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Abstract

Background: Different sources of sensory information can interact, often shaping what we think we have seen or heard. This
can enhance the precision of perceptual decisions relative to those made on the basis of a single source of information.
From a computational perspective, there are multiple reasons why this might happen, and each predicts a different degree
of enhanced precision. Relatively slight improvements can arise when perceptual decisions are made on the basis of
multiple independent sensory estimates, as opposed to just one. These improvements can arise as a consequence of
probability summation. Greater improvements can occur if two initially independent estimates are summated to form a
single integrated code, especially if the summation is weighted in accordance with the variance associated with each
independent estimate. This form of combination is often described as a Bayesian maximum likelihood estimate. Still greater
improvements are possible if the two sources of information are encoded via a common physiological process.

Principal Findings: Here we show that the provision of simultaneous audio and visual speech cues can result in substantial
sensitivity improvements, relative to single sensory modality based decisions. The magnitude of the improvements is
greater than can be predicted on the basis of either a Bayesian maximum likelihood estimate or a probability summation.

Conclusion: Our data suggest that primary estimates of speech content are determined by a physiological process that
takes input from both visual and auditory processing, resulting in greater sensitivity than would be possible if initially

Editor: Ehsan Arabzadeh, University of New South Wales, Australia

decision to publish, or preparation of the manuscript.

* E-mail: d.arnold@psy.uqg.edu.au

independent audio and visual estimates were formed and then subsequently combined.
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Introduction

Researchers often refer to multi-sensory integration, but some
evidence cited for this is inconclusive. Two types of observation are
often taken as evidence, subjective reports concerning changed
perceptual content [1-6] and changes in the precision of
perceptual decisions [7-9]. Neither necessarily provides unambig-
uous evidence for integration, for reasons that we outline below.

Of the two types of evidence mentioned, subjective reports
concerning changed perceptual content is weakest. Subjective
reports could change because sensory integration has taken place.
Alternatively, this could happen because the provision of
additional information disposes the observer to report a particular
outcome. The latter possibility could be described as a decision-
level sensory interaction — it does not necessitate integration.
Rather, the two sensory codes could remain independent, with
either shaping the perceptual decision process.

Improvements in the precision of perceptual decisions can
provide stronger evidence, but here too findings can be
ambiguous, as the provision of multiple independent sources of
information can lead to improved sensitivity in the absence of
sensory integration [10-13]. However, the degree of improvement
in the precision of sensory decisions, when two cues are available
as opposed to just one, can be diagnostic of the underlying
computational process.

Slight improvements can arise when making a decision on the
basis of two independent sources of information, as opposed to just
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one. These improvements are known as probability summation
[10-13]. Probability summation can occur when redundant inputs
are encoded by independent sensory systems. The advantage
accrues because each system has an independent probability of
exceeding the requisite threshold for an accurate sensory decision
[10,12,14]. Importantly, probability summation does not necessi-
tate sensory integration. Rather, it depends on there being two
independent sensory estimates. Thus, in order to attribute
precision improvements to an integration process, it is necessary
to show that the improvements are greater than those that can be
predicted on the basis of probability summation. In the absence of
such evidence, it might be appropriately conservative to describe
such data as being indicative of multi-sensory interaction, rather
than of integration.

Greater improvements can be predicted via sensory integration,
but here too at least two distinct computational processes might be
responsible. For instance, sensory integration could be achieved
via a summation of two initially independent sensory estimates.
When the summation is weighted in accordance to the variance
associated with each of the initially independent sensory estimates,
the combination process is often described as a Bayesian
maximum likelihood estimate (MLE) or an optimal integration
[7-8]. This weighting enhances the sensitivity of perceptual
decisions made on the basis of the combined estimate.

Even greater improvements can be predicted if two sensory cues
are encoded by a common physiological process. In these
circumstances sensitivity for the combined signals can be predicted
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by simply adding sensitivities for the isolated signals [10,15-16].
This process is called linear summation and it can occur, for
instance, when detecting small proximate spots of light.

We can attempt to determine whether sensitivity improvements
in audio-visual speech discrimination are related to probability
summation, MLE or to linear summation by employing a
Minkowsky metric [15,17] to evaluate the degree of summation.
This can be calculated as follows:

AVs=(As*+Vs") 1/k

where AVs denotes sensitivity to combined audio and visual
signals, As denotes sensitivity to audio signals, and Vs denotes
sensitivity to visual signals. The exponent k signifies the degree of
summation. A probability summation would correspond with
k=3-4. MLE improvements correspond with a quadratic
summation, or k=2. A linear summation, as observed when
multiple signals are encoded by a single physiological mechanism
[15-16], corresponds with k= 1. This last situation can only ensue
when no independent sensory estimates are derived prior to the
linear summation. The computational advantage of linear
summation arises because the sensory estimate is subject to just
one intrinsic source of neural noise, as opposed to at least two
when independent sensory estimates are first determined.

To examine these issues we assessed audio-visual speech
recognition. It is well established that audio-visual interactions
can shape the apparent content of speech [3] and improve the
sensitivity of speech recognition [9]. The question here is whether
the AV improvement for speech recognition is consistent with
probability summation, MLE or with a linear summation.

Results

The experimental design involved either simultaneous or
sequential presentations of concordant audio and visual (AV)
speech cues. There were also single presentations of audio (AUD)
and visual (VIS) speech cues, and sequentially repeated AUD
AUD and VIS VIS presentations. Stimuli were customized for
each participant, by adding requisite levels of noise, to ensure
approximately equal sensitivity to single presentations of AUD and
VIS speech cues (see Materials and Methods). Objective measures
of speech recognition sensitivity, d’ [18], were calculated for each
participant (see Figure la-b). From single AUD and VIS
presentations, we were able to calculate sensitivity predictions,
assuming different levels of summation, for all other stimulus
presentation conditions.

As can be seen in Figure la, there was a substantial sensitivity
improvement for Synchronous AV speech relative to either single
AUD (t5=5.42, p=0.003) or VIS (t5=15.88, p=0.002) presen-
tations. Numerically, there was a smaller sensitivity improvement
for Sequential AV speech. This reached significance in compar-
ison to single AUD trials (t5=3.59, p=0.016), but not in
comparison to VIS trials (t5=1. 93, p=0.111).

AV sensitivities during Simultaneous runs of trials (see Materials
and Methods) are re-plotted in Figure 2. Along with the observed
data, we have plotted predictions that assume different magnitudes
of summation. These predictions are based on individual estimates
of sensitivity for single AUD and VIS presentations (see Figure 1a).
We found that Simultaneous AV sensitivity is well predicted via a
linear summation (k=1, t5=.32, p=0.759) but is inconsistent
with either a probability summation (k =3, t5=15.63, p=0.002) or
a MLE (k=2, t5=6.25, p=0.002).
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Figure 1. Bar plots showing d’ sensitivities. (a) Bar plot showing
sensitivities for AUD, VIS and AV presentations during Simultaneous
runs of trials. Data are shown for each of six observers, along with the
average performance across observers. Error bars depict +/— 1 SEM.
Subjects 3, 4 & 5 are authors. Note that their data does not differ
qualitatively from other participants (b) Data from Sequential runs of
trials. Details are as above.

doi:10.1371/journal.pone.0010217.g001

We can also use individual estimates of sensitivity for single
AUD and VIS presentations to predict performance in sequen-
tially repeated presentations. Predictions made on this basis for
sequential AUD AUD, VIS VIS and AUD VIS presentations are
respectively depicted in Figure 3a—c. The trends in these data are
informative. Both AUD AUD (k=1, t5=12.75, p<0.001; k=2,
t5=4.42,p=0.007; k=3,t5=0.99, p=0.37) and VIS VIS k=1,
t5=3.61, p<0.015; k=2, t5=2.15, p=0.09; k=3, t5=141,
p=0.29) are most consistent with k=3, and therefore with
probability summation. However, performance in sequential AUD
VIS trials (k=1, t5=1.42, p=0.214; k=2, t5=0.54, p=0.615;
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Figure 2. Bar plot depicting sensitivity during Simultaneous
AUD-VIS trials (Red) and AV sensitivities predicted on the basis
of different magnitudes of summation. Predictions are based on
AUD and VIS sensitivities during Simultaneous trial runs (see Figure 1a).
K=1 corresponds with a linear integration prediction, k=2 with a
quadratic summation, and k=3 with probability summation (see main
text for details). Error bars depict +/— 1 SEM.
doi:10.1371/journal.pone.0010217.9002
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Figure 3. Bar plots depicting observed and predicted sensitiv-
ities. (a) Bar plot depicting sensitivity during Sequential AUD AUD trials
(red) and AUD AUD sensitivities predicted on the basis of different
magnitudes of summation. Predictions are based on AUD sensitivities
during Simultaneous trial runs. (b) Bar plot depicting sensitivity during
Sequential VIS VIS trials (red) and VIS VIS sensitivities predicted on the
basis of different magnitudes of summation. Predictions are based on
VIS sensitivities during Simultaneous trial runs. (c) Bar plot depicting
sensitivity during Sequential AUD VIS trials (Red) and AUD VIS
sensitivities predicted on the basis of different magnitudes of
summation. Predictions are based on AUD and VIS sensitivities during
Simultaneous trial runs. Error bars depict +/— 1 SEM.
doi:10.1371/journal.pone.0010217.g003

k=3, t5=1.23, p=0.273) are most consistent with k=2, and
therefore with MLE.

Discussion

Our data suggest that an integration process can result in
heightened sensitivity for simultaneous AV speech cues. The
magnitude of facilitation was well predicted by a linear
summation, but could not be predicted on the basis of a
probability summation [10,11-12], or a Bayesian MLE [8,19].
AUD and VIS signals in sequential trials were, however, less likely
to become integrated as they were separated by a 3 second ISI (see
Materials and Methods). Consistent with this, the facilitation of
speech recognition for sequential AV signals was inconsistent with
linear summation.

The maximum likelihood estimation (MLE) model is a popular
contemporary approach to multi-sensory research [7-8,19]. MLE
assumes multi-sensory integration and has proven highly successful
at predicting multi-modal sensitivity. As can be seen in Figures 2
and 3, it can be difficult to differentiate the predictions of MLE from
those of probability summation [10-12]. Multimodal sensitivities
that are consistent with one of these predictions will often be
consistent with the other. As only one of these predictions assumes
multi-sensory integration, this too is potentially problematic.

Our data concerning simultaneous AV speech sensitivity are
consistent with a different form of integration that results in greater
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summated sensitivity. They are consistent with a linear summation
of the two sources of information. They suggest the existence of a
process for which AUD and VIS inputs are equitable. This is
analogous to visual mechanisms that linearly summate different
sources of information to form an integrated code [16].

The present results contrast with AV sensitivities in other
contexts. Discriminations between different rates of AV flicker/
flutter, for instance, are well predicted via MLE [11]. So too are
data concerning AV spatial localization [7]. As can be seen in
Figure 2a, our simultanecous AV speech data exceed MLE
predictions. These data suggest that AUD and VIS speech cues
are encoded by a common physiological mechanism, whereas
independent processes determine initially independent spatial
location [7] and change rate [11] estimates.

We speculate that the initial independence of sensory estimates
for AUD and VIS locations might be functionally advantageous,
allowing for attention to be directed at will toward auditory and or
visual signal origins [20]. However, the determination of initially
independent AUD and VIS location estimates necessarily limits
the sensitivity of any subsequent code formed by summating these
mitial estimates. Such a code would be limited by the variance
associated with each, initially independent, sensory estimation.

Greater sensitivity to multi-sensory input could be achieved if
initial independent uni-modal sensory estimates are not computed.
Instead, the initial sensory estimate could be determined via a
process that takes direct input from multiple sensory modalities.
This would maximize the precision of sensory decisions when
multi-modal signals are in accord, but may come at a cost of being
unable to ignore discordant multi-sensory input. We believe that
previous research concerning AV facilitation of speech recognition
[9], and an inability to ignore discordant visual cues when
attending auditory speech [3,21], are consistent with primary
sensory estimates of speech content being based on both auditory
and visual processing.

Some of the most compelling evidence for sensory integration is
provided by cases wherein the integration process results in
impaired sensitivity, due to the combination of conflicting sensory
cues. In this context metamers can be generated [22]. These are
composite stimuli that cannot be discriminated from physically
differing inputs, even though their constituents could be. For
instance, a red and or green light could easily be distinguished
from yellow, but this can become impossible when the red and
green lights are combined. The compelling aspect of this situation
is the loss of sensitivity for the independent cues as a consequence
of sensory integration.

Our data suggest that AUD-VIS speech might be an example
wherein cross-modal integration results in a loss of sensitivity to
constituent inputs. If primary estimates of speech content are
derived via a process that takes direct input from audition and
vision, a loss of sensitivity to the independent audio and visual
speech cues would ensue because these cues are never encoded in
1solation. Note, however, that this does not imply a misperception
of mouth aperture, or of the tonal qualities of the voice. Rather,
the misperception would be specific to speech content. The
mandatory sensory fusion this suggests is certainly consistent with
the striking perceptual distortions that ensue when discordant
audio and visual cues are encountered [3,21]. Thus a strong
mmplication of our data is that it should be possible to create
metamers for speech content.

While conflicting with many examples of AV  sensitivity
facilitation, our data are consistent with those reported for
spatially and temporally co-localised AV directional movement
[15]. This observation set a precedent for the linear summation of
AV signals. Our results are also strikingly similar to a recent
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dataset concerning AV sensitivity to biological motion [23].
However, our speech recognition data contrast with AV
movement sensitivity [15], in that our AUD and VIS speech
signals did not have to be presented in strict spatial co-register to
induce linear summation.

Sequential presentations were included in this study primarily as
a control. One would not expect sensory level integration in these
trials, as the sequential presentations were separated by three
seconds and constituted clearly separate sensory events. It is
therefore unsurprising that neither repeated unimodal nor
sequential cross modal presentations resulted in performance
consistent with linear summation. Instead, performance in these
conditions was statistically consistent with probability summation,
as expected when two independent sensory estimates serve as the
basis for decision making [10-13]. However, there was an
interesting trend, with many participants performing better in
sequential AUD VIS trials than predicted by probability
summation. Instead, performance in sequential AUD VIS trials
was better predicted by MLE. We hasten to point out, however,
that performance in sequential AUD VIS trials was statistically
indistinguishable from both MLE and probability summation based
predictions.

Our sequential AUD VIS data are reminiscent of an earlier data
set, concerning discriminations between different rates of change
[11]. In that study both simultaneous and sequential AUD VIS
presentations resulted in enhanced sensitivity relative to unimodal
presentations. Moreover, performances in both simultaneous and
sequential cross modal presentations were consistent with MLE.
When considered in conjunction with the trend in our data, this
suggests that AUD VIS integration need not occur at a sensory
level of processing. Instead, clearly differentiated sensory events
are capable of promoting a level of performance consistent with
integration via a weighted summation [7-8,11]. This may imply
that sensory estimates can become integrated via MLE at a
decision-level of analysis.

The experimental conditions reported here were intentionally
highly constrained. This allowed us to determine objective
sensitivity measures, making it possible to differentiate the
predictions of linear from other forms of summation. However,
task success rested on the detection of a single phoneme difference.
This is not representative of the unconstrained conditions, nor of
the highly variable content, of naturalistic speech. It remains to be
seen, therefore, if our approach can be adopted to account for the
results of experiments that adopt less constrained conditions, so
as to better approximate the conditions of naturalistic speech
[24-25]. However, our data speak to the ability to discriminate
between utterances based on the detection of single phoneme
differences. Thus, while it remains to be seen how far our findings
will generalize, our data are relevant for understanding speech
comprehension.

The paradigm we have adopted could casily be developed to
precisely estimate where the vital information for cross modal
integration is located. For instance, a trial-by-trial record could be
kept concerning the locations of the obscuring visual noise
elements. Then, by correlating performance with noise element
locations, the critical facial regions could be identified. By using
dynamic noise elements, this investigation could be extended into
the temporal domain. Similar manipulations could be applied to
the auditory stimulus.

Our data reveal a dramatic improvement in speech recognition
following exposure to coincident and concordant AUD and VIS
speech cues, compared to performance with isolated AUD or VIS
input. The magnitude of improvement is inconsistent with the
formation of initially independent auditory and visual estimates of
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speech content. Instead, we suggest that primary estimates of
speech content are determined by a process that takes direct input
from visual and auditory processing.

Materials and Methods

Six members of the University of Queensland Perception Lab
participated in the experiment, 3 of the authors and an additional
3 who were naive as to the purpose of the experiment. All reported
normal, or corrected to normal, visual acuity and normal hearing.
Before the experiment, participants were provided with an
information sheet, which outlined the general purpose of the
study and possible consequences of participation. Participants
were also informed that they could withdraw at any time without
penalty. The experiment only began once the participant had
given verbal consent to the experimenter to continue. This
experiment was approved by The University of Queensland
School of Psychology ethics committee, and was conducted
according to the principles of the Declaration of Helsinki.

Visual stimuli were displayed on a 19” Sony Trinitron G420
monitor at a resolution of 1024 x768 pixels, driven by a ViSaGe
graphics card from Cambridge Research Systems at a refresh rate
of 120 Hz. Observers viewed all stimuli from 57 cm with their
head placed in a chinrest. Auditory stimuli were generated using
Matlab software and were presented via Sennheiser HD 25-1
headphones at an intensity of ~70 dbSPL.

Six movies of 3 of the authors uttering two phrases were
recorded. The phrases were, ‘My name is Gary’ and ‘My name is
Barry’. These were calibrated such that they were all of the same
duration (2.03 secs) and the initiation of mouth movements took
place at approximately the same movie epochs (see supplementary
Movies S1, Movie S2, Movie S3, and Movie S4).

To equate unimodal audio and visual performance, audio and
visual noises were added to the stimuli. Audio noise consisted of
white noise, generated on a trial-by-trial basis. Visual noise was
generated by partitioning the visual stimulus into 0.13dva square
regions. A proportion of these were set to black (visual noise),
whereas the animation could be viewed in others (visual signal).
The positions of the black square regions were determined at
random on a trial-by-trial basis.

Prior to the experimental procedures, estimates of the signal to
noise ratio, at which observers were correct on 60% of uni-modal
trials during forced choice (Was the actor’s name Barry or Garry?)
tasks, were determined. Audio S/N ratios referred to the
amplitude of white noise in proportion to the peak amplitude of
the auditory (AUD) signal. Visual (VIS) S/N referred to the
proportion of un-obscured VIS animation. During a run of trials,
both S/N ratios were manipulated according to the method of
constant stimuli (VIS 0.10, 0.20, 0.25, 0.50, 0.75 or 1.00 AUD
0.08, 0.10, 0.13, 0.20, 0.40 or 1.00). During a run of trials, each S/
N ratio was presented 12 times (6Xx Barry, 6x Gary). A run of
trials therefore involved 72 AUD and 72 VIS trials, 144 individual
trials in total, all completed in a random order. Each participant
completed a single preliminary run of trials. Estimates were then
determined by fitting Weibull functions to individual data.

In the subsequent experiment, runs of trials were grouped
according to the style of stimulus presentation. During simulta-
neous runs of trials, AUD, VIS or AV signals were presented and
observers were required to indicate if the speaker had said that
their name was Barry or Gary, by pressing one of two CB6
(Cambridge Research Systems) response buttons.

AUD trials involved the presentation of the AUD signal
accompanied by a static picture of the speaker (the first frame of
the animation), partially obscured by VIS noise elements. VIS
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trials involved the presentation of the VIS signal accompanied by a
presentation of AUD noise. AV trials involved the presentation of
concordant AV signals and both AUD and VIS noises. Each run
of trials consisted of 50 presentations of ‘Gary’ and 50
presentations of ‘Barry’ in each style of presentation, 300 trials
in all. These were presented in random order, to prevent any
practise effects from systematically impacting our data across the
critical experimental conditions. Each observer completed two
runs of Simultaneous trials, providing 200 responses for each style
of stimulus presentation.

AUD and VIS trials could be considered as representing a
conflict scenario, in that there is no coherent signal in the other
sensory modality. This is unavoidable if one wants to examine the
possibility of cross-modal summation, as combined modality
presentations have to be compared with uni-modal presentations.

In Sequential runs of trials, two presentations were separated by
an inter stimulus interval (ISI =3 sec). Both presentations
occurred before a response was required. The three styles of
presentation consisted of VIS ISI VIS, AUD ISI AUD, or
combinations of AV signals. The order of presentation for the last
grouping, either AUD ISI VIS or VIS ISI AUD, was randomized
on a trial-by-trial basis. Other details concerning these trial runs
were as per the Simultaneous runs of trials. The order in which the
different types of trial run were completed was counterbalanced
across observers (Simultaneous-Sequential-Simultaneous-Sequen-
tial, or Sequential-Simultaneous-Sequential-Simultaneous).
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Movie S1 Example footage of actor saying “My name is Barry”
with visual and audio noise

Found at: doi:10.1371/journal.pone.0010217.5s001
MOV)

(3.72 MB

Movie 82 Example footage of actor saying “My name is Gary”
with audio and visual noise

Found at: doi:10.1371/journal.pone.0010217.s002
MOV)

(4.12 MB

Movie 83 Example footage of actor saying “My name is Barry”
with audio and visual noise

Found at: doi:10.1371/journal.pone.0010217.s003
MOV)

Movie 84 Example footage of actor saying “My name is Gary”
with audio and visual noise.

(3.97 MB

Found at: doi:10.1371/journal.pone.0010217.s004 (4.03 MB
MOV)
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