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Abstract

Background: Our objective was to develop a consistent molecular definition of psoriasis. There have been several published
microarray studies of psoriasis, and we compared disease-related genes identified across these different studies of psoriasis
with our own in order to establish a consensus.

Methodology/Principal Findings: We present a psoriasis transcriptome from a group of 15 patients enrolled in a clinical
study, and assessed its biological validity using a set of important pathways known to be involved in psoriasis. We also
identified a key set of cytokines that are now strongly implicated in driving disease-related pathology, but which are not
detected well on gene array platforms and require more sensitive methods to measure mRNA levels in skin tissues.
Comparison of our transcriptome with three other published lists of psoriasis genes showed apparent inconsistencies based
on the number of overlapping genes. We extended the well-established approach of Gene Set Enrichment Analysis (GSEA)
to compare a new study with these other published list of differentially expressed genes (DEG) in a more comprehensive
manner. We applied our method to these three published psoriasis transcriptomes and found them to be in good
agreement with our study.

Conclusions/Significance: Due to wide variability in clinical protocols, platform and sample handling, and subtle disease-
related signals, intersection of published DEG lists was unable to establish consensus between studies. In order to leverage
the power of multiple transcriptomes reported by several laboratories using different patients and protocols, more
sophisticated methods like the extension of GSEA presented here, should be used in order to overcome the shortcomings of
overlapping individual DEG approach.
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Introduction

The study of human diseases such as psoriasis has benefited

significantly from analysis of the transcriptome, the global gene

expression of a diseased tissue compared to its healthy counterpart.

However, as more studies are carried out independently in

multiple laboratories, effective methodology to leverage these

multiple studies becomes necessary. Such methodologies have

significant hurdles to overcome: first, multiple studies are likely to

use different platforms, different sample dissection, handling and

preparation, and, especially, different definition of the non-

diseased counterpart, resulting in different physical samples being

hybridized against different platforms [1,2,3]. Second, computa-

tional analysis and statistical treatment required to assess the

transcriptome are just as likely to be considerably different.

In many instances, all that is available from published studies

are lists of differentially expressed genes (DEG). It is tempting to

evaluate the agreement between studies simply by evaluating the

intersection between the published lists, the ‘‘Venn diagram

approach’’. However, such an approach suffers serious method-

ological shortcomings [4,5,6]. Use of the original raw data of the

studies has shown that studies which are apparently discordant in

terms of their overlapping individual DEG lists are, in fact, both

concordant and predictive [4,5]. However, most of the time the

original raw data is unavailable, and furthermore a complete

reanalysis of all data is needlessly laborious. In such cases use of

the published lists of DEG is a necessity. Here we present an

extension to the widely used Gene Set Enrichment Analysis

(GSEA) method, where it suffices to have full access to the

complete list of gene expression values for a single study, while the

remaining studies only require the DEG list.

In the last few years, the use of Gene-Sets approach had

emerged as a powerful tool to identify sets of functionally related

genes or pathways that are associated with a disease phenotype

[7,8]. Gene-Sets based methods were designed to address

limitations of conventional single gene methods [6] by evaluating
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differential expression patterns of gene groups instead of individual

genes. GSEA, introduced by Mootha et al [9] and further

developed by Subramanian et al [10], was one of the first method

using the Gene-Sets approach, and is arguably the most widely

used of such methods. Here we use GSEA as a conventional

approach to identify pathways related to the psoriatic phenotype.

Furthermore, we propose to extend the use of GSEA as a tool to

easily cross-compare prior lists of DEG genes.

We developed this method specifically to compare several high-

quality studies that defined the psoriasis transcriptome by

identifying DEG between psoriatic lesions and non-lesional tissue

from the same patients [11,12,13,14,15]. Those studies had

identified key genes involved in psoriasis pathogenesis, using a

non-biased approach. Because the genomic data for more recent

studies is more comprehensive than in the earlier studies due to the

larger number of genes represented in the latest Affymetrix chips,

we chose to compare the transcriptomes for studies published since

2003 [12,14,15].

We recently conducted a clinical trial of 15 psoriasis patients

with the TNF inhibitor etanercept [16], and performed a time-

course experiment using HGU 133 2.0 microarray chips [17]. By

analyzing the baseline data from this experiment, we generated

our psoriasis transcriptome comparing baseline-paired values of

lesional versus non-lesional skin. We have compared our

transcriptome with the three others described above, and

introduce the concept of using GSEA as a more robust way of

comparing genomic data.

Results

Disease-modulated genes
The analysis of our data identified a psoriasis transcriptome

composed of 732 up-regulated probesets (representing 579 genes

with unique ENTREZ identifier) and 890 down-regulated

probesets (703 genes) with fold change (FCH) greater than 2 and

false discovery rate (FDR) less than 0.05 (Table 1, and Table S1).

Certain genes with low expression on the Affymetrix chip were

confirmed by RT-PCR, and will be discussed in the next section.

To further consider the biological significance of our data, we

used GSEA in the classical manner, to identify pathways that

correlate with the psoriatic phenotype [10,18]. GSEA evaluates

how genes in queried pathways are distributed in the fold change

(lesional versus non-lesional) ordered list generated by our data (all

probesets included). This is quantified by using the Enrichment

Score (ES), a weighted Kolmogorov-Smirnov-like statistic that

evaluates if the members of the pathway are randomly distributed

or found at the extremes (top or bottom) of the list. If genes in a

pathway rank at the top of the new fold change list, ie. they are

overrepresented at the top, then the enrichment score (ES) will be

close to 1. Conversely if the ES = 21, then genes are overrepre-

sented at the bottom of our fold change data. A perfect agreement

is reached if ES = 1 for the up-regulated genes and ES = 21 for the

down-regulated genes. A normalized enrichment score (NES) takes

into account the number of genes in the pathway. A positive NES

indicates that the list of genes is enriched at the ‘‘top’’ of the

ordered fold change list, and a negative NES indicates that the list

in question is enriched at the ‘‘bottom’’ of the list.

GSEA may be used with well known ‘‘canonical’’ pathways and

Gene ontology categories, but also with sets that contain genes

sharing the same transcription factor binding site, the same

microRNA binding motif or the same cis-regulatory motif. It can

also be used with curated collections such as GeneSigDb (http://

compbio.dfci.harvard.edu/genesigdb), which contain gene signa-

tures of cancer, viral and stem cell biology, and the CGP collection

of the MSigDb (http://www.broadinstitute.org/gsea/msigdb/)

that contains gene expression signatures of genetic and chemical

perturbations, or computational derived sets such as cancer

modules (presented in [19]).

We queried our psoriasis transcriptome with a set of cytokine-

treated keratinocyte pathways for IL-17, TNF, IL-17+TNF, IFNc,

and IL-22, reported in [17,20] and IL-1a [21]. GSEA showed that

those pathways were enriched in lesional skin of psoriasis patients

(Table 2). We used a list (‘‘IL-17 Gaffen’’) considered to be IL-17-

gene targets defined by Shen et al [22]. This was also significantly

enriched in our psoriasis transcriptome. An IFNa-keratinocyte

pathway [14] was also significantly enriched in lesional skin,

supporting the potential role for IFNa discussed by Yao et al [14].

A list of genes representing the transcriptome of inflammatory

myeloid DCs [23] was also significantly enriched in lesional skin.

In addition, the cell cycle and TLR signaling from the collection of

canonical pathways (C2 CP) available at the Molecular Signature

Database (MSigDb) were enriched in psoriasis lesional skin.

Gudjonsson et al reported lack of evidence of enrichment of the

Hedghog Signalling Pathways in psoriasis [24]. GSEA analysis did

not detect any significant enrichment of this pathway with the

psoriasis phenotype. (ES = 0.37, NES = 1.05 and p = 0.39).

Comparison with other published studies
We next performed a comparative analysis of the DEG lists of

these three studies [12,14,15] with our transcriptome. Table 1

summarizes the main characteristics of the four studies. Zhou’s

study which uses early hgu95 (a,b,c,d,e) chips, reported 397 up-

regulated and 613 down-regulated probesets representing 270 and

397 unique genes respectively [15]. Yao et al conducted a study on

Table 1. Description of studies.

Zhou Yao Gudhjonsson Suárez-Fariñas

Platform/chips hgu95 a,b,c,d,e hgu133plus2 hgu133plus2 hgu133a2

Sample size 16 26 58 15

Expression Algorithm dChip GCRMA RMA GCRMA

Statistical test t-test Sam (paired) t-test Paired t-test Moderated paired t-test

Multiple Hypothesis correction none FDR through permutations FDR through permutations FDR Benjamini-Hochberg

Cut-off FCH.2, p,0.05 FCH.2, q-value,0.05 FCH.2, FDR,0.05 FCH.2, FDR,0.05

# Up-regulated probesets (genes) 397 ps (270 genes) 1408 ps. (974 genes) 721 ps (508 genes) 732 ps (579 genes)

# of Down-regulated probesets (genes) 613 ps (397 genes) 1465 ps (853 genes) 364 ps (248 genes) 890 ps (703 genes)

doi:10.1371/journal.pone.0010247.t001

Psoriasis Transcriptomes

PLoS ONE | www.plosone.org 2 April 2010 | Volume 5 | Issue 4 | e10247



hgu133plus2 chips and reported 1408 up-regulated and 1465

down-regulated probesets (974 and 853 genes respectively) [14].

More recently, Gudjonsson et al also using hgu133plus2 chips with

a large sample size [12] reported a set of 721 up-regulated and 364

down-regulated probesets (508 genes and 248 genes).

Figure 1 shows a Venn diagram illustrating the intersection

between the four studies. There were approximately 11,000

ENTREZ identifiers common to the 4 chip series, but only 126

genes were up-regulated (Figure 1A) and 38 down-regulated

(Figure 1B) in all four studies. The numbers of upregulated genes

in our transcriptome were similar to the Gudhjonsson group, but

less than Yao’s. The number of down-regulated genes were greater

than the Gudhjonsson group, and again, less than Yao’s.

The list of the DEG in common in the 4 studies (Table S2)

contains many genes known to be upregulated in psoriasis, such as

IFNc-regulated genes STAT-1, STAT-3 and MX1; antimicrobial

peptides (beta defensin 4, lipocalin 2, S100A7); and pro-

inflammatory proteins such as IL-8, CXCL1, IL-1F9,

TNFSF10/TRAIL. However, some genes known to be upregu-

lated in psoriasis were only identified in one study. For example

STAT2 was only identified in our study, JAK3 only in Yao’s, and

IL-12RB1 only in Zhou’s study. The set of genes that were down-

regulated in all 4 studies include CCL27, also called Cutaneous T

cell –attracting chemokine (CTACK), which has a role in memory

T cell homing to the skin [25], and Aquaporin 9, a member of a

family of proteins that form water channels across membranes

[26].

Some well-recognized inflammatory genes involved in psoriasis

were not detected by most of the four studies, for example IFNc,

IL-17, iNOS. This is due to the fact that the expression of these

genes is usually low on the Affymetrix gene array platform (0–4

range of expression in log2-scale) and hence fold change is not

accurately measured. Most analysis pipelines filter out low

abundance genes so they may be excluded from the statistical

analysis, or the resultant fold change is very low, albeit significant.

This is a major limitation of the use of these arrays for the study of

these genes.

To confirm the role of these genes in psoriasis, we analyzed RT-

PCR data of many of these inflammatory genes. We used data

from the same clinical trial of etanercept treatment of psoriasis

[16], however, we compared only baseline lesional skin and non-

lesional skin. The fold change and p-value for each gene by RT-

PCR is presented in Table 3, and all of these genes except LTA

and p35 were significantly different in lesional skin (p,0.05). We

also present the fold change of any of these genes that were

detectable in any of the microarray studies. It can be seen that IL-

23p19, IL-12/23p40, IL-22, IFNc, IL-6 were not found to be

differentially expressed by any of the four studies, but the fold

change by RT-PCR was greater than 4. Furthermore, IL-17, IL-

20, CCL4, iNOS and CCL3 were detected in only one study, and

with a lower fold change than detected by RT-PCR (which was

greater than 5.5). We also included the percentage of samples in

our study with low intensity, as defined as expression values less

than 4. For example, p19 has expression of less than 4. It can be

seen that the genes that were not detected by any or only one

microarray study had low abundance in more than 87% of the

samples.

Correlation of other published psoriasis transcriptomes
compared to our transcriptome using Gene Set
Enrichment Analysis (GSEA)

A more robust approach beyond a Venn diagram was required

to overcome these limitations. We propose to use a Gene-Sets

approach to analyze how published DEG rank in our fold change

data. This reduces the bias due to preprocessing steps, statistical

protocols and stringency of cut-offs. This approach is successfully

used in the Connectivity Map [27], a pattern recognition instance

that correlates disease signatures (based on gene expression of any

platform) with drugs. The idea is to use the GSEA framework [10]

by considering the published DEG as a pathway or gene set, and

quantify how well the up (and down) regulated genes rank in the

ordered fold change for all genes in our data. This will generate an

ES for up-regulated genes and one for the down-regulated genes.

The connectivity score (CS) can be used to give a measure of

agreement between studies, by combining the two ES into one

final value, as used in the connectivity map to rank drugs that

better correlate with disease. A value of CS near 1 would indicate

perfect agreement between a study list and our analysis, whereas 0

would indicate no agreement, and 21 a negative correlation.

GSEA showed that there was highly significant enrichment of

psoriasis DEGs, both up- and down-regulated genes, from the

three studies compared to our data (Table 4). The GSEA plot for

Table 2. Pathways enriched in Psoriasis lesions by using GSEA.

PATHWAYS No. of genes in pathway ES NES FDR

IFNa Up in KC (Yao) 28 0.91 2.74 ,1024

IL17 and TNF Up in KC 30 0.89 2.69 ,1024

IL17 Up in KC 46 0.87 2.86 ,1024

IL1 Up in KC 34 0.85 2.66 ,1024

IL17 GAFFEN 27 0.81 2.43 ,1024

IFNc Up in KC 872 0.47 2.31 ,1024

TNF Up in KC 472 0.46 2.14 ,1024

IL22 Up in KC 10 0.89 2.07 ,1024

Terminal Differentiation 33 0.69 2.10 ,1024

Inflammatory myeloid DCs (psoriasis) 121 0.42 1.68 ,1024

Cell Cycle (KEGG) 64 0.58 2.06 ,1024

TLR signaling Pathway (KEGG) 58 0.59 2.05 ,1024

Cytokine-Cytokine receptor interaction (KEGG) 111 0.44 1.71 0.02

doi:10.1371/journal.pone.0010247.t002
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up and down-regulated genes in Zhou’s, Yao’s and Gudjonsson’s

lists is shown in Figure 2. P-values for ES and CS were calculated

using 10,000 simulations. For Zhou’s list, the ES for the up-

regulated genes was 0.86 (p,0.0001) and 20.63 (p,0.0001) for

the down-regulated genes (Figure 2A). The CS = 0.75 (p,0.0001)

indicates a positive significant agreement between Zhou’s

signature and our data. For Yao’s transcriptome (Figure 2B), the

ES = 0.90 (p,0.0001) for the up-regulated genes and ES = 20.86

(p,0.0001) for the down–regulated genes, for CS = 0.88

(p,0.0001), which also indicates a positive significant agreement.

For Gudjonsson’s transcriptome (Figure 2C), the ES = 0.93

(p,0.0001) for the up-regulated genes and ES = 20.91

(p,0.0001) for the down–regulated genes, for CS = 0.92

(p,0.0001), which also indicates a positive significant agreement.

In general, a better agreement was observed among up-regulated

genes for all studies. In addition, Yao’s transcriptome correlated

better with our study than Zhou’s, which is not surprising since the

array series and the statistical protocols used in Yao’s and ours

were more similar than those in Zhou’s.

We used the same approach to compare two published DEGs of

other skin diseases produced by own group: squamous cell

carcinoma (SCC) [28] and basal cell carcinoma (BCC) [29]. The

CS for SCC was 0.69 and the CS of BCC was 0.42, considerably

lower than in psoriasis (Table 4). This degree of enrichment is

most likely reflects the origin of this data from our own lab, and

the cutaneous nature of the specimens, as well as epidermal

hyperproliferation and inflammation in all these three diseases.

Discussion

Investigators might be surprised at the lack of overlap between

DEG lists, as shown in the Venn diagram (Figure 1). However, if

one considers all the variables involved in the four studies,

summarized in Table 1, it is not that surprising. Although all the

studies were conducted using Affymetrix platform, they used

different array series, which may contribute to variability in results.

Besides the obvious laboratory effect due to sample preparation,

technician experience, equipment calibration, and the use of

different preprocessing algorithms [30], alternative statistical tests

and stringent cut-offs also contribute to different results [3,31].

Measuring agreement of microarray studies by overlap of DEG

lists generated by individual studies has been largely criticized [5]

because it is highly inconsistent, even in the presence of small

variation in the data as in the case of technical replicates [32,33].

A low overlap between DEG does not directly indicate low

agreement between studies [3,31,33].

Here we present our new data on the psoriasis transcriptome

from our patients, as well as a comparison of our data with three

published DEG lists for psoriasis. We find only 164 genes in

common for the four lists. However by changing the focus of the

single-gene approach behind the intersection of DEG involved in

psoriasis and using a gene set approach, a closer biological

similarity between the studies is revealed. The extension of GSEA

presented here enables us to see that cellular processes and

molecular signature involved in psoriasis is very robust across the

studies. In this paper, we extended the use of GSEA to compare

new expression data with previously published DEG lists in order

to validate psoriasis disease-related gene profiles. It is worth

noting that this approach is applicable to expression data

obtained through deep sequencing (potentially improving sensi-

tivity for low abundance genes and cross-hybridization problems

of current microarray technology). Moreover, this approach is

easily extendable to other omics applications and more complex

phenotypes. Since the method is based on ranking a list according

to a phenotype, the ranked list can be derived from other

measures besides gene expression fold changes from microarray

chips or deep sequencing; such phenotype measures may include

odd ratios of single nucleotide polymorphisms (SNPs), or a

microRNA profile assay derived from microarray technologies or

deep sequencing.

The use of GSEA as a gene set approach is not unique:

extensions to GSEA [34] and other Gene Set methods and

Figure 1. Comparison of four psoriasis transcriptomes. A. Venn
diagram showing the comparison of the number of up-regulated genes
in common and distinct for the four studies. B. Venn diagram showing
the comparison of the number of down-regulated genes in common
and distinct for the four studies.
doi:10.1371/journal.pone.0010247.g001
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statistics have also been proposed, and could also be used to

compare transcriptomes. Efron and Tibshirani [35] proposed the

MaxMean statistic instead of the weighted Kolmogorov Smirnov

statistics used in the classical GSEA. Dinu et al [36] extended the

single gene analysis SAM and proposed SAM-GS. See [7,37] for a

comparative study of different gene set enrichment methods.

Extensions other than the classical difference between two

phenotypes have also been reported. For example, we used the

time slope of a mixed effect model as a phenotype to evaluate the

time-response of cytokines pathways to psoriasis treatment with

TNF inhibitor [17].

In this report, we show an excellent and simple method for

researchers seeking validation of their own expression data with

published lists from different studies.

Materials and Methods

Patients
Twenty adult patients with moderate to severe psoriasis were

treated with etanercept 50 mg subcutaneously twice weekly for 12

weeks (clinical trial no. NCT00116181). The clinical and

histological response of patients in this trial was previously

published [16]. The gene array was performed on samples from

15 sequential patients [17]. RT-PCR was performed on samples

from all 20 patients.

Ethics Statement
The clinical trial (no. NCT00116181) was conducted according

to the principles expressed in the Declaration of Helsinki and

informed consent for their information to be stored in the hospital

database and used for research was obtained from all patients in

written form. This research was conducted under protocol JKR-

0542 approved by the Rockefeller University Institutional Review

Board.

Table 3. RT-PCR validation.

RT-PCR Microarray FCH (log2)1

Gene Symbol FCH (log2) FCH p.value Suarez-Farinas Zou Yao Gudjonsson % Low Int2

p19 IL23A 2.66 6.34 0.011 100

p40 IL12B 4.03 16.32 1.8610205 97

LTA1 LTA 0.83 1.77 0.302 100

IL22 IL22 3.96 15.53 1.561024 100

IFNc IFNg 2.28 4.85 2.861024 100

IL4 IL4 21.45 0.36 0.034 100

IL6 IL6 2.66 6.33 7.161024 100

IL17 IL17A 6.17 71.87 3.861025 1.15 93

IL20 IL20 3.95 15.48 1.461025 1.03

CCL4 CCL4 2.83 7.12 9.261025 1.38 87

iNOS NOS2 6.37 82.91 1.761029 1.11 100

p35 IL12A 21.58 0.34 0.186 100

CCL3 CCL3 2.46 5.52 6.261023 1.07

AREG AREG 2.05 4.15 1.261023 2.54 2.15 1.35 7

CCL20 CCL20 3.08 8.45 4.761025 2.79 3.64 2.90 67

IL19 IL19 5.45 43.57 2.061025 1.43 2.21 1.88 8

IL1b IL1B 3.66 12.66 6.861026 2.61 1.97 1.11 83

K16 KRT16 5.10 34.34 8.361029 3.68 1.99 4.57 4.11 0

MX1 MX1 3.56 11.83 4.161025 3.23 3.24 3.24 2.32 0

IL8 IL8 6.19 72.82 1.061027 5.85 2.96 4.67 4.03 47

b Defensin DEFB4 4.12 17.42 6.561028 5.96 1.96 7.34 7.07 1

1The largest fold change (FCH) was reported when there were several probesets representing the same gene.
2Percentage of samples with low intensity as defined by having expression smaller that 4.
doi:10.1371/journal.pone.0010247.t003

Table 4. GESA analysis of published transcriptomes with our
data.

Gene Set
No. of genes
in pathway ES NES FDR CS

Gudjonsson - UP 386 0.93 4.25 ,1024 0.92

Gudjonsson - Down 153 20.91 23.77 ,1024

Yao - UP 670 0.90 4.31 ,1024 0.88

Yao – Down 487 20.86 24.06 ,1024

Zhou - UP 199 0.86 3.69 ,1024 0.75

Zhou - Down 227 20.63 22.71 ,1024

SCC LSvsNL UP 859 0.69 3.37 ,1024 0.69

SCC LSvsNL Down 655 20.70 23.41 ,1024

BCC LS vs Normal UP 191 0.38 1.61 ,1024 0.42

BCC LS vs Normal Down 326 20.46 22.09 ,1024

ES: Enrichment Score; NES: Normalized Enrichment Score; FDR: False Discovery
Rate.
doi:10.1371/journal.pone.0010247.t004
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Sample Preparation and Hybridization
RNA was extracted from skin biopsies and hybridized to

Affymetrix hgu133a2 chips as described in [17].

RTPCR
Primers and Probes for TaqMan RT-PCR assays had been

previously described [16]. New primers used in this study were

CCL3 (Hs00234142_m1), CCL4 (Hs99999148_m1), AREG

(Hs00950669_m1), IL-19 (Hs00604657_m1). All assays were

obtained from Applied Biosystems. Data was normalized using

human acidic ribosomal protein as a housekeeping gene [16].

Statistical Analysis
Expression values were obtained using gcrma algorithm. Samples

were filtered for unreliable low expression value and low variability.

To compare lesional with non-lesional values, the moderated t-test

available at limma package was used. P-values were adjusted for

multiple hypothesis correction using the Benjamini-Hochberg

approach, which controls the false discovery rate (FDR). Probesets

with FDR,0.05 and more than 2 fold change (FCH) were

considered differentially expressed. All analysis was carried out

using R programming language (www.R-project.org) and Biocon-

ductor packages (www.bioconductor.org).

Annotations were obtained by using Bioconductor hgu133a2.db

and hgu133plus2.db packages version 2.3.5. Mappings were based

on ENTREZ identifiers, provided by Entrez Gene fftp://

ftp.ncbi.nlm.nih.gov/gene/DATA with a data stamp of Sept 1,

2009.

Gene Set Enrichment Analysis (GSEA) was conducted using

GSEA software [18].

Data Repository
This data has been deposited at the public repository Gene

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/)

with accession number GSE11903.

Supporting Information

Table S1 DEG genes identified in this study (FDR,0.05,

FCH.2).

Found at: doi:10.1371/journal.pone.0010247.s001 (0.52 MB

PDF)

Table S2 Genes consistently identified by the four studies.

Found at: doi:10.1371/journal.pone.0010247.s002 (0.08 MB

PDF)
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