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Abstract

The ability of some bird species to pull up meat hung on a string is a famous example of spontaneous animal problem
solving. The ‘‘insight’’ hypothesis claims that this complex behaviour is based on cognitive abilities such as mental scenario
building and imagination. An operant conditioning account, in contrast, would claim that this spontaneity is due to each
action in string pulling being reinforced by the meat moving closer and remaining closer to the bird on the perch. We
presented experienced and naı̈ve New Caledonian crows with a novel, visually restricted string-pulling problem that
reduced the quality of visual feedback during string pulling. Experienced crows solved this problem with reduced efficiency
and increased errors compared to their performance in standard string pulling. Naı̈ve crows either failed or solved the
problem by trial and error learning. However, when visual feedback was available via a mirror mounted next to the
apparatus, two naı̈ve crows were able to perform at the same level as the experienced group. Our results raise the
possibility that spontaneous string pulling in New Caledonian crows may not be based on insight but on operant
conditioning mediated by a perceptual-motor feedback cycle.

Citation: Taylor AH, Medina FS, Holzhaider JC, Hearne LJ, Hunt GR, et al. (2010) An Investigation into the Cognition Behind Spontaneous String Pulling in New
Caledonian Crows. PLoS ONE 5(2): e9345. doi:10.1371/journal.pone.0009345

Editor: Colin Allen, Indiana University, United States of America

Received September 7, 2009; Accepted December 31, 2009; Published February 22, 2010

Copyright: � 2010 Taylor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by a Commonwealth Doctoral Scholarship (A.H.T.), CONCICYT 26080006 (F.M.) and a grant from the New Zealand Marsden
Fund (G.R.H. and R.D.G.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: alexhtaylor@gmail.com (AHT); rd.gray@auckland.ac.nz (RDG)

Introduction

As early as the 16th century it was noted that birds would pull up

string to obtain food [1]. Studies with great tits (Parus major),

European greenfinches (Carduelis chloris), canaries (Serinus spp.),

chaffinches (Fringilla coelebs), budgerigars (Melopsittacus undulates),

goldfinches (Carduelis carduelis), and siskins (Carduelis spinus), have

suggested that such performances are based on trial and error

learning [2–4]. A recent study with domestic dogs (Canis lupis

familiaris) came to the same conclusion [5]. Similarly, Piaget [6]

suggested that string pulling does not involve insightful actions.

However, corvids [7,8] and psittacids [9,10] have often

succeeded at this famous example of animal problem solving

within seconds of exposure to it. Complex cognitive mechanisms

such as insight [7,8] and imagination [11] have therefore been

proposed to explain this spontaneous behaviour. Insight has been

described as ‘mental scenario building’ where ‘‘…alternative choices

or motor patterns are expressed or suppressed depending on their probable

outcome, either before or after such outcome has been experienced.’’ [8].

Imagination is defined as the ‘‘…simulation of scenarios not available to

perception in the minds’ eye.’’ [11]. These mechanisms may require

another form of ‘insight’ based on an understanding of the relation

between the food and the string, or its ‘connectivity’ [6,12,13].

Recent experimental work on string pulling has focused on

string discrimination tasks. Both ravens (Corvus corax) and keas

(Nestor notabilis) are sensitive to the object at the end of the string

and do not attempt to pull up items that are overly large in size

[8,10]. When faced with parallel slanted strings both ravens and

keas pull the string connected to a reward rather than the

unrewarded string directly above the food [8,10]. However, when

faced with crossed strings of the same colour only one raven was

able to consistently choose the string connected to the meat rather

than the string tied directly above the meat [8]. In contrast, five of

the seven keas tested with differently-coloured crossed strings were

able to choose the correct string [10]. However, when they were

subsequently tested with same-coloured strings, only three keas

continued to choose the correct string. The keas’ performance

with these two crossed-string tests suggests that they had used ‘path

continuity’ as a visual cue for string selection [10] rather than an

understanding of ‘connectivity’ [6,12,13].

Despite the claims that complex cognitive mechanisms such as

insight are involved in spontaneous string pulling, only one

experiment has attempted to manipulate an animal’s performance

with the standard string-pulling problem. Ravens with experience of

string pulling were able to solve a counter-intuitive problem where a

string had to be pulled down from a pivot rather than being pulled

up from beneath a perch [14]. Ravens naı̈ve to string pulling could

not solve the problem. The authors suggested that the naı̈ve ravens

failed because of a lack of ‘‘…counter-intuitive means-end understand-

ing…’’ [14]. However, this task required divided attention - ravens

pulling and stepping on the string did not have the meat in their line

of sight as in standard string pulling. In standard string pulling a

positive perceptual-motor feedback cycle exists - pulling the string

moves the meat towards an individual, and stepping on the string

holds it in a position closer than before the pull. As the meat is

always within sight, the effect of string pulling on the meat can be
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constantly monitored. Such feedback may drive spontaneous string-

pulling performances if the sight of food moving and then staying

closer to an individual after a series of actions acts as an internal

psychological reinforcer and so increases motivation for the same

actions to be repeated. For the naı̈ve ravens this cycle may have

been interrupted as they had to both look up to coordinate pulling

the string down and look down to see the effects of their actions on

the position of the meat. The need to split their attention may have

prevented these ravens from being able to see that their actions had

a positive effect on the meat’s position. Experienced ravens may

have solved this problem because they had already learnt to

coordinate pull-step actions on the string. Therefore, they could

focus their attention on the meat rather than on co-ordinating string

pulling. Consequently, the experienced ravens solved the problem

while the naı̈ve ones did not.

New Caledonian crows (Corvus moneduloides) exhibit exceptional

tool skills both in the wild [15,16] and in experimental situations

[17–21], but they have not been tested on string-pulling tasks. We

presented these crows with the standard string-pulling problem, a

range of string discrimination problems [7,8,10] and a novel string-

pulling task where the positive perceptual-motor feedback cycle was

disrupted. To reduce the quality of visual feedback we suspended a

string through a small hole in a horizontal sheet of plywood

(Figure 1a). During string pulling a crow could only see the food on

the end of the string from directly above the hole. If the crow moved

away from the hole in the process of pulling up the string it lost

visual feedback about the consequences of its string-pulling actions.

The small diameter of the hole also changed the type of visual

feedback received by the crows. In the standard string-pulling

problem the crows could accurately judge whether a pull-step had

moved the food closer by viewing the food from a side angle. With

the novel apparatus the crows could only judge if the meat was

moving closer from a head-on angle directly above the string and

meat. This potentially prevented accurate estimation of whether the

distance between crow and meat was reduced after a pull-step, and

therefore a pull-step could appear to have a neutral effect on the

meat’s position rather than a positive one.

If New Caledonian crows spontaneously solved the standard

string-pulling problem, we predicted that their performance on the

visually-restricted task might show whether insight or a perceptual-

motor feedback cycle was the cognitive mechanism behind such

behaviour. If the crows were using insight, the reduced visual

feedback the crows received when attempting to solve the visually-

restricted problem should have little effect on their performance.

This is because the crows would have already built a mental

scenario in which they had imagined the effects of pulling and

stepping on the string (i.e. it brought the meat closer) and so,

during problem solving, could imagine the effects they were having

on the string when perceptual feedback was not available or

appeared neutral. The insight hypothesis therefore predicts little

difference in the degree of the efficiency (calculated as the number

of pulls followed by a step) or the rate of errors between standard

and visually-restricted string pulling. It would also predict that

crows naı̈ve to string pulling could produce spontaneous solutions

when presented with the visually-restricted apparatus, just as they

do when faced with the standard string-pulling paradigm.

Alternatively, if string pulling is mediated by perceptual-motor

feedback experienced crows should be less efficient and make

more errors when presented with the visually-restricted apparatus,

and naı̈ve crows should not produce spontaneous performances.

The perceptual-motor feedback hypothesis also predicts that naı̈ve

crows would perform better in the visually-restricted condition if

they had access to more information about the position of the meat

during problem solving. To address this prediction, we provided

naı̈ve crows with access to a mirror (Figure 1b) so they could

potentially follow the meat’s movement from a side-on angle when

pulling the string in the visual-restricted task.

Materials and Methods

Ethics Statement
Our work was carried out under University of Auckland Animal

Ethics Committee approval R602.

(a) Subjects
We carried out the experiments with 12 wild crows captured on

the island of Maré, New Caledonia. We aged the crows using

mouth colouration. Eleven of the crows were adults and one, Tiga,

was a juvenile. The crows were housed in a 5-cage outdoor aviary

close to the location of capture; the cages varied in size but were all

at least 8 m2 in area and 3 m high.

After capture, a crow was left to get accustomed to the aviary

and human presence for three days before experimental

procedures began. Crows were habituated to string for 3 days

before the experiment by tying string between perches in the

cages. The experiments were only carried out with one crow at a

time in a separate cage; the other crows could not see into the

experimental cage.

Figure 1. The visually-restricted apparatus. (A) Without the mirror. (B) With the mirror.
doi:10.1371/journal.pone.0009345.g001
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(b) Materials
(i) Materials used in the standard string-pulling and string

discrimination problems. Standard string-pulling (meat

suspended from a single, vertical string) and string discrimination

tasks were conducted using a horizontal wooden perch 180 cm

long and 5 cm in diameter. The perch was 2 m above the ground.

In the standard string-pulling task, meat was attached to a 40 cm

long length of string (2 mm in diameter) (Figure 2a). In object

discrimination tests with parallel (Figure 2b,d) and crossed strings

(Figure 2e), meat was attached to the end of one string and a small

rock 2 cm in diameter was attached to the end of the other string.

In the overload test, meat was attached to one string and a 700 g

chicken carcass was attached to the second string (Figure 2c).

Translucent fishing line was used to hold the strings in the slanted

and crossed positions. We carried out three different crossed-string

conditions using different combinations of string colour: (1) same-

coloured strings (both strings were white), (2) different-coloured

strings (one white, one blue), and (3) different-patterned strings (one

had 1 mm black stripes marked every 3 mm on white string, and

the other had 10 mm black stripes marked every 10 mm on white

string). In all other tests only white string was used.

ii) Materials used in the visually-restricted string-pulling

task. Visually-restricted string pulling was conducted on a

plywood platform suspended under the perch (Figure 2a). The

platform was 60 cm660 cm and had a 3 cm diameter hole in its

centre. Situated at the edge of the hole was a 15 cm length of

branch 2 cm in diameter. Meat was suspended on a 40 cm length

of string attached to the short section of branch. In the mirror

condition, a mirror 50 cm square was attached to the wall of the

aviary 70 cm from the platform (Figure 1b). It was positioned so

that it was possible for a crow interacting with the string to see a

reflection of itself, the string and the meat in the mirror.

(c) General Procedure
Trials were given in blocks of 10, with no more than 2 blocks per

day. All tests were recorded on video tape through the wall of an

adjoining observation cage. The 12 crows were separated into three

treatment groups with 4 birds in each group. The experienced and

naı̈ve groups contained four adults, while the mirror group

contained three adults and a juvenile. The experienced group was

given 10 standard string-pulling trials followed by 10 visually-

restricted string-pulling trials. The naı̈ve and mirror groups were

given 10 visually-restricted string-pulling trials then 10 standard

string-pulling trials. All the string discrimination tasks were given

after the completion of the standard and visually-restricted string-

pulling problems. Therefore, all crows were competent at string

pulling before attempting the discrimination tests.

i) Standard string-pulling procedure. Crows were given

10 trials. A trial was scored from when the crow first touched the

string until it left the perch or obtained the meat. We recorded the

string-pulling technique and the number and type of errors. We

also recorded the time taken from first contact with the string until

the crow either obtained the food or lost interest.

(ii) Visually-restricted string-pulling procedure. We

habituated crows to the visually-restricted apparatus by leaving it

in their cages for three days just prior to the experiment. Crows

were given 10 trials with the visually-restricted apparatus. A trial

was scored from when a crow first touched the string to when it left

the platform or obtained the meat. The experienced group was

tested on the apparatus after completing 10 trials of standard string

pulling. The naı̈ve group was not given any standard string-pulling

trials before being tested on the visually-restricted apparatus. The

mirror group was first habituated to mirrors by having them

placed in their cages for two weeks. This group was then given 20

familiarisation trials locating food with the use of a mirror (Medina

et al. unpublished data). The crows in the mirror group were finally

given 10 experimental trials with a mirror set up next to the

visually-restricted apparatus (Figure 1b). If crows did not interact

with the string within 10 mins they were retested the next day.

(iii) Procedure for string discrimination problems.

Crows were given four string discrimination tasks. Birds received

20 trials on each problem. Two of the four problems involved

vertical strings: (1) object discrimination (meat vs. rock; Figure 2b),

and (2) overload (1 g meat vs. 700 g chicken; Figure 2c). In the

other two problems crows had to choose one of two slanted

(Figure 2d) or crossed (Figure 2e) strings: one string had meat on it

and the other had a small rock. All 12 crows were given the object

discrimination and slanted tests. For the crossed-string test the

crows were split into three groups and allocated to the different

conditions in the same groups used in the previous string-pulling

tests: experienced, naı̈ve and mirror. The experienced group was

given the same-coloured condition, the naı̈ve group the different-

coloured condition and the mirror group the patterned condition.

Only the naı̈ve and mirror groups were given the overload test; the

experienced group was not tested because the birds had to be

released for the breeding season. In all four discrimination tests the

position of the meat and the other object were alternated

randomly between the two strings across trials. The string that

each crow first interacted with was scored as its choice in each

trial. The string discrimination tasks were presented in the

following order: 1) object discrimination, 2) slanted-string, 3)

crossed-string, and 4) overload.

(d) Data Analysis
We followed the methodology of a previous study [10] when

analysing a crow’s first trial with standard string pulling, which

allowed us to compare our results with those found in keas. That

is, we looked at interaction behaviours with the string besides a

pull followed by a step (pull-step). These other interactions

consisted of single pulls, pecks and touching the string. First

solution times were calculated using a cumulative score across

trials. In our comparison with the kea study, we excluded data

from the one juvenile kea that was tested due to its extended

solution time over several sessions. Unfortunately, it was not

Figure 2. Standard string-pulling problem and string discrim-
ination tasks. (A) Standard string-pulling problem. (B) Object
discrimination test: circle = meat; rectangle = rock. (C) Overload test:
small circle = meat; large circle = 700 g chicken. (D) Slanted-string test.
(E) Crossed-string test.
doi:10.1371/journal.pone.0009345.g002
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possible to compare the crows’ behaviour with those of other

studies where complex cognition has been suggested because of

methodological issues such as the use of juveniles [14], lack of

controls for neophobia, competition and social learning [7] and

small sample size [9].

To quantify variation in the efficiency of string-pulling, we

devised a novel measure, the ‘pull-step ratio’. Both single pulls and

pulls followed by a step were included in this measure. To

successfully pull up the meat a crow needed to follow a pull with a

step on the string to stop the string and meat falling back down. A

high pull-step ratio indicates that a crow usually stepped on the

string after pulling it up. A low pull-step ratio indicates that a crow

performed many pulls and few steps. String pulling errors were

defined as behaviours other than sequential pull-steps, pulls and

pecks. These included (i) pulling the string then pushing it against

the perch, (ii) stopping pull-step actions before the meat was

obtained, (iii) taking the foot off the string after stepping, and (iv)

attempting to stand on the string but mis-coordinating the step. All

analyses of pull-step ratios and errors were counts across the entire

trial, unless we indicate that they excluded the first pull-step. We

excluded data before the first pull-step when comparing the

experienced group’s performance in standard and visually-

restricted string pulling. We did this to remove variation due to

exploratory behaviour and to allow a meaningful comparison of

performances between standard and visually-restricted string

pulling. Results are expressed as means 6 s.e.m.

Results

(a) Standard String Pulling
The four crows in the experienced group showed immediate

interest in the baited string and had no obvious neophobic

response to the apparatus. Three of these four crows obtained the

meat on their first trial (See Movie S1). Goo pecked and pulled at

the string on its first trial, then solved the problem on the second

trial. Two crows showed no string-interaction behaviours other

than pull-steps before the first solution. Owl performed one

behaviour and Goo performed 11 behaviours (grand mean 6

s.e.m.: 3.2562.63). First solution times ranged from 6–37 s

(16.25614.24) (trials 1 and 2 were combined for Goo’s score).

The performance of the four crows compared favourably with that

of six adult keas [10]. Interaction behaviours for the keas

(excluding pull-steps) ranged from 0–31 (7.67612.29) and solution

times ranged from 9–330 s (83.16128.39).

Across the 10 standard string-pulling trials the four crows’

average pull-step ratio was 90.262.42% (including all interactions

with the string) and 96.4561.86% after the first successful pull-

step. Therefore, from the first trial crows were chaining together

pull and step behaviours into coherent sequences. The four crows

only made a total of three errors: (1) Yellow made an

uncoordinated third step on the second trial and dropped the

string, (2) Yellow also made an uncoordinated second step on the

eighth trial and again dropped the string, and (3) Goo made an

uncoordinated step on the eighth trial when he failed to pull the

string up far enough to step on it.

Crows used two string-pulling techniques: side-stepping and

double-stepping. In side-stepping, they moved in one direction

along the perch and used the same foot to step on the string.

Therefore, they progressively moved further from where the string

was tied to the perch. When double-stepping, crows remained

stationery and alternately used the right and left foot to step on the

string. Owl significantly preferred side-stepping to double-stepping

(80% of attempted steps, Binomial choice p = 0.002). The other

three crows had no preferred stepping technique.

(b) Experienced Crows and Visually-Restricted String
Pulling

Crows in the experienced group took between 1–6 trials

(3.061.08) to solve the visually-restricted task and obtained the

meat between 2–9 times (5.561.55) in their 10 trials. Compared to

standard string pulling, after the first pull-step the experienced

group made 10 times as many errors (One-tailed Wilcoxon signed-

ranks test: Z = 10, p = 0.0625) and their mean pull-step ratio

dropped from 96.561.86% to 55.7610.1% (One-tailed Wilcoxon

signed-ranks test: Z = 210, p = 0.0625).

The crows made two common errors when they were less than a

body length from the hole and could potentially look down at the

meat between pull-steps: they performed the first pull-step then

stopped (32.4% of total errors) (see Movie S2), and pushed the

string against the perch rather than stepping on it (21.6% of

errors). They also made two common errors when they were more

than a body length from the hole and unable to look down at the

meat: making no attempt to step on the string while side-stepping

(24.3% of errors), and taking their foot off the string after a pull-

step to go and look down the hole (10.8% of errors).

More errors occurred in a pull-step action when a crow did not

look down the hole beforehand (errors in 6361.73% of attempted

pull-steps) compared to when they did look down the hole (errors

in 9.364.62% of attempted pull-steps) (One-tailed Wilcoxon

signed-ranks test: Z = 210, p = 0.0625). There was a difference in

error rates between the two stepping techniques (One-tailed

Wilcoxon signed-ranks test: Z = 210, p = 0.0625). Only 4.56

fo4.53% of the total attempts at double-stepping failed compared

to 57.661.46% of side-stepping attempts. Two crows had a

significant bias for double-stepping: Goo (90.9%, Binomial choice,

p = 0.003) and Owl (84.1%, Binomial choice, p = 0.026). Yellow

and Zola had no preferred stepping technique. Interestingly, Owl

switched from a bias for side-stepping in standard string pulling to

one for double-stepping in the visually-restricted task.

(c) Naı̈ve Crows and Visually-Restricted String Pulling
(i) Naı̈ve group. One naı̈ve crow, Angel, solved the visually-

restricted task in five trials, first doing so on trial 5. Her string-

pulling competence developed gradually. In the first two trials

Angel only pulled at the string. In her third trial after 17 pulls, she

made a pull-step from directly above the hole and then made an

unsuccessful side-step. In trial 5 after 40 pulls, Angel obtained the

meat after two pull-steps directly above the hole. During this

behaviour she also tried to push the string against the perch for the

first time. Angel failed in trial 6, pushing the string against the

perch six times before attempting to step on it. She was

unsuccessful at coordinating pull-steps and again pushed the

string against the perch before giving up. Angel successfully

obtained the meat in trials 7–10. However, she continued to make

a relatively high number of errors by pushing the string against the

perch and having problems coordinating pull-step actions.

The other three crows never solved the problem. On his first

trial, Boxer made a pull-step directly above the hole but then

pushed the string against the perch. In subsequent trials he only

ever pulled and then pushed the string against the perch (n = 10

times). Robin completed two pull-steps in his final trial, with both

steps occurring directly above the hole. However, after the second

pull-step he pulled without stepping then left the apparatus.

Español pulled at the string 188 times but never stepped on it.

Both Robin and Español never pushed the string against the

perch.
(ii) Mirror group. Two of the four crows solved the visually-

restricted task when it was possible to obtain visual feedback via a

mirror: Slevin in trial 3 and Ronia in trial 5. Both crows solved the
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task in six of their 10 trials. Ronia interacted with the string and

then looked at the mirror in her first two trials. In the remaining

trials she never obviously looked in the mirror during string

pulling. However, in all six successful trials she either faced the

mirror or had her body sideways-on to it; she was unsuccessful in

the only trial with her back towards the mirror. Slevin interacted

with the string then obviously looked at the mirror in his first five

trials. In his first trial he appeared to see the meat move in the

mirror after he pulled the string, and turned to face the mirror

while still holding the string. When turning he slid his bill along the

string. This bill-sliding became the basis for a novel string-pulling

technique which allowed him to pull the meat up with only one

pull-step. Slevin did not obviously look in the mirror during his last

five successful string-pulling trials. Unlike Ronia, two of Slevin’s six

successful trials were carried out with his back to the mirror.

Tiga and Egg never solved the task. Tiga appeared distracted by

the mirror refection after pulling at the string. She looked at the

mirror after interacting with the string in nine of her 10 trials.

Although Tiga did not exhibit any obvious startle reactions, on six

occasions she left the apparatus after looking in the mirror. Tiga

performed one pull-step on her final trial, when directly above the

hole, but then left the apparatus. Egg exhibited little or no reaction

to the mirror. He completed one pull-step in trial 5 and two in trial

6; the successful pull-steps in trial 6 were interspersed with failed

pull-steps, which prevented Egg obtaining the meat.

(d) Comparison of Visually-Restricted Performances
Pull-step ratios were significantly different between the naı̈ve

and the experienced groups (Mann-Whitney U-test: U = 16,

p = 0.0286). However, they were not different between the mirror

group and the experienced group (Mann-Whitney U-test: U = 10,

p = 0.6857). These group differences appear to be due to the

manner in which the successful crows from the mirror and naı̈ve

groups solved the problem. The two successful mirror crows had

very similar pull-step ratios and error rates to the experienced

group (Figures 3 and 4). In contrast, the one successful naı̈ve crow

had a pull-step ratio three times lower than that of the successful

crows in the other two groups and made five times as many errors

during successful trials (Figures 3 and 4). The low number of

successful individuals in the naı̈ve (n = 1) and mirror (n = 2) groups

precludes between-group statistical comparisons of pull-step ratios

and errors for these three successful crows. However, changes in

pull-step ratios across successful trials could be analysed. This

analysis showed that trial number did not predict success for the

mirror and the experienced groups (Linear regression: R2 = 0.001,

F1,8 = ,0.001, p = 0.99 and R2 = 0.11, F1,15 = 1.83, p = 0.20,

respectively), but it did for the successful naı̈ve crow Angel

(R2 = 0.903, F1,3 = 28.068, p = 0.013) (Figure 5). Angel’s pull-step

ratio increased across successful trials (Regression coefficient

= 13.46: t1,3 = 5.298, p = 0.013). The gradual increase within these

trials and the high number of errors suggests that Angel solved the

problem by trial and error learning.

(e) String Discrimination
All 12 crows significantly preferred to pull the string with the

meat attached rather than the string with a rock attached. In

90.8% of the 240 trials they chose the former string (Binomial

Figure 3. String-pulling efficiency across the three groups with
the visually-restricted apparatus. E: experienced group; SM:
successful mirror crows; SN: successful naı̈ve crows; FM: failed mirror
crows; FN: failed naı̈ve crows.
doi:10.1371/journal.pone.0009345.g003

Figure 4. Error rates in successful trials with the visually-
restricted task. Red bars: experienced group; Blue bars: mirror group;
Green bar: naı̈ve group.
doi:10.1371/journal.pone.0009345.g004

Figure 5. Pull-step ratios in the first five successful trials for the
experienced, naı̈ve and mirror groups with the visually-
restricted task. White circle: experienced group; Dark circle: mirror
group; Triangle: naı̈ve group.
doi:10.1371/journal.pone.0009345.g005
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choice, p = 0.0002). Only Tiga, the juvenile, chose the rock on the

first trial. The crows performed at similar levels with the slanted

string, although three of them chose the rock on the first trial. The

12 crows chose the slanted string with food in 89.1% of the 240

trials (Binomial choice, p = 0.0002). The eight crows performed

well on the overload test. Six of them chose the small reward on

the first trial and across all eight crows this reward was chosen in

93% of the 160 trials (Binomial choice, p = 0.0002).

Performances dramatically declined in all three crossed-string

conditions. Six of the 12 crows chose the string with food on the

first trial; one crow in the same-colour condition, three in the

different-colour condition and two in the patterned-colour

condition. In the same-colour condition, the four crows chose

the correct string in 43.8% of the 80 trials (Binomial choice,

p = 0.317). Crows performed slightly better in the different-colour

condition, choosing the correct string in 55% of the 80 trials

(Binomial choice, p = 0.435). In the patterned-colour condition,

the four crows had a significant bias for the string above the meat

rather than the one connected to it (correct string chosen in 32.5%

of the 80 trials; Binomial choice, p = 0.002). The performance of

the crossed-string groups was significantly better in the last 5 trials

(58.362.32% correct) than in the first 5 trials (38.363.47%

correct) (Paired t-test t = 22.345, p = 0.039), which suggested that

some learning occurred.

Discussion

Three of the four New Caledonian crows initially tested on the

standard string-pulling problem solved the task on the first trial.

Two of these three crows performed a sequence of pull-step

actions without making any other string-orientated behaviour

beforehand. Such spontaneity has not been shown by ravens naı̈ve

to string pulling [7,8], but has been seen in the performances of

keas [10]. The ‘insight’ hypothesis assumes that the string-pulling

problem is mentally solved by an animal either before interaction

or after the first pull-step has been completed [8]. Nevertheless,

even after the first pull-step on the visually-restricted apparatus,

the crows experienced at standard string pulling showed a drop in

performance and an increase in error rates. Similarly, the three

naı̈ve crows that completed at least one pull-step with this

apparatus did not then spontaneously chain these behaviours

together to solve the problem. These results are not consistent with

the hypothesis that the crows built a mental scenario, either during

their successful solution of the standard string-pulling problem or

after the first pull-step on the visually-restricted apparatus.

However, due to the low sample size further work investigating

the effect of interrupting visual feedback is required.

The crows also did not appear to have had any insight into the

relation between the string and the reward [6,12,13]. Although the

crows were able to solve a number of low-level string

discrimination tasks, their performance dropped on the more

complex crossed-string tasks. The crows were not able to

consistently choose the string baited with meat, even when the

two strings differed in colour or pattern. This suggests that they did

not have an understanding of ‘connectivity’, the causal relation

between the string and the meat. This failure may be due to the

crows lacking sufficient exposure to string pulling. They were given

60 string-pulling trials before the crossed-string problems and the

string had been presented in a variety of arrangements in these

trials. In a recent study, New Caledonian crows only became

sensitive to a causal relation after an average of over 100 trials with

the problem [20,21].

The behaviour of the experienced group of crows with the

visually-restricted apparatus supports the hypothesis that operant

conditioning mediated by perceptual-motor feedback is important

for string pulling. Even though these crows had already completed

10 trials of standard string pulling, they made more errors and

chained pull-step behaviours together with less efficiency when

faced with the visually-restricted problem. They also made more

errors when they did not look down the hole before a pull-step

action. One crow even changed its string-pulling technique from a

side-stepping one to a double-stepping one, which allowed it to

continually look down the hole during string pulling.

The evidence from the naı̈ve and mirror groups for the use of

visual feedback in string pulling is weaker than that from the

experienced group. Although three of the four naı̈ve crows were

unable to solve the problem, one naı̈ve crow was successful. Also,

only two of the mirror crows were successful when visual feedback

was potentially available. The low numbers of successful crows in

these groups constrained the statistical analyses that we could carry

out. The two successful mirror crows had similar error rates and

proficiency to the four crows in the experienced group, despite

being naı̈ve to string pulling. In contrast, the successful naı̈ve crow

Angel made many more errors and had a much lower pull-step

ratio. The gradual increase in proficiency over time seen in Angels’

performance is suggestive of trial and error learning. One reason

for the weak performance of the two unsuccessful crows in the

mirror group might be because the mirror distracted them. One of

these two crows, Tiga, left the apparatus in six trials after looking

into the mirror and did not return.

There are two ways in which the visually-restricted apparatus

could have affected perceptual-motor feedback. First, the appara-

tus could disrupt visual feedback because the meat moved out of

sight during string pulling. Experienced crows made fewer errors

in the visually-restricted task when they looked down the hole

before attempting a pull-step. They made more errors when they

used a side-stepping technique, which took them progressively

further from the hole. However, neither pulling nor stepping on

the string was dependent on the meat being in view, eliminating

the use of a simple ‘out of sight, out of mind’ perceptual-motor

feedback mechanism.

Second, the quality of visual feedback could have been reduced

even when crows were looking through the hole at the meat.

Humans find it difficult to judge whether an object is moving

closer when the angle of approach is zero, that is, when the object

is coming straight towards the observer [22]. Crows viewing the

meat through the hole had only this head-on perspective of the

effect of their actions on the meat. Therefore, it may have been

difficult for them to judge which string-directed behaviour moved

the meat and returned it to its original position (a pull-drop), and

which behaviour moved the meat and kept it slightly closer than

before (a pull-step). Determining if the meat had moved closer

would have been most difficult after the first pull-step as crows

would need to judge from a relatively long distance whether the

meat had moved a few centimetres towards them or not. A

common error made by the experienced crows was to complete a

single pull-step and then stop string pulling. The successful mirror

crows never made such an error. This difference supports the

hypothesis that side-on visual feedback via the mirror allowed

crows to detect if the meat moved closer after the first pull-step and

so reinforced these actions.

Our findings here raise the possibility that string pulling is based

on operant conditioning mediated by a perceptual-motor feedback

cycle rather than on ‘insight’ or causal knowledge of string

‘connectivity’. However, as only two crows were successful in the

mirror group the results are not conclusive and further testing with

a larger sample size is required. One issue must be accounted for if

perceptual-motor feedback is to be considered a plausible
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explanation for spontaneous string pulling. All the bird species

tested so far would have been able to learn via operant

conditioning, yet large inter-species differences have been found.

Adult European greenfinches and canaries are unable to solve the

standard string-pulling problem [2]. Juveniles of these species can

only solve the string-pulling problem if the baited string is

gradually lengthened across trials. Similarly, only 6% of

goldfinches and 35% of siskins solved the standard string-pulling

task within the first hour of exposure to it [4]. Both goldfinches

and siskins use their feet in the wild for holding buds, seeds and

grass stems [23]. Therefore, spontaneous string pulling requires

more than this behavioural prerequisite. To our knowledge,

spontaneous string pulling by naı̈ve birds has been found only in

psittacids and corvids. These two families have enlarged forebrains

in comparison to other birds [24], particularly in the nidopallium

and mesopallium regions [25,26]. A possible explanation for the

inter-species differences, if string pulling is based on operant

conditioning, is that bird species with larger associative brain areas

are able to integrate information between perceptual and motor

pathways quicker than species with smaller associative brain areas.

That is, they can quickly identify novel actions that have a positive

effect when in the process of creating novel sequences of

behaviour. This is compatible with an ‘embodied cognition’

perspective (see [27] for a full definition). Embodied cognition

involves an animal developing complex behaviour through

understanding the consequences of its own actions, without using

off-line processes such as insight and planning [27,28]. This

cognition is similar to that involved in time-pressured human

spatial decision making such as steering a car or playing a

computer game like Tetris [29]. The perceptual-feedback

hypothesis, therefore, could potentially account for the interspecies

variation found so far. This hypothesis makes empirical predictions

concerning the role of perceptual feedback in string pulling, the

ability of moving food to act as an internal psychological reinforcer

and the link between information integration and behavioural

flexibility. Testing these predictions against those of the insight

hypothesis will be necessary to shed light on the actual cognitive

mechanisms underpinning spontaneous string pulling.

Supporting Information

Movie S1 First trial of Zola solving the standard string-pulling

problem.

Found at: doi:10.1371/journal.pone.0009345.s001 (0.91 MB

MOV)

Movie S2 Second trial of Zola performing a single pull-step on

the visually-restricted problem.

Found at: doi:10.1371/journal.pone.0009345.s002 (2.50 MB

MOV)
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