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Abstract

Background: Different sources of sensory information can interact, often shaping what we think we have seen or heard. This
can enhance the precision of perceptual decisions relative to those made on the basis of a single source of information.
From a computational perspective, there are multiple reasons why this might happen, and each predicts a different degree
of enhanced precision. Relatively slight improvements can arise when perceptual decisions are made on the basis of
multiple independent sensory estimates, as opposed to just one. These improvements can arise as a consequence of
probability summation. Greater improvements can occur if two initially independent estimates are summated to form a
single integrated code, especially if the summation is weighted in accordance with the variance associated with each
independent estimate. This form of combination is often described as a Bayesian maximum likelihood estimate. Still greater
improvements are possible if the two sources of information are encoded via a common physiological process.

Principal Findings: Here we show that the provision of simultaneous audio and visual speech cues can result in substantial
sensitivity improvements, relative to single sensory modality based decisions. The magnitude of the improvements is
greater than can be predicted on the basis of either a Bayesian maximum likelihood estimate or a probability summation.

Conclusion: Our data suggest that primary estimates of speech content are determined by a physiological process that
takes input from both visual and auditory processing, resulting in greater sensitivity than would be possible if initially
independent audio and visual estimates were formed and then subsequently combined.
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Introduction

Researchers often refer to multi-sensory integration, but some

evidence cited for this is inconclusive. Two types of observation are

often taken as evidence, subjective reports concerning changed

perceptual content [1–6] and changes in the precision of

perceptual decisions [7–9]. Neither necessarily provides unambig-

uous evidence for integration, for reasons that we outline below.

Of the two types of evidence mentioned, subjective reports

concerning changed perceptual content is weakest. Subjective

reports could change because sensory integration has taken place.

Alternatively, this could happen because the provision of

additional information disposes the observer to report a particular

outcome. The latter possibility could be described as a decision-

level sensory interaction – it does not necessitate integration.

Rather, the two sensory codes could remain independent, with

either shaping the perceptual decision process.

Improvements in the precision of perceptual decisions can

provide stronger evidence, but here too findings can be

ambiguous, as the provision of multiple independent sources of

information can lead to improved sensitivity in the absence of

sensory integration [10–13]. However, the degree of improvement

in the precision of sensory decisions, when two cues are available

as opposed to just one, can be diagnostic of the underlying

computational process.

Slight improvements can arise when making a decision on the

basis of two independent sources of information, as opposed to just

one. These improvements are known as probability summation

[10–13]. Probability summation can occur when redundant inputs

are encoded by independent sensory systems. The advantage

accrues because each system has an independent probability of

exceeding the requisite threshold for an accurate sensory decision

[10,12,14]. Importantly, probability summation does not necessi-

tate sensory integration. Rather, it depends on there being two

independent sensory estimates. Thus, in order to attribute

precision improvements to an integration process, it is necessary

to show that the improvements are greater than those that can be

predicted on the basis of probability summation. In the absence of

such evidence, it might be appropriately conservative to describe

such data as being indicative of multi-sensory interaction, rather

than of integration.

Greater improvements can be predicted via sensory integration,

but here too at least two distinct computational processes might be

responsible. For instance, sensory integration could be achieved

via a summation of two initially independent sensory estimates.

When the summation is weighted in accordance to the variance

associated with each of the initially independent sensory estimates,

the combination process is often described as a Bayesian

maximum likelihood estimate (MLE) or an optimal integration

[7–8]. This weighting enhances the sensitivity of perceptual

decisions made on the basis of the combined estimate.

Even greater improvements can be predicted if two sensory cues

are encoded by a common physiological process. In these

circumstances sensitivity for the combined signals can be predicted
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by simply adding sensitivities for the isolated signals [10,15–16].

This process is called linear summation and it can occur, for

instance, when detecting small proximate spots of light.

We can attempt to determine whether sensitivity improvements

in audio-visual speech discrimination are related to probability

summation, MLE or to linear summation by employing a

Minkowsky metric [15,17] to evaluate the degree of summation.

This can be calculated as follows:

AVs~ AskzVsk
� �1=k

where AVs denotes sensitivity to combined audio and visual

signals, As denotes sensitivity to audio signals, and Vs denotes

sensitivity to visual signals. The exponent k signifies the degree of

summation. A probability summation would correspond with

k = 3–4. MLE improvements correspond with a quadratic

summation, or k = 2. A linear summation, as observed when

multiple signals are encoded by a single physiological mechanism

[15–16], corresponds with k = 1. This last situation can only ensue

when no independent sensory estimates are derived prior to the

linear summation. The computational advantage of linear

summation arises because the sensory estimate is subject to just

one intrinsic source of neural noise, as opposed to at least two

when independent sensory estimates are first determined.

To examine these issues we assessed audio-visual speech

recognition. It is well established that audio-visual interactions

can shape the apparent content of speech [3] and improve the

sensitivity of speech recognition [9]. The question here is whether

the AV improvement for speech recognition is consistent with

probability summation, MLE or with a linear summation.

Results

The experimental design involved either simultaneous or

sequential presentations of concordant audio and visual (AV)

speech cues. There were also single presentations of audio (AUD)

and visual (VIS) speech cues, and sequentially repeated AUD

AUD and VIS VIS presentations. Stimuli were customized for

each participant, by adding requisite levels of noise, to ensure

approximately equal sensitivity to single presentations of AUD and

VIS speech cues (see Materials and Methods). Objective measures

of speech recognition sensitivity, d’ [18], were calculated for each

participant (see Figure 1a-b). From single AUD and VIS

presentations, we were able to calculate sensitivity predictions,

assuming different levels of summation, for all other stimulus

presentation conditions.

As can be seen in Figure 1a, there was a substantial sensitivity

improvement for Synchronous AV speech relative to either single

AUD (t5 = 5.42, p = 0.003) or VIS (t5 = 5.88, p = 0.002) presen-

tations. Numerically, there was a smaller sensitivity improvement

for Sequential AV speech. This reached significance in compar-

ison to single AUD trials (t5 = 3.59, p = 0.016), but not in

comparison to VIS trials (t5 = 1. 93, p = 0.111).

AV sensitivities during Simultaneous runs of trials (see Materials

and Methods) are re-plotted in Figure 2. Along with the observed

data, we have plotted predictions that assume different magnitudes

of summation. These predictions are based on individual estimates

of sensitivity for single AUD and VIS presentations (see Figure 1a).

We found that Simultaneous AV sensitivity is well predicted via a

linear summation (k = 1, t5 = .32, p = 0.759) but is inconsistent

with either a probability summation (k = 3, t5 = 5.63, p = 0.002) or

a MLE (k = 2, t5 = 6.25, p = 0.002).

We can also use individual estimates of sensitivity for single

AUD and VIS presentations to predict performance in sequen-

tially repeated presentations. Predictions made on this basis for

sequential AUD AUD, VIS VIS and AUD VIS presentations are

respectively depicted in Figure 3a–c. The trends in these data are

informative. Both AUD AUD (k = 1, t5 = 12.75, p,0.001; k = 2,

t5 = 4.42, p = 0.007; k = 3, t5 = 0.99, p = 0.37) and VIS VIS (k = 1,

t5 = 3.61, p,0.015; k = 2, t5 = 2.15, p = 0.09; k = 3, t5 = 1.41,

p = 0.29) are most consistent with k = 3, and therefore with

probability summation. However, performance in sequential AUD

VIS trials (k = 1, t5 = 1.42, p = 0.214; k = 2, t5 = 0.54, p = 0.615;

Figure 1. Bar plots showing d’ sensitivities. (a) Bar plot showing
sensitivities for AUD, VIS and AV presentations during Simultaneous
runs of trials. Data are shown for each of six observers, along with the
average performance across observers. Error bars depict +/2 1 SEM.
Subjects 3, 4 & 5 are authors. Note that their data does not differ
qualitatively from other participants (b) Data from Sequential runs of
trials. Details are as above.
doi:10.1371/journal.pone.0010217.g001

Figure 2. Bar plot depicting sensitivity during Simultaneous
AUD-VIS trials (Red) and AV sensitivities predicted on the basis
of different magnitudes of summation. Predictions are based on
AUD and VIS sensitivities during Simultaneous trial runs (see Figure 1a).
K = 1 corresponds with a linear integration prediction, k = 2 with a
quadratic summation, and k = 3 with probability summation (see main
text for details). Error bars depict +/2 1 SEM.
doi:10.1371/journal.pone.0010217.g002
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k = 3, t5 = 1.23, p = 0.273) are most consistent with k = 2, and

therefore with MLE.

Discussion

Our data suggest that an integration process can result in

heightened sensitivity for simultaneous AV speech cues. The

magnitude of facilitation was well predicted by a linear

summation, but could not be predicted on the basis of a

probability summation [10,11–12], or a Bayesian MLE [8,19].

AUD and VIS signals in sequential trials were, however, less likely

to become integrated as they were separated by a 3 second ISI (see

Materials and Methods). Consistent with this, the facilitation of

speech recognition for sequential AV signals was inconsistent with

linear summation.

The maximum likelihood estimation (MLE) model is a popular

contemporary approach to multi-sensory research [7–8,19]. MLE

assumes multi-sensory integration and has proven highly successful

at predicting multi-modal sensitivity. As can be seen in Figures 2

and 3, it can be difficult to differentiate the predictions of MLE from

those of probability summation [10–12]. Multimodal sensitivities

that are consistent with one of these predictions will often be

consistent with the other. As only one of these predictions assumes

multi-sensory integration, this too is potentially problematic.

Our data concerning simultaneous AV speech sensitivity are

consistent with a different form of integration that results in greater

summated sensitivity. They are consistent with a linear summation

of the two sources of information. They suggest the existence of a

process for which AUD and VIS inputs are equitable. This is

analogous to visual mechanisms that linearly summate different

sources of information to form an integrated code [16].

The present results contrast with AV sensitivities in other

contexts. Discriminations between different rates of AV flicker/

flutter, for instance, are well predicted via MLE [11]. So too are

data concerning AV spatial localization [7]. As can be seen in

Figure 2a, our simultaneous AV speech data exceed MLE

predictions. These data suggest that AUD and VIS speech cues

are encoded by a common physiological mechanism, whereas

independent processes determine initially independent spatial

location [7] and change rate [11] estimates.

We speculate that the initial independence of sensory estimates

for AUD and VIS locations might be functionally advantageous,

allowing for attention to be directed at will toward auditory and or

visual signal origins [20]. However, the determination of initially

independent AUD and VIS location estimates necessarily limits

the sensitivity of any subsequent code formed by summating these

initial estimates. Such a code would be limited by the variance

associated with each, initially independent, sensory estimation.

Greater sensitivity to multi-sensory input could be achieved if

initial independent uni-modal sensory estimates are not computed.

Instead, the initial sensory estimate could be determined via a

process that takes direct input from multiple sensory modalities.

This would maximize the precision of sensory decisions when

multi-modal signals are in accord, but may come at a cost of being

unable to ignore discordant multi-sensory input. We believe that

previous research concerning AV facilitation of speech recognition

[9], and an inability to ignore discordant visual cues when

attending auditory speech [3,21], are consistent with primary

sensory estimates of speech content being based on both auditory

and visual processing.

Some of the most compelling evidence for sensory integration is

provided by cases wherein the integration process results in

impaired sensitivity, due to the combination of conflicting sensory

cues. In this context metamers can be generated [22]. These are

composite stimuli that cannot be discriminated from physically

differing inputs, even though their constituents could be. For

instance, a red and or green light could easily be distinguished

from yellow, but this can become impossible when the red and

green lights are combined. The compelling aspect of this situation

is the loss of sensitivity for the independent cues as a consequence

of sensory integration.

Our data suggest that AUD-VIS speech might be an example

wherein cross-modal integration results in a loss of sensitivity to

constituent inputs. If primary estimates of speech content are

derived via a process that takes direct input from audition and

vision, a loss of sensitivity to the independent audio and visual

speech cues would ensue because these cues are never encoded in

isolation. Note, however, that this does not imply a misperception

of mouth aperture, or of the tonal qualities of the voice. Rather,

the misperception would be specific to speech content. The

mandatory sensory fusion this suggests is certainly consistent with

the striking perceptual distortions that ensue when discordant

audio and visual cues are encountered [3,21]. Thus a strong

implication of our data is that it should be possible to create

metamers for speech content.

While conflicting with many examples of AV sensitivity

facilitation, our data are consistent with those reported for

spatially and temporally co-localised AV directional movement

[15]. This observation set a precedent for the linear summation of

AV signals. Our results are also strikingly similar to a recent

Figure 3. Bar plots depicting observed and predicted sensitiv-
ities. (a) Bar plot depicting sensitivity during Sequential AUD AUD trials
(red) and AUD AUD sensitivities predicted on the basis of different
magnitudes of summation. Predictions are based on AUD sensitivities
during Simultaneous trial runs. (b) Bar plot depicting sensitivity during
Sequential VIS VIS trials (red) and VIS VIS sensitivities predicted on the
basis of different magnitudes of summation. Predictions are based on
VIS sensitivities during Simultaneous trial runs. (c) Bar plot depicting
sensitivity during Sequential AUD VIS trials (Red) and AUD VIS
sensitivities predicted on the basis of different magnitudes of
summation. Predictions are based on AUD and VIS sensitivities during
Simultaneous trial runs. Error bars depict +/2 1 SEM.
doi:10.1371/journal.pone.0010217.g003
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dataset concerning AV sensitivity to biological motion [23].

However, our speech recognition data contrast with AV

movement sensitivity [15], in that our AUD and VIS speech

signals did not have to be presented in strict spatial co-register to

induce linear summation.

Sequential presentations were included in this study primarily as

a control. One would not expect sensory level integration in these

trials, as the sequential presentations were separated by three

seconds and constituted clearly separate sensory events. It is

therefore unsurprising that neither repeated unimodal nor

sequential cross modal presentations resulted in performance

consistent with linear summation. Instead, performance in these

conditions was statistically consistent with probability summation,

as expected when two independent sensory estimates serve as the

basis for decision making [10–13]. However, there was an

interesting trend, with many participants performing better in

sequential AUD VIS trials than predicted by probability

summation. Instead, performance in sequential AUD VIS trials

was better predicted by MLE. We hasten to point out, however,

that performance in sequential AUD VIS trials was statistically

indistinguishable from both MLE and probability summation based

predictions.

Our sequential AUD VIS data are reminiscent of an earlier data

set, concerning discriminations between different rates of change

[11]. In that study both simultaneous and sequential AUD VIS

presentations resulted in enhanced sensitivity relative to unimodal

presentations. Moreover, performances in both simultaneous and

sequential cross modal presentations were consistent with MLE.

When considered in conjunction with the trend in our data, this

suggests that AUD VIS integration need not occur at a sensory

level of processing. Instead, clearly differentiated sensory events

are capable of promoting a level of performance consistent with

integration via a weighted summation [7–8,11]. This may imply

that sensory estimates can become integrated via MLE at a

decision-level of analysis.

The experimental conditions reported here were intentionally

highly constrained. This allowed us to determine objective

sensitivity measures, making it possible to differentiate the

predictions of linear from other forms of summation. However,

task success rested on the detection of a single phoneme difference.

This is not representative of the unconstrained conditions, nor of

the highly variable content, of naturalistic speech. It remains to be

seen, therefore, if our approach can be adopted to account for the

results of experiments that adopt less constrained conditions, so

as to better approximate the conditions of naturalistic speech

[24–25]. However, our data speak to the ability to discriminate

between utterances based on the detection of single phoneme

differences. Thus, while it remains to be seen how far our findings

will generalize, our data are relevant for understanding speech

comprehension.

The paradigm we have adopted could easily be developed to

precisely estimate where the vital information for cross modal

integration is located. For instance, a trial-by-trial record could be

kept concerning the locations of the obscuring visual noise

elements. Then, by correlating performance with noise element

locations, the critical facial regions could be identified. By using

dynamic noise elements, this investigation could be extended into

the temporal domain. Similar manipulations could be applied to

the auditory stimulus.

Our data reveal a dramatic improvement in speech recognition

following exposure to coincident and concordant AUD and VIS

speech cues, compared to performance with isolated AUD or VIS

input. The magnitude of improvement is inconsistent with the

formation of initially independent auditory and visual estimates of

speech content. Instead, we suggest that primary estimates of

speech content are determined by a process that takes direct input

from visual and auditory processing.

Materials and Methods

Six members of the University of Queensland Perception Lab

participated in the experiment, 3 of the authors and an additional

3 who were naı̈ve as to the purpose of the experiment. All reported

normal, or corrected to normal, visual acuity and normal hearing.

Before the experiment, participants were provided with an

information sheet, which outlined the general purpose of the

study and possible consequences of participation. Participants

were also informed that they could withdraw at any time without

penalty. The experiment only began once the participant had

given verbal consent to the experimenter to continue. This

experiment was approved by The University of Queensland

School of Psychology ethics committee, and was conducted

according to the principles of the Declaration of Helsinki.

Visual stimuli were displayed on a 190 Sony Trinitron G420

monitor at a resolution of 10246768 pixels, driven by a ViSaGe

graphics card from Cambridge Research Systems at a refresh rate

of 120 Hz. Observers viewed all stimuli from 57 cm with their

head placed in a chinrest. Auditory stimuli were generated using

Matlab software and were presented via Sennheiser HD 25-1

headphones at an intensity of ,70 dbSPL.

Six movies of 3 of the authors uttering two phrases were

recorded. The phrases were, ‘My name is Gary’ and ‘My name is

Barry’. These were calibrated such that they were all of the same

duration (2.03 secs) and the initiation of mouth movements took

place at approximately the same movie epochs (see supplementary

Movies S1, Movie S2, Movie S3, and Movie S4).

To equate unimodal audio and visual performance, audio and

visual noises were added to the stimuli. Audio noise consisted of

white noise, generated on a trial-by-trial basis. Visual noise was

generated by partitioning the visual stimulus into 0.13dva square

regions. A proportion of these were set to black (visual noise),

whereas the animation could be viewed in others (visual signal).

The positions of the black square regions were determined at

random on a trial-by-trial basis.

Prior to the experimental procedures, estimates of the signal to

noise ratio, at which observers were correct on 60% of uni-modal

trials during forced choice (Was the actor’s name Barry or Garry?)

tasks, were determined. Audio S/N ratios referred to the

amplitude of white noise in proportion to the peak amplitude of

the auditory (AUD) signal. Visual (VIS) S/N referred to the

proportion of un-obscured VIS animation. During a run of trials,

both S/N ratios were manipulated according to the method of

constant stimuli (VIS 0.10, 0.20, 0.25, 0.50, 0.75 or 1.00 AUD

0.08, 0.10, 0.13, 0.20, 0.40 or 1.00). During a run of trials, each S/

N ratio was presented 12 times (66 Barry, 66 Gary). A run of

trials therefore involved 72 AUD and 72 VIS trials, 144 individual

trials in total, all completed in a random order. Each participant

completed a single preliminary run of trials. Estimates were then

determined by fitting Weibull functions to individual data.

In the subsequent experiment, runs of trials were grouped

according to the style of stimulus presentation. During simulta-

neous runs of trials, AUD, VIS or AV signals were presented and

observers were required to indicate if the speaker had said that

their name was Barry or Gary, by pressing one of two CB6

(Cambridge Research Systems) response buttons.

AUD trials involved the presentation of the AUD signal

accompanied by a static picture of the speaker (the first frame of

the animation), partially obscured by VIS noise elements. VIS

AV Speech Cue Combination
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trials involved the presentation of the VIS signal accompanied by a

presentation of AUD noise. AV trials involved the presentation of

concordant AV signals and both AUD and VIS noises. Each run

of trials consisted of 50 presentations of ‘Gary’ and 50

presentations of ‘Barry’ in each style of presentation, 300 trials

in all. These were presented in random order, to prevent any

practise effects from systematically impacting our data across the

critical experimental conditions. Each observer completed two

runs of Simultaneous trials, providing 200 responses for each style

of stimulus presentation.

AUD and VIS trials could be considered as representing a

conflict scenario, in that there is no coherent signal in the other

sensory modality. This is unavoidable if one wants to examine the

possibility of cross-modal summation, as combined modality

presentations have to be compared with uni-modal presentations.

In Sequential runs of trials, two presentations were separated by

an inter stimulus interval (ISI = 3 sec). Both presentations

occurred before a response was required. The three styles of

presentation consisted of VIS ISI VIS, AUD ISI AUD, or

combinations of AV signals. The order of presentation for the last

grouping, either AUD ISI VIS or VIS ISI AUD, was randomized

on a trial-by-trial basis. Other details concerning these trial runs

were as per the Simultaneous runs of trials. The order in which the

different types of trial run were completed was counterbalanced

across observers (Simultaneous-Sequential-Simultaneous-Sequen-

tial, or Sequential-Simultaneous-Sequential-Simultaneous).

Supporting Information

Movie S1 Example footage of actor saying ‘‘My name is Barry’’

with visual and audio noise

Found at: doi:10.1371/journal.pone.0010217.s001 (3.72 MB

MOV)

Movie S2 Example footage of actor saying ‘‘My name is Gary’’

with audio and visual noise

Found at: doi:10.1371/journal.pone.0010217.s002 (4.12 MB

MOV)

Movie S3 Example footage of actor saying ‘‘My name is Barry’’

with audio and visual noise

Found at: doi:10.1371/journal.pone.0010217.s003 (3.97 MB

MOV)

Movie S4 Example footage of actor saying ‘‘My name is Gary’’

with audio and visual noise.

Found at: doi:10.1371/journal.pone.0010217.s004 (4.03 MB

MOV)
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