integrin a5b1.

a5b1 Endocytosis Lies Downstream Of Activin Signaling
Having obtained evidence that kermit2 may be regulating a5b1

endocytosis we asked what role this may play in the embryo.

Animal cap cells were surface labeled with cleavable biotin,

induced with activin, and plated on FN. Once cells had spread and

initiated migration surface biotin was stripped and intracellular

a5b1 was immunoprecipitated with antibody P8D4. Increasing

amounts of a5b1 are endocytosed over three hours, and cells that

have been treated with activin show elevated levels of a5b1

endocytosis (Figure 9A, B). Adhesion to FN further influenced

a5b1 endocytosis as cells adherent to FN show increased a5b1

endocytosis as compared to cells incubated on a non-adherent

substrate (Figure 9C). Finally we asked if kermit2 played a role in

activin mediated integrin endocytosis. Cells expressing kermit2

display similar patterns of a5b1 internalization as control cells

(compare Figure 9C to 9B). Cells expressing the kermit2mut

construct show decreased internalization of a5b1, in both animal

cap cells and in animal cap cells exposed to activin (Figure 9D).

These data suggest that integrin endocytosis is regulated by activin

induction, cell substrate adhesion, and through interactions with

kermit2.

As interactions with the Rab family of molecules has been

implicated in integrin recycling we immunprecipitated a5b1

integrin and looked for coimmunoprecipitation of Rab 21. We

found that Rab 21 appears to be constitutively associated with

a5b1 independent of activin treatment and adhesion to FN

(Figure 9). We found no association of integrin a5b1 with Rab5

(data not shown).

Figure 3. Animal cap assays (A, C, E) minus activin or (B, D, F) plus activin. (A, B) Control activin-treated animal caps extend. (C, D) Kermit2
has no effect on activin-treated animal cap extension. (E, F) Kermit2mut inhibits activin-treated animal cap elongation. Size marker = 100 mM.
doi:10.1371/journal.pone.0010665.g003

Xkermit2 in Integrin Adhesion
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Kermit2 And a5b1 Colocalize In Adherent Cells
Because kermit2 function is required for the temporal activation

and endocytosis of integrin a5b1, we investigated the sub cellular

localization of kermit2 and integrin a5b1 in animal cap cells

migrating on FN. Animal cap cells were treated with activin and

plated on FN substrates. Once the cells had spread and initiated

migration they were fixed and stained with antibodies directed

against a5b1, GIPC, and Rab 21. Xenopus embryonic cells are

large and contain significant amounts of yolk (Figure 10A, E)

making intra-cellular localization difficult. We decided to concen-

trate our analysis on lamellipodial and filopodial extensions as they

are thin and do not contain yolk granules. In spread animal caps

cells there is strong colocalization of integrin and kermit2 in

filopodial extensions, and in small vesicles close the edge of the cell

(arrows Figure 10B–D). Using the colocalization function in

Openlab (Improvision) we obtain an average coefficient of

colocalization (R) of 0.82+/20.07 9 (N = 12) indicating a high

correlation of fluorescent signal for integrin and kermit2. While

there is a high correlation between integrin and kermit2

localization in filopodia and lamellipodia (67+/214%) there are

sites of integrin expression that are exclusive of kermit2. We then

asked if Rab 21 played a role in a5b1 endocytosis in Xenopus cells.

Colocalization of integrin a5b1 and Rab 21 indicate that there is

significant overlap in the fluorescent signals (R = 0.49+/20.03

(N = 12); Figure 10E–H). The association between integrin and

Rab 21 takes place further back from the leading edge of the cell

Figure 4. Morpholino knock down of kermit2 inhibits gastrulation and FN matrix assembly. (A–C) Ventral view of stage 12 embryos. (D–
F) Late gastrula stage BCR stained for FN. (A) Stage 12 control embryos gastrulate normally and (D) assemble a dense FN matrix. Embryos injected
with 20 ng of Kermit2 5 mismatch control morpholino (COMO; B) gastrulate normally, and (E) exhibit a small decrease in FN matrix assembly. (C)
Embryos injected with kermit2 inhibiting morpholino (MO) exhibit delayed blastopore closure and (F) a sparse FN matrix network. (G) Western blot of
kermit2 expression. Kermit2 is expressed throughout early development. (H) Morpholino knock down of kermit2 in stage 11 embryos. 30 ng of
control morpholino (CO 30) has no effect on Kermit2 expression. The Kermit morpholino at 10 ng and 20 ng (MO 10 and MO 20) decreases kermit2
expression below control levels. Molecular mass is indicated to the left of the panel. (A–C) size marker = 200 mm. (D–F) size marker = 30 mm.
doi:10.1371/journal.pone.0010665.g004
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than that observed for kermit2 and integrin. As embryonic cells

make poorly defined adhesive sites on FN substrates we asked if

cultured Xenopus cells would exhibit similar interactions. In XTC

cells [30] kermit2 and integrin a5b1 colocalize at focal adhesions

as well as in vesicles proximal to sites of adhesion (Figure 11A–D).

Similar to what we observe in embryonic cells, Rab 21 also

colocalizes to these same sites (Figure 11E–H). Our results

demonstrate that integrin a5b1, Rab 21, and kermit2 are localized

to vesicles and sites of adhesion to FN in both embryonic and

cultured cells.

Discussion

Here we demonstrate that interactions between kermit2 and the

cytoplasmic domain of integrin a5b1are essential to position-

specific regulation of integrin function during Xenopus gastrulation.

Furthermore, we report that kermit2 regulates the endocytosis of

the a5b1 integrin downstream of activin signaling and that this

internalization is required for cell motility on FN substrates. Our

data support a model where inductive interactions promote

a5b1endocytosis and this is a key step in the initiation of cell

migration during gastrulation.

Kermit2 Interacts With a5 and a6 Integrin Cytoplasmic
Domains

GIPC has previously been shown to interact with the Type 1

PDZ recognition sequence in cytoplasmic domains of the a5, a6A

and a6B integrin subunits [16]. Here we show a similar interaction

exists in Xenopus. Kermit2 interacts strongly with both the a5 and

a6 subunits that have a Type1 recognition sequence, but not with

the aV subunit that lacks such a sequence. The a6 subunit

contains a canonical Type I recognitions sequence, TSDA, and

has the highest affinity for kermit2. The a5 subunit has a C-

terminal ASEA sequence substituting the aspartic acid at position -

2 with a conserved glutamic acid and also has a non-polar alanine

in the place of polar threonine at position -3. Tani et al. (2001)

have reported that substitution of a non-polar amino acid at

position -3 in the human a6A cytoplasmic domain reduces the

interactions with GIPC by 60%. This is similar to the difference in

the affinity of the a5 and a6 domains that we observe in our two-

hybrid assays.

While we found that there are substantial amounts of kermit2 in

Xenopus embryos our GST pull downs and coimmunoprecipita-

tions suggest that only a small fraction of kermit2 in the embryo is

competent to bind to endogenous a5b1 integrin. Similarly, Liu et

al. (2001) found that while GIPC is essential for steady surface

expression of gp75, very little GIPC is found associated with gp75

in immunoprecipitates. A possible explanation for the low yield of

GIPC in immunprecipitates was suggested by Versano et al. (2006)

[18]. They demonstrate that the interaction between the nerve

growth factor receptor, TrkA and GIPC is transient and restricted

to the cell periphery. We also find that kermit2 associated with

integrin a5b1 is predominantly found in vesicular structures that

are proximal to sites of ECM adhesion in cultured cells, or

localized to the periphery of embryonic cells. This restricted

temporal and spatial sub-cellular window of interaction may well

account for the low yields of GIPC in our IP’s and pull down

experiments. It is remarkable that while we see restricted

interactions between kermit2 and a5b1, the dominant negative

kermit2 construct is effective at abolishing cell migration. This

may reflect the system we are using as Xenopus cells are large and

display relatively small lamellipodial protrusions and hence have

Figure 5. Expression of kermit2 mRNA rescues morpholino knock down of kermit2. (A–D) Ventral view of stage 12 embryos. (E–H) Late
gastrula stage BCR stained for FN. (A) Stage 12 control embryos gastrulate normally and (E) assemble a dense FN matrix. Embryos injected with 10 ng
of Kermit2 morpholino (MO; B) gastrulate normally, and (F) exhibit a small decrease in FN matrix assembly. (C) Embryos injected with kermit2
inhibiting morpholino and kermit2 mRNA (MO+kermit2) exhibit a small delay in blastopore closure and (G) a partial rescue of FN matrix assembly. (D)
Embryos injected with the kermit2 morpholino and the dominant negative kermit2 construct (MO+kermit2mut) exhibit delayed blastopore closure
and (H) significant reduction in FN matrix assembly. (A–D) size marker = 200 mm. (E–H) size marker = 30 mm.
doi:10.1371/journal.pone.0010665.g005

Xkermit2 in Integrin Adhesion
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only a small adhesive footprint. Small differences in adhesion may

well have dramatic overall effects on cell morphology. Interest-

ingly, interfering with kermit2 function does not decrease cell

adhesion but does eliminate lamellipodia and cell migration

suggesting it may only be acting on activated a5b1 integrin. We do

not have the reagents to directly assess a5b1activation, however

activin-signaling drives increased endocytosis of a5b1in a kermit2

dependant manner, and the AEEL mutation in kermit2 interferes

with embryonic cell behaviors that can be directly attributed to

integrin activation.

Kermit2 and Mesoderm Cell Migration
Our results demonstrate that in activin induced mesodermal

cells kermit2 mediates changes in integrin a5b1 regulated cell

motility. It is unclear as to how activin mediates changes in cell

adhesion, however, previous evidence indicate these changes in

cell motility may lie in a distinct pathway from activin induced

mesodermal patterning [6,31]. In the embryo activin participates

with other TGF-b family members in the long-range patterning of

the mesoderm, therefore it is unlikely that activin directly impinges

on pathways that regulate cell adhesion. Recent evidence suggests

that Xnr’s and activin regulate distinct genes and that the primary

role of activin may not be to pattern tissues but rather to regulate

cell behaviors downstream of patterning [32]. In vitro activin

activated changes in cell adhesion are coincident with timing of

mesodermal marker expression and it is likely that activin regulates

cell adhesion through the expression of molecules that influence

integrin adhesion. The identity of these molecules remains

unknown.

As kermit2 is a protein known to act in the endocytic pathway

[33] it is unlikely that kermit2 is acting to directly activate integrins

but rather regulating functional surface expression of activated

integrins. Several studies have demonstrated that growth factor

stimulation results in integrin endocytosis and recycling back to the

membrane [34,35]. Valembri et al. (2009) recently demonstrated

that in endothelial cells VEGF stimulation drives interactions

between GIPC and integrin a5b1that results in Rab 5 mediated

endocytic recycling of the activated integrin. We predict a similar

mechanism is operating in the region-specific activation of integrin

in Xenopus as mesoderm induction in vitro results in kermit2-

mediated endocytosis of Rab 21 associated a5b1.

Our observation that a5b1endocytosis is driven in part by

adhesion to FN is in line with others that have described integrin

endocytosis takes place at sites of adhesion [21,36–39]. Embryonic

Xenopus cells do not form clearly defined structures such as focal

adhesions making description of adhesive sites difficult. However,

at sites where we observe integrin accumulation we also see Rab

21/a5b1 and kermit2/a5b1positive vesicles. Moreover, in cul-

tured cells we see accumulation of Rab 21/a5b1 and kermit2/

a5b1 positive vesicles at focal adhesions. This suggests that there is

a feed back loop between integrin activation, adhesion, and

recycling functionally tying inside-out and outside-in integrin

signaling. Valembri et al. (2009)implicate nrp1 in a complex with

a5b1as a requirement for integrin endocytosis downstream of FN

adhesion. We have not identified a specific partner protein in

Xenopus, however, a5b1 immunoprecipitates from activin-induced

adherent cells contain a 35 KDa protein that is biotin labeled at

the cell surface and endocytosed with the a5b1integrin (Figure S3).

Figure 6. Inhibition of FN matrix assembly is not due to IGF signaling. (A, B) Control embryos close the blastopore by stage 12 and elaborate
a dense FN matrix. (C, D) Embryos expressing a dominant negative IGFR-1 construct (dnIGFR-1) appear similar to control embryos and elaborate a
dense FN matrix. (E) Xbra expression in control embryos. (F) Xbra patterning is not altered by blocking IGF signaling. There is a minor effect on axial
extension that is clearly revealed in tadpoles (G) Control tadpoles (top) are longer than tadpoles resulting from embryos expressing dnIGFR-1
(middle). The dnIGFR-1 construct results in anterior defects including reduced or absent eyes (arrowhead). Tadpoles obtained from embryos that
express kermit2mut show severe anterior truncations and mesodermal defects (bottom). (H) Western blots demonstrating inhibition of IGF signaling
by the dnIGFR-1 construct. The phosphorylation of Akt (pAkt) seen in controls (cont) is not maintained in animal caps that express the dominant
negative IGFR-1 construct (dnIGFR). Bottom panel shows total Akt expression in the same lysate. Molecular mass is indicated to the left of the panel.
doi:10.1371/journal.pone.0010665.g006
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Interestingly, we observe the opposite situation for aV containing

integrins in which a 55 KDa protein coimmunoprecipitates in

non-adherent cells and is lost in immunoprecipitates from

adherent cells (supplemental material S3). We are presently

pursuing the identity of these proteins and it is interesting to

speculate that their presence is directly related to receptor

activation and or recycling. Another possibility for the change in

behavior we see following adhesion to FN is that integrin cross talk

Figure 7. Cell adhesion assays. (A–C) Spider graphs representing migration tracks of individual cells plated on FN substrates. Each graph contains
4 representative tracks with the start point set to (0,0). Horizontal and vertical scale is in mM. (C) Kermit2mut expressing cells have reduced migration
paths as compared to (A) control and (B) kermit2 expressing cells. (D) Quantification of activin-treated cell adhesion to FN substrates. Cells were
plated on FN substrates and counted pre-wash (blue) and after washing to remove non-adherent cells (red). Control, kermit2, and kermit2mut

expressing cells all show similar affinity for FN substrates. (E) Activin-treated cell migration rate mediated by kermit2. Average cell migration velocities
were measured using the track cells function of Openlab. The value for each construct represents the average (6SD) of 45 cells from three spawnings.
Cells expressing the kermit2mut construct (0.6 mM/hr) migrate significantly (P,0.005) slower than control (91 mM/hr) or kermit2 (97 mM/hr) expressing
cells. (F) The radial displacement of activin-treated cells on FN substrates. Measurements are from the same cells as represented in (E). Kermit2mut

expressing cells travel significantly (P,0.01) less distance (32 mM) than control (148 mM) or kermit2 expressing cells (147 mM).
doi:10.1371/journal.pone.0010665.g007

Xkermit2 in Integrin Adhesion

PLoS ONE | www.plosone.org 9 May 2010 | Volume 5 | Issue 5 | e10665



stimulates receptor endocytosis [40]. The aVb3 integrin is

expressed in the early embryo and perhaps it acts to regulate the

recycling of the a5b1 receptor down stream of FN assembly in a

manner similar to that described by White et al. (2007) [41].

Testing of these ideas awaits the development of a specific

inhibitor for the aV containing integrins in Xenopus.

FN Assembly vs. Cell Migration
Disrupting kermit2 interactions with a5b1affects both FN

matrix assembly and mesendoderm cell migration without

affecting the ability of cells to adhere to FN. While it is not

difficult to reconcile integrin recycling with cell migration it is

unclear what role kermit2 plays in FN matrix assembly. FN matrix

assembly in Xenopus has been proposed to stem from increased

tension across the blastocoel roof independent of integrin

expression [42] suggesting stable surface expression of integrin

a5b1 is required. Furthermore, the assembly of FN is inhibited by

antibodies that block a5b1 interactions with the synergy site of FN

indicating that activated integrin is essential for FN assembly [6].

FN can be assembled by chimeric integrins that do not recognize

the synergy site, however, only the a6 and a5 cytoplasmic

domains, that contain the Type I PDZ recognition motif

recognized by kermit2, confer the ability to assemble FN matrix

[14]. Since this critical cytoplasmic PDZ domain is essential it may

be that kermit2 is required to export activated integrin a5b1 or

retain integrin on the surface of pre-gastrula stage cells facilitating

FN assembly. Such a temporally restricted role has been described

in melanoma cells where GIPC is required to move gp75 from the

golgi to the cell membrane [23]. Alternatively, the scaffolding role

of kermit2 may be essential to the regulation of a5b1 mediated FN

assembly. Experiments that decrease expression of GIPC in

endothelial cells prevent FN matrix assembly, a process dependant

on GIPC mediated interactions between a5b1 and nrp1 [21].

Multiple Roles For kermit2
Previous publications using morpholino knockdowns did not

describe an early role for kermit2 in Xenopus development.

However, it is clear in these studies that MO knockdowns produce

a variety of phenotypes in morphant embryos, including deficits in

axial extension [26]. Our experiments with morpholinos also

demonstrate there is considerable variation in the axial extension

of morphant embryos, although the defects in anterior neural and

eye development are always robust. We show that kermit2 is

present as maternal protein and morpholino knockdowns only

reduce kermit2 protein levels by about 50% through gastrulation.

When we combine the MO with the dominant negative construct

embryos resemble those obtained with the dominant negative

construct alone suggesting the MO only partially inhibits kermit2

function during gastrulation. This indicates that kermit2 protein

levels are partially regulated through translation of zygotic

transcripts but that maternal protein is likely still functional

during gastrulation. Our interpretation of these observations is

that kermit2 regulates cell surface turnover over of a variety of

receptors, including a5b1 integrin. The morpholino begins to

impinge on kermit2 expression at gastrulation when a5b1

regulates both FN assembly as well as cell movements [13]. As

there is considerable variation in the timing of FN assembly and

mesoderm movements in individual Xenopus embryos, the

morpholinos may only affect a subset of embryos in which these

processes occur relatively late and maternal kermit2 expression

cannot compensate for the morpholino inhibition of zygotic

kermit2 expression. This would produce embryos in which FN

Figure 8. Kermit2 regulates internalization of antibody bound a5b1 integrin. Xenopus A6 cells were transfected with (A) GFP-tagged
kermit2, or (B) GFP-tagged kermit2mut and the endocytosis of antibody labeled a5b1 was estimated from fluorescent intensity using the density slice
function of Openlab. (C, D) Staining of internalized a5b1 with fluorescent anti-mouse antibody. Non-transfected cells in the same dish act as controls.
Insets in C and D represent 25 mM2 ROI’s used to estimate pixel densities. (A, C) Kermit2 transfected cells have 827.3623.0 pixels/ROI as compared to
control cell ROI pixel densities of 841.5613.3 pixels/ROI. (B, D) In kermit2mut transfected cells the ROI pixel density is 530.8651.2, while in non-
transfected cells from the same dish have an average pixel density of 832.5624.3 pixels/ROI. Pixel densities represent averages (6SD) from 10
individual cells from 4 separate transfections. Size marker = 25 mM.
doi:10.1371/journal.pone.0010665.g008
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Figure 9. Endocytosis of a5b1 integrin. Cell surface a5b1 integrin was labeled with cleavable biotin and endocytosed integrin was
immunoprecipitated and integrin subunits detected with streptavidin HRP on non-reducing western blots. a and b subunits are indicated to the left
of the panels. The non-reduced P8D4 IgG used for the immunoprecipitation runs at the same molecular weight as the a subunit partially masking the
signal. In all panels the total lane represents five fold more cells than represented in other lanes and the samples were not surface stripped. (A) Time
course of a5b1 integrin endocytosis following activin induction. Increasing amounts of a5b1 are found in the cytoplasm at 60 minutes and 180
minutes following activin treatment. (B) a5b1 integrin endocytosis is stimulated by activin induction. Panels A&B come from the same gel and are
separated for clarity. (C) Cell adhesion stimulates a5b1 endocytosis. Activin-tretaed cells adherent on FN substrates exhibit an increased rate of
endocytosis as compared to cells on a non-adherent (BSA) substrate. (D) Kermit2 regulates a5b1 endocytosis. Activin-treated kermit2mut expressing
cells show reduced levels of a5b1 integrin endocytosis as compared to cells expressing kermit2. (E) Rab 21 coprecipitates with a5b1 integrin
independent of mesoderm induction and adhesive substrate. Rab 21 was detected in a5b1 immunoprecipitates with A-14 antibody.
doi:10.1371/journal.pone.0010665.g009
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Figure 10. Colocalization of a5b1, kermit2, and Rab 21 in Xenopus embryonic cells. Activin-treated embryonic cells were plated on FN
substrates and stained for a5b1 (green), or kermit2 (red D), or Rab 21 (red H). (A, E) DIC images of adherent cells, boxes represent areas magnified in
B–D and F–H. (A–D) Integrin (C; green) and kermit2 (D; red) colocalize at sites of adhesion (arrowheads in B–D). (E–H) Rab 21 (H; red) and integrin (G;
green) colocalize in embryonic cells (arrowheads in F–H). Staining of cells with secondary antibodies alone produced no detectable signal. Size
marker = 25 mM.
doi:10.1371/journal.pone.0010665.g010

Figure 11. Colocalization of a5b1, kermit2, and Rab 21 in Xenopus XTC cells. XTC cells were stained for a5b1 (green), or kermit2 (red D), or Rab
21 (red H). (A, E) DIC images of adherent cells, boxes represent areas magnified in B–D and F–H. (A–D) Integrin (C; green) and kermit2 (D; red) colocalize in
numerous vesicles and at focal adhesions (arrowheads in B–D). (E–H) Rab 21 (H; red) and integrin (G; green) colocalize in cytoplasmic vesicles and focal
adhesions (arrowheads in F–H). Staining of cells with secondary antibodies alone produced no detectable signal. Size marker = 25 mM.
doi:10.1371/journal.pone.0010665.g011
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assembly and cell movements are inhibited resulting in a truncated

AP axis. In embryos in which FN assembly and cell movements

take place earlier, the morpholino would have less effect and

maternal kermit2 is present in high enough levels to traffic

integrin. These embryos would show a more dominant anterior

neural defect and less axial defects. While speculative such a

scenario is supported by the observation that the dominant

negative construct affects not only FN assembly and cell

movements, but also anterior neural development later in

embryogenesis. Due to the promiscuous binding of kermit2 to

many known target molecules we cannot completely eliminate the

possibility that the defects we observe are due to multiple

interactions. Despite this it is clear that kermit2 can regulate

integrin activity, and that the dominant negative construct

produce embryo phenotypes that closely resemble those obtained

when FN assembly [13,43] and integrin function are inhibited

[44].

There is a closely related Kermit molecule expressed in Xenopus

embryos that regulates neural crest induction [45]. The similarity

between kermit and kermit2 brings up the possibility that the

kermit2mut construct inhibits the function of kermit. The design of

our dominant negative construct blocks interactions between the

PDZ binding domain in kermit2 and the PDZ domain of its

partners and therefore should have no inhibitory effect on kermit

function. Furthermore, kermit/GIPC family members act through

the linking of protein complexes outside of the PDZ binding

domain and the diversity in sequence between Kermit and kermit2

indicates there should not be any functional redundancy. Indeed,

there is no evidence for redundant roles for closely related kermit

proteins [26].

In Xenopus kermit2 was originally isolated as a binding partner

for the IGF receptor [25] and has been implicated in regulating

IGF signaling through interactions with the IGF receptor [26]. As

IGF is known as a potent regulator of integrin function the

possibility existed that our observations stemmed from disruptions

in IGF signaling [46,47]. A dominant negative IGFR previously

shown to block IGF signaling had no effect on FN assembly. We

see minor delays in blastopore closure and axial extension,

however, by the end of gastrulation embryos appear normal. This

suggests that our results with kermit2 do not stem from an

inhibition of IGF signaling. Previously kermit2 has been described

as acting primarily in the anterior neural plate. It is interesting that

the strongest interaction we described in yeast two-hybrid assays is

between kermit2 and the a6 integrin subunit that is also expressed

in the developing central nervous system. We are now looking at

the potential interactions between the a6b1 integrin, IGFR-1, and

kermit2 in the neural plate.

In mammals GIPC is known to regulate TGF-b signaling

through interactions with the type III receptor [48]. A type III

receptor homologue has not been characterized in Xenopus and we

see no effect on mesoderm patterning or gene expression levels

indicating that it is unlikely that our results stem from disruptions

in TGF-b family member signaling.

In summary we propose that kermit2 is involved in the region

specific activation of integrin a5b1. Here we demonstrate that

kermit2 interacts with the a5b1 integrin and that this interaction is

required for receptor endocytosis and cell migration. Kermit2

function is mediated partially through activin signaling, although

previous evidence suggests this in unlikely to be directly linked to

mesoderm patterning. As receptor endocytosis is also influenced

by interactions with FN our results suggest that kermit2 is at the

nexus of several signaling pathways regulating integrin recycling.

The turnover of a5b1 may be required for keeping a population of

activated integrins on the surface of cells during gastrulation, a

time when several integrin-mediated events are of importance.

These include both inside-out signaling during FN assembly, as

well as outside-in signaling during cellular rearrangements.

Materials and Methods

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by the University of Waterloo Office of

Research Ethics. All animal work was approved by the University

of Waterloo Animal Care Committee under AUPP #09-12.

Embryo Culture
Xenopus laevis adults were purchased from Nasco (Fort Atkinson,

Wisconsin). Embryos were obtained by standard methods [49].

Embryos were staged according to Nieuwkoop and Faber (1967)

[50]. Prior to injection fertilized embryos were dejellied in 2%

cysteine. Embryos and explants were imaged using a Zeiss Lumar

Stereoscope using axiovision software (Zeiss).

DNA Constructs and Morpholinos
A full-length cDNA representing Xenopus XGIPC/kermit2

(Accession AAL58320) in pCS2+ [51] was obtained as a gift from

X. Liu (Ottawa Health Research Institute). Site-directed muta-

genesis was used to alter the amino acid sequence ALGL, within

the PDZ domain of kermit2, to AAEL, generating the kermit2mut

construct. Kermit2 and kermit2mut constructs were subcloned into

the EcoRI and BamHI sites of pEGFP-N1 (gift from J. Miller;

University of Minnesota). mRNA was produced in vitro by cutting

CS2+ plasmids with Not 1 and transcribing with SP6 polymerase

using standard methods. mRNA was purified on Mega Clear

columns (Ambion).

Kermit2 and kermit2mut were subcloned into pJG4-6 [52] using

EcoR1 and Xho1 restriction sites. Cytoplasmic domains of the

Xenopus a5, a6 and aV subunits were isolated by PCR using

primers described previously [14]. The cytoplasmic domains of the

a5, a6, and aV subunits were subcloned into pEG202 [52] using

EcoR1 and Xho1 restrictions sites. All subclones were confirmed

by sequencing.

GST constructs were as described in [53]. Morpholinos were

obtained from Gene Tools LLC. Kermit 2 morpholino sequence:

AGAGGCATCTTTCTTTCAGCGAAGG. Kermit2 5 place

mis-match morpholino: AGAcGCATgTTTgTTTCAGCcAAcG.

Gene expression levels were estimated using RT-PCR. mRNA

was isolated from embryos using standard methods [54]. RT-PCR

was performed on single stranded cDNA using the following

primers: EF1a forward CAGATTGGT GCTGGATATGC,

reverse ACTGCCTTGATGACTCCTAG. Chordin forward

AACTGCCAGGACTGGATGGT, reverse GGCAGGATTTA-

GAGTTGCTTC. Xbra forward GGA TCG TTA TCA CCT

CTG, reverse GTG TAG TCT GTA GCA GCA. FN forward

CCCTCAATGGTGTAGCCAAAAC, reverse TGAACTCCTT-

CTCTGGACCGTG. Integrin a5 forward TGTTCTACATC-

CACATCCCTTGC, reverse AAAGTCATTTCCACTGAGCA-

GACC. Integrin b1 forward TGGTTGGAGAAATGTCAC-

TCGC, reverse AACACTTCCTTCCGTC TTCCCC. PCR

products were quantified using ImageJ.

Immunofluorescence
Embryos were cultured until stage 12 and fixed in 2%

trichloroacetic acid. Fixed embryos were washed in TBS/0.1%

Tween 20 (TBST) and animal caps were excised. Animal caps

were stained with monoclonal antibody 4B12 directed against FN

[5] in TBST containing 1 mg/ml of BSA. Primary antibodies were
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detected using Alexa Fluor 488 Conjugated Goat Anti-mouse

secondary antibody (Invitrogen). Animal caps were mounted on

glass slides and imaged using a Zeiss Axiovert 200 microscope

equipped with a Ludl motorized stage and Qimaging Retiga 1494

digital camera using Openlab imaging software (Perkin Elmer). FN

assembly was qualitatively estimated from the density of fibrils

found lining the blastocoel roof.

Animal caps were excised from stage 8 embryos and dissociated

in Ca2+ Mg2+ free MBS. Cells isolated from embryos expressing

kermit2 or kermit2mut were either treated with 20 ng/ml Activin-

A (R&D systems) or mock treated with water and plated on FN

substrates in modified Stern’s saline (MSS). Once sibling embryos

had reached stage 10.5 attached cells were fixed for15 minutes in

4% paraformaldehyde, washed and stained with antibodies against

integrin a5b1 (P8D4, gift from DW DeSimone), Rab 21 (Santa

Cruz Biotech), or GIPC (C-20; Santa Cruz Biotech), Alexa 488

and 594 secondary antibodies were from Invitrogen. The C-20

anti-GIPC antibody was affinity purified against Xenopus kermit2.

Cells were imaged and images were processed using the

deconvolution and colocalization function of Openlab (Improvi-

sion). The value R is independent of signal intensity and

background. Therefore R is not a quantitative estimate of

molecular colocalization but an estimate of the dependency of

spatial colocalization.

Cell Migration Assays
Isolated animal cap cells were obtained from embryos

expressing kermit2-GFP or kermit2mut-GFP and treated with

activin as described previously [42]. Dissociated cells were plated

on 50 ug/ml FN (Calbiochem) coated dishes in the presence or

absence of 20 units/ml activin [55]. Cells expressing microinjected

constructs were identified using GFP-expression. The cell

migrations were monitored using a Zeiss Axiovert 200 microscope

as described above and migrations tracks monitored using

Openlab software (Perkin Elmer). At the end of the assay cells

were fixed 30 minutes using 4% paraformaldehyde in MSS and

imaged using DIC illumination. For cell attachment assays cells

were isolated and plated as described above. Fields of view were

recorded using a 5X objective on a Zeiss Axiovert 200. The plates

were washed and fields of view recorded postwash. Cells in each

field of view were counted.

Animal Cap Extension Assays
Animal caps of embryos microinjected with kermit2 and

kermit2mut mRNA were excised from stage 8 embryos as described

above. Animal caps from experimental and control embryos were

cultured in 0.5X MBS in the presence or absence of 20 units/ml

activin. As a control for normal development, sibling embryos

were cultured in 0.1X MBS solution. Overnight explant extension

were imaged using a Zeiss Lumar stereoscope.

In Situ Localization
In situ localization was performed using standard methods [56]

using a probe against Xbra [57].

Yeast Two-Hybrid Assays
GIPC and a integrin subunit fusion constructs were used to

cotransform DY1 Saccharomyces cerevisiae cells [58], which contains

the b-Galactosidase reporter plasmid, pSH18–34. A positive

control of known prey-bait interaction DY-1 ((pSH18–34)(pJG4-

6-Rad53)(pEG202-Dbf4(FL)) was a gift from Dr. Bernard Duncker

(University of Waterloo) and was used to standardize b-

galactosidase activity. Transformants were grown in synthetic

complete (SC) media plates lacking uracil, tryptophan, and

histidine at 30uC to a concentration of 56106 cells/ml. Cells

were washed and resuspended in 2% galactose-1% raffinose and

lacking uracil, tryptophan, and histidine for 6 hours to induce prey

expression [58]. Following induction, 56106 cells were harvested

and the interactions between fusion proteins were quantified using

ONPG [59]. Two colonies of each transformant pair were assessed

and assays were preformed in triplicate. The expression of bait and

prey fusions was confirmed by western blotting as described

previously [60]. Prey fusion constructs were detected with

antibody 12CA5 (Roche), and prey fusion constructs detected

with a rabbit polyclonal serum directed against Lex-A (Sigma).

Blots were visualized using HRP conjugated secondary antibodies

(Jackson Labs), the ECL system (GE Healthcare; Mississauga, ON)

and exposure to RXB x-ray film (Labscientific).

Immunoprecipitations and Western Blotting
Embryo lysates were prepared from embryos homogenized in

ESB (20 mM Tris (pH 7.5), 140 mM NaCl, 10 mM glycerol,

2 mM sodium-orthovanadate, 25 mM NaF, 1% Nonidet P-40),

and 1X Complete Protease Inhibitor (Roche). For immunopre-

cipitates (IPs), antibodies (8C8 [61]), (P8D4 [44]), (P3C12 [62])

were conjugated to Protein G PLUS/Protein A-Agar beads

(Protein G/A; Calbiochem). Embryo lysate was diluted 1:3 in ESB

and pre-cleared with Protein G/A beads. Embryo lysates were

incubated for 3 hrs with antibody bound protein G/A beads at

4uC. Protein G/A complexes were washed four times in cold ESB.

Immunoprecipitates were subjected to Western blotting using

standard procedures. HA- tagged XGIPC was detected using

antibody 12CA5 (Roche) and HRP conjugated anti-mouse

secondary antibodies (Jackson Labs).

Cell Culture
Xenopus A6 cells (ATCC# CCL-102) and XTC cells were

maintained in 66% L-15 media (Sigma) supplemented with 10%

FBS, 1% L-glutamine, 1% Penicillin/Streptomycin, 1% sodium

pyruvate (Wisent). Cells were grown to 60–80% confluence before

being transfected with 1.0 mg of purified plasmid using LipoFec-

tamine (Invitrogen). Transfected cells were replated on 60 mm

glass bottom dishes and imaged as described above.

Receptor Endocytosis
Integrin internalization was monitored in A6 cells that were

transfected with kermit2 and kermit2mut. Transfected cells were

incubated at 4uC to slow integrin turnover. Cells at 4uC were

incubated with anti-a5b1 antibody (P8D4) for 1 hour. Cells were

washed three times with 66% L-15 medium to remove unbound

antibodies and then incubated at room temperature to allow for

normal cell membrane dynamics. Cells were fixed as described

previously and blocked in TBS, 0.1% Triton X-100 and 1% Lamb

Serum. Primary antibody was detected using a goat anti-mouse

secondary antibody conjugated to Alexa Fluor 594 (Invitrogen) for

1 hour. Transfected cells were identified by GFP expression and

imaged as described above. Images were processed using the

density slice function to threshold images and vesicles counted

using the measurements function of Openlab (Perkin Elmer).

Object counts from regions of interest (ROIs) were used as

estimates of integrin endocytosis.

Integrin endocytosis was evaluated in embryonic cells using

cleavable biotin. Animal cap cells were obtained and dissociated as

described above. Cell surface proteins were labeled on ice with

0.5 mg/ml sulfo NHS-SS-biotin (Thermo) in MSS- for 30

minutes. Cells were rinsed with ice cold 10 mM Glycine and

subsequently treated with 20 units/ml activin in MSS- for 20
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minutes at 14uC. Cells were rinsed repeatedly and plated on FN

substrates as described above. After control embryos had reached

stage 10.5 (approximately 3 hours) cell surface biotin was cleaved

with 50 mM reduced Glutathione, 75 mm NaOH in MSS for 30

minutes on ice. Cells were rinsed with ice cold MSS and remaining

free sulfhydryl groups were alkylated with 5 mg/ml iodoacetamide

in MSS. Cells were rinsed repeatedly in MSS, and lysed in ESB.

Protein extracts were immunoprecipitated with MAb P8D4 and

P3C12 as described above. Retrieved proteins were separated by

non-reducing SDS-PAGE and blotted to nitrocellulose. Biotin-

labeled proteins were detected with HRP conjugated streptavidin

(GE Healthcare) as described above.

Supporting Information

Figure S1 Western blots of bait and prey fusion protein

constructs used in yeast two hybrid assays. Figure shows prey

and bait combinations from replicates (top and bottom row) from a

single assay. Western reveals that expression there is approxi-

mately equal expression of bait and prey.

Found at: doi:10.1371/journal.pone.0010665.s001 (0.09 MB TIF)

Figure S2 Inhibition of kermit2 function does not affect gene

expression. (A,B) RNA was isolated from stage 10.5 embryos that

were injected with water, kermit2 mRNA or kermit2mut mRNA

(mut). (A) Mesoderm induction is unaffected by kermit2 construct

expression. mRNA levels were quantified using RT-PCR with

primers specific to EF1Î6 (blue), chordin (red) and Xbra (yellow).

(B) Expression levels of FN (blue), integrin Î65 (red), and integrin

Î21 (yellow) subunits are unaffected by kermit2 construct

expression. Expression of the kermit2 or kermit2mut construct

has no effect of transcript abundance. (C) Morpholino knock down

of kermit2 does not affect mesoderm patterning. (C,D) RT-PCR

on stage 10.5 embryos that had been injected with water, control

morpholino (COMO), or inhibiting morpholino (MO). (C) There

is no effect on mRNA abundance for EF1Î6 (blue), chordin (red)

and Xbra (yellow). (D) Morpholino knockdown of Kermit2 does

not alter the expression of FN (blue), integrin Î65 (red), and

integrin Î21 (yellow) subunits. Expression levels were standardized

to control embryos (control) in all experiments (N = 3) error bars

represent standard deviations.

Found at: doi:10.1371/journal.pone.0010665.s002 (0.50 MB TIF)

Figure S3 Immunoprecipitation of biotin labeled cell surface

integrins. In the Î65Î21 immunprecipitation a cell surface protein

of 30 kD co-precipitates strongly in samples adherent to FN

(arrowhead). The Î65Î21 immunoprecipitation is the same as

Figure 7. In the Î6VÎ23 immunprecipitations the same 30 kD

band is visible but is not specific to FN adherent cells (arrowhead).

A 50kD band appears in non-adherent cells.

Found at: doi:10.1371/journal.pone.0010665.s003 (0.45 MB TIF)
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