
Dysbindin Promotes the Post-Endocytic Sorting of G
Protein-Coupled Receptors to Lysosomes
Aaron Marley, Mark von Zastrow*

Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America

Abstract

Background: Dysbindin, a cytoplasmic protein long known to function in the biogenesis of specialized lysosome-related
organelles (LROs), has been reported to reduce surface expression of D2 dopamine receptors in neurons. Dysbindin is
broadly expressed, and dopamine receptors are members of the large family of G protein-coupled receptors (GPCRs) that
function in diverse cell types. Thus we asked if dysbindin regulates receptor number in non-neural cells, and further
investigated the cellular basis of this regulation.

Methodology/Principal Findings: We used RNA interference to deplete endogenous dysbindin in HEK293 and HeLa cells,
then used immunochemical and biochemical methods to assess expression and endocytic trafficking of epitope-tagged
GPCRs. Dysbindin knockdown up-regulated surface expression of D2 receptors compared to D1 receptors, as reported
previously in neurons. This regulation was not mediated by a change in D2 receptor endocytosis. Instead, dysbindin
knockdown specifically reduced the subsequent trafficking of internalized D2 receptors to lysosomes. This distinct post-
endocytic sorting function explained the minimal effect of dysbindin depletion on D1 receptors, which recycle efficiently
and traverse the lysosomal pathway to only a small degree. Moreover, dysbindin regulated the delta opioid receptor, a more
distantly related GPCR that is also sorted to lysosomes after endocytosis. Dysbindin was not required for lysosomal
trafficking of all signaling receptors, however, as its depletion did not detectably affect down-regulation of the EGF receptor
tyrosine kinase. Dysbindin co-immunoprecipitated with GASP-1 (or GPRASP-1), a cytoplasmic protein shown previously to
modulate lysosomal trafficking of D2 dopamine and delta opioid receptors by direct interaction, and with HRS that is a core
component of the conserved ESCRT machinery mediating lysosome biogenesis and sorting.

Conclusions/Significance: These results identify a distinct, and potentially widespread function of dysbindin in promoting
the sorting of specific GPCRs to lysosomes after endocytosis.
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Introduction

G protein-coupled receptors comprise the largest family of

signaling receptors expressed in animal cells, and control a vast

array of physiological processes [1]. A fundamental determinant of

cellular responsiveness to a particular GPCR-mediated extracel-

lular stimulus is the number of cognate receptors present in the

plasma membrane. Mammalian cells typically express multiple

GPCRs responsive to distinct ligands, and it is thought that surface

expression of particular GPCRs is regulated in a receptor-specific

and ligand-dependent manner, allowing cells to dynamically

regulate their responsiveness to particular ligands. Biochemical

mechanisms that mediate such receptor-specific regulation of

surface receptor number are thus of fundamental physiological

importance.

In addition to their broad significance to normal physiology,

GPCRs represent the single largest class of clinically relevant drug

targets. Further, it is thought that disturbances in the function or

expression of particular signaling receptors may contribute to a

variety of pathological states [2]. The dopaminergic hypothesis of

schizophrenia, for example, postulates that there is relative excess

of signaling specifically via D2-type dopaminergic GPCRs in the

brain [3]. Consistent with this, many of the drugs effective in the

treatment of schizophrenia are selective D2 receptor antagonists.

Schizophrenia is highly heritable but its genetics are complex. Of

the various genes implicated in schizophrenia disease risk, a

remarkable fraction encode proteins that function in membrane

traffic [4]. Might human disease genetics provide new insight

relevant to the membrane trafficking of specific GPCRs?

Recent data suggest that this may indeed be the case. Dysbindin,

a cytoplasmic protein encoded by DTNBP1 [5], has been

genetically linked to the Hermansky-Pudlak syndrome (HPS).

HPS is characterized by hypopigmentation and bleeding problems

resulting from loss of lysosome-related organelles, which are present

in specialized secretory cell types such as melanocytes and platelets

[6,7,8]. Interestingly, dysbindin has also been implicated more

recently as a schizophrenia risk gene [9,10,11]. Dysbindin produces

significant effects on dopaminergic signaling [12] and has been

reported to reduce surface expression of D2 receptors, relative to the

closely related D1 dopamine receptor in neurons [13].
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Dysbindin is expressed widely in mammalian tissues [5], not only

in specialized secretory cells. Further, dopamine receptors are

expressed outside of the nervous system, and are members of the

largest group of GPCRs (family A) that are expressed in many cell

types. These considerations raise the question of whether dysbindin

may also affect GPCR trafficking outside of the nervous system. We

investigated this possibility in the present study. Here we show that

dysbindin-dependent regulation of surface receptor expression is not

restricted to neurons or to the D2 receptor, and identify an

apparently widespread function of dysbindin in regulating GPCRs

by promoting their sorting to lysosomes after endocytosis.

Results

Dysbindin Regulates D2 Receptor Number Observed at
Steady State in the Plasma Membrane of Non-Neural
Cells

To begin to investigate whether dysbindin functions in non-

specialized cell types, we used HEK293 cells as a model.

Immunoblotting clearly detected endogenous dysbindin expression

in these cells, and 3 different siRNAs targeting the human DTNBP1

gene effectively depleted endogenous dysbindin, with equivalent

loading verified by blotting for GAPDH (Fig 1A). We then asked if

dysbindin depletion affects surface expression of dopamine receptors

in these cells. To do so we prepared stably transfected cells expressing

FLAG epitope-tagged versions of either the human D1 or D2

dopamine receptor, and selected cell clones expressing similar

amounts of receptor in the plasma membrane as assessed by

fluorescence flow cytometry. siRNA-mediated knockdown of dysbin-

din significantly up-regulated FLAG-D2 receptor surface expression,

but did not detectably affect surface expression of FLAG-D1

receptors (Fig 1B). We verified this effect (and the subsequent effects

described), using all three (non-ovelapping) siRNA target sequences.

Dysbindin Selectively Affects Trafficking of D2 Receptors
to Lysosomes after Endocytosis

Selective up-regulation of surface D2 receptors observed in

HEK293 cells is consistent with results reported previously from

dysbindin knockdown in cortical neurons, which proposed that

dysbindin is specifically required for endocytosis of D2 receptors.

Thus we applied fluorescence flow cytometry to assess internal-

ization of D2 receptors induced by addition of 10mM dopamine to

the culture medium. Surprisingly, despite its pronounced effect on

basal surface expression, dysbindin depletion in HEK293 cells did

not detectably affect the rate or extent of FLAG-D2 receptor

internalization (Fig 2A and B).

The failure of dysbindin depletion to affect D2 receptor

internalization raised the question of whether the observed

increase in steady state surface expression occurs via the endocytic

pathway at all. To investigate this, we applied surface biotinylation

to specifically label the plasma membrane pool of D2 receptors

and assessed turnover of this receptor pool as a function of time.

Streptavidin affinity chromatography followed by anti-FLAG

immunoblot revealed significant proteolytic turnover of D2

receptors, as indicated by reduced biotinylated receptor signal

detected in cell extracts prepared after exposure to dopamine for

several hours (Fig 2C, left panel). Remarkably, dysbindin depletion

visibly inhibited turnover of surface labeled D2 receptors (Fig 2C,

right panel). We quantified this effect using scanning densitometry

(Fig 2D) and confirmed its statistical significance across multiple

independent experiments (Fig 2E).

The ability of dysbindin depletion to inhibit dopamine-induced

turnover of the surface-labeled D2 receptor pool, without affecting

receptor internalization itself, suggested that dysbindin regulates a

Figure 1. Dysbindin knockdown increases surface expression
of recombinant D2 dopamine receptors in HEK293 cells. A.
Immunoblot showing depletion of endogenous dysbindin in HEK293
cells by three different siRNA duplexes. A representative immunoblot is
shown of cell extracts (30 mg/lane) from control-transfected (CTL) cells
and cells transfected with one of three siRNA specific duplexes; similar
results were obtained with each of the silencing duplexes The
immunoreactive band corresponding to endogenous dysbindin is
indicated by arrow. A small amount of cell extract (,2 mg) from cells
transfected with HA-DYS was run alongside to verify this assignment
(right lane, HA-DYS resolves at a slightly higher apparent molecular
mass then that endogenous protein due to the presence of the epitope
tag). The high molecular band observed between the 160 and 260 kDa
markers represents a nonspecific band useful for verifying comparable
loading. GAPDH blot is shown in the panel below to further verify
equivalent loading. B. Effect of dysbindin knockdown on relative
surface receptor immunoreactivity of stably transfected HEK293 cells
expressing either FLAG-D2R or FLAG-D1R (indicated by D2 and D1,
respectively). Surface receptor immunoreactivity was determined by
anti-FLAG labeling of intact cells and fluorescence flow cytometry, as
described in Materials and Methods, comparing mean fluorescence
values measured from cells transfected with the non-silencing control
RNA duplex (CTL) and a silencing duplex (siRNA #1 from panel A). For
each experiment, surface receptor immunoreactivity measured in cells
transfected with the dysbindin-silencing duplex (DYS) was normalized
to that measured in parallel determination from cells transfected with
the non-silencing control duplex (CTL). Bars represent determinations
averaged over multiple ($5) experiments and the error bar indicates
S.E.M. p values were calculated from the non-normalized individual data
using a paired Student’s t-test.
doi:10.1371/journal.pone.0009325.g001
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later step in the endocytic pathway leading to lysosomes. To test

this, we applied a previously described biochemical assay using

surface biotinylation followed by cleavage by the membrane-

impermeant reducing agent MESNA [14,15], which allows

stability of the internalized receptor pool to be assessed specifically.

Surface-labeled receptors were completely cleaved by MESNA

applied immediately after biotinylation, verifying the efficiency of

the cleavage step (Fig 2F, lanes 1–2 and 5–6 from left). To assess

the internalized receptor pool specifically, biotinylated cells were

exposed to 10 mM dopamine for 30 min prior to cleavage of

residual surface-accessible receptors by MESNA, resulting in

selective labeling of the pool of receptors internalized during this

time period. We then assessed the biochemical stability of this

receptor pool following continued incubation with dopamine. The

internalized pool of D2 receptors was almost completely

proteolyzed within 4 hours in control cells transfected with non-

silencing RNA duplex, whereas a clear inhibition of this proteolysis

was observed in dysbindin-depleted cells (Fig 2F, compare lanes 4–

5 with lanes 7–8). Together these results indicate that dysbindin

depletion inhibits D2 receptor proteolysis after internalization.

Figure 2. Dysbindin knockdown specifically inhibits proteolysis of internalized D2 receptors without detectably inhibiting receptor
internalization. A. Flow cytometric analysis of dopamine-induced internalization of D2 dopamine receptors. Stably transfected HEK293 cells
expressing FLAG-D2R, exposed for the indicated time periods to 10 mM dopamine, were analyzed by surface antibody labeling and flow cytometry.
Loss of surface receptor immunoreactivity was used to assess ligand-induced internalization in cells transfected with dysbindin siRNA (DYS) and
compared to cells transfected with a non-silencing control duplex (CTL). Points represent averaged values (normalized to cells not exposed to
dopamine (t = 0) from $5 experiments and error bars indicate S.E.M. B. Fractional internalization measured after exposure cells to 10 mM dopamine
for 30 min, showing the lack of significant difference between CTL and DYS conditions. C. Surface biotinylation experiment showing that dysbindin
knockdown inhibits dopamine-induced proteolysis of FLAG-D2Rs. D. Quantification of time-dependent loss of surface-biotinylated FLAG-D2R in cells
incubated for the indicated time period after surface biotinylation in the presence of 10 mM dopamine. E. Comparison of D2R degradation measured
at the 4 hour time point over multiple experiments (n = 8), verifying the statistical significance (p = 0.001 by Student’s t-test) of the observed
inhibition. F. Biotin protection-degradation assay showing that dysbindin knockdown specifically inhibits degradation of D2Rs after internalization.
doi:10.1371/journal.pone.0009325.g002
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The Post-Endocytic Sorting Function of Dysbindin Is Not
Restricted to Dopamine Receptors, yet Is Specific to a
Subset of Endocytic Cargo

To test whether this effect of dysbindin is unique to the D2

receptor, or affects other receptors that undergo endocytic

trafficking to lysosomes, we focused on the delta opioid receptor

(DOR). DOR is another GPCR family member that is known to

traffic to lysosomes after endocytosis in diverse cell types

[16,17,18]. Dysbindin depletion up-regulated both total and

surface-localized FLAG-DOR levels at steady state in HEK293

cells (Figs 3A and B). Further, dysbindin depletion significantly

inhibited proteolytic down-regulation of FLAG-DOR. This was

evident by examination of immunoblots normalized to the steady

state receptor level, thereby allowing ligand-induced changes to be

directly compared (Fig 3C). We also verified this using radioligand

binding assay, which is an independent and readily quantified

method (Fig 3D). Together these results indicate that the

regulatory effect of dysbindin is not restricted to dopamine

receptors, and they support the hypothesis that the primary

mechanism of dysbindin-dependent regulation is via control of

endocytic trafficking of receptors to lysosomes.

To further address the generality of dysbindin-dependent

regulation of lysosomal trafficking, we examined the EGF receptor

tyrosine kinase as a distinct class of endocytic cargo that undergoes

selective trafficking to lysosomes [19] via a similar membrane

pathway as DOR [20]. We focused on HeLa cells as another non-

specialized human cell model that expresses dysbindin endoge-

nously [21], and because these cells express EGF receptors at

higher levels that HEK293 cells. To facilitate direct comparison, a

stably transfected cell clone was prepared that also expressed

FLAG-DOR. Immunoblot analysis failed to reveal any effect of

dysbindin knockdown on steady state EGF receptor levels or

ligand-induced EGF receptor proteolysis (Fig 4A). This lack of

dysbindin depletion on EGF receptor stability was verified across

multiple experiments using scanning densitometry (Fig 4B).

Nevertheless, DOR degradation was significantly inhibited in the

same cells (Fig. 4C).

Dysbindin Promotes Connectivity of Specific Signaling
Receptors to the Conserved ESCRT Machinery

The selective effect of dysbindin in promoting proteolysis of

GPCRs, but not the EGFR, was reminiscent of the effect of G

protein-coupled receptor-associating proteins (GASPs or

GPRASPs), which are thought to modulate lysosomal trafficking

of various GPCRs by direct interaction [22]. Thus we asked if

GASPs might physically interact with dysbindin in intact cells. To

do so, we co-expressed a GFP-tagged GASP1/GPRASP1 (GFP-

GASP1) with HA-tagged dysbindin (DYS-HA) in HEK293 cells

and tested association by co-immunoprecipitation. GFP-GASP1

clearly pulled down DYS-HA. We did not observe any detectable

interaction with GFP alone or with GFP fused to an irrelevant

protein (the PDZ domain isolated from alpha-syntrophin), even

when these proteins were significantly over-expressed relative to

GFP-GASP1 (Fig 5A).

If dysbindin links GPCRs to the degradative pathway, we next

asked if this protein may associate with core machinery mediating

MVB/lysosome sorting. HRS is a component of the endosome-

associated ‘ESCRT 0’ complex that mediates the initial selection

of endocytic cargo for lysosome delivery [23]. HRS because is well

known to be required for lysosomal sorting of ubiquitinated

EGFRs [24]. HRS is similarly required for lysosomal sorting of

DORs, even when receptor ubiquitination is prevented by

Figure 3. Dysbindin knockdown also inhibits lysosomal proteolysis of DORs. A. Immunoblot of FLAG-DOR immunoreactivity detected in
HEK293 cell lysates (30 mg/lane) 3 days after transfection with dysbindin siRNA (DYS) compared to a non-silencing control RNA duplex (CTL), showing
up-regulation of steady-state receptor number. Loading was normalized to equal total protein. B. Flow cytometric analysis showing that DYS
knockdown significantly increases surface FLAG-DOR immunoreactivity. Methodology is the same as the experiment described in Fig 1B. C.
Immunoblot analysis showing that dysbindin knockdown (DYS) inhibits proteolysis of FLAG-DOR induced by exposure of cells to the opioid agonist
etorphine (10 mM) for 3 h compared to cells incubated in the absence of etorphine (t = 0). The immunoreactive species corresponding to the mature
receptor is indicated by bracket. Loading was normalized to equivalent receptor levels at t = 0, to allow visual appreciation of differences in ligand-
induced degradation. D. Radioligand binding analysis of FLAG-DOR down-regulation induced by the opioid peptide agonist DADLE (10 mM), showing
that dysbindin depletion inhibits ligand-induced down-regulation at all time points examined. Statistical analysis of the difference between CTL and
DYS conditions was carried out at the 4 hour time point, as indicated, using Student’s t-test.
doi:10.1371/journal.pone.0009325.g003
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mutation [20]. We also noted that a genome-wide yeast 2-hybrid

screen identified dysbindin as an interaction partner for HRS [25].

To ask if dysbindin is capable of associating with HRS in intact

cells, we again used co-immunoprecipitation analysis. Myc-tagged

HRS (Myc-HRS) pulled down DYS-HA specifically, as indicated

by the loss of this signal in control experiments in which Myc-HRS

was replaced by GFP. Further supporting the specificity of this

interaction, a mutant HRS construct missing the conserved

coiled-coil domain (Myc-HRS-DCC) also failed to pull down

DYS-HA.

We next asked if dysbindin can be observed on the same

endosomal compartment with HRS. Endogenous dysbindin has

been shown previously to localize to endosome membranes [26],

and endosome localization of endogenous HRS is well-established

Figure 4. Dysbindin knockdown inhibits FLAG-DOR proteolysis in HeLa cells, but does not affect down-regulation of EGF receptors.
A. Immunoblot analysis of endogenous EGFRs in lysates (30 mg/lane) prepared from HeLa cells that also express FLAG-DOR (introduced by stable
transfection), prepared after incubating serum-starved cells for the indicated time with 100 ng/ml EGF. B. Quanitification of ligand-induced
proteolysis of EGFRs by scanning densitometry of immunoblots from multiple (n = 5) experiments. C. Quantification of ligand-induced proteolysis of
FLAG-DOR in the same HeLa cell clone (n = 5). The statistical significance of the difference between CTL and DYS conditions was calculated at the
1 hour (panel B) or 3 hour (panel C) time point using Student’s t-test.
doi:10.1371/journal.pone.0009325.g004
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[23,24]. While we could easily detect endogenous dysbindin in

HEK293 and HeLa cells by immunoblot, the reagents available to

us were not suitable for immunocytochemical localization. Thus

we examined the distribution of a GFP-tagged version of DYS

(DYS-GFP) when co-expressed in HEK293 cells with mCherry-

tagged Hrs (Cherry-HRS). DYS-GFP was observed largely in a

diffuse cytoplasmic distribution, but a fraction was also localized to

intracellular membranes (Fig 5C, top panel). Examination of

Cherry-HRS localization in the same cells indicated that these

structures represent a subset of HRS-positive endosomes (Fig 5C,

middle and bottom panels).

Discussion

In the present study we identify a role of dysbindin in promoting

the post-endocytic sorting of GPCRs to lysosomes. We first observed

this effect based on the study of D2 dopamine receptors, whose

surface expression was significantly up-regulated at steady state in

Figure 5. Dysbindin associates with GASP1 and HRS. A. Co-immunoprecipitation of a GFP-tagged version of full-length GASP1 (GFP-GASP1)
with DYS-HA from lysates prepared from transfected HEK293 cells. Asterisk indicates immunoreactive signal representing DYS-HA isolated in the GFP-
GASP1 but not control (GFP or GFP-PDZ) immunoprecipitate. Arrow indicates GFP-GASP1 and arrowhead indicates GFP. B. Co-immunoprecipitation
of Myc-HRS with DYS-HA from transfected HEK293 cell lysates. Asterisk indicates DYS-HA that copurified specifically with Myc-HRS but not with GFP
or with Myc-HRS-DCC. C. Colocalization of DYS-GFP with a subset of endosomes labeled by Cherry-HRS. A representative image is shown and scale
bar indicates 10 mm. D. Model for the proposed function of dysbindin in specifically promoting the post-endocytic sorting of GPCRs to lysosomes via
GASP/HRS connectivity. GASP1 localizes predominantly to the cytoplasm, suggesting that it acts as a transient linker.
doi:10.1371/journal.pone.0009325.g005
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dysbindin-depleted cells. This up-regulation was consistent with the

previously reported effect of dysbindin depletion in neurons [13].

Further analysis indicated that dysbindin depletion specifically

inhibited lysosomal proteolysis of receptors after endocytosis,

without detectably affecting ligand-induced endocytosis of recep-

tors. This effect was not restricted to D2 receptors, as proteolytic

down-regulation of another lysosomally-sorted GPCR (DOR) was

also affected. Down-regulation of the EGF receptor tyrosine kinase,

however, was not detectably inhibited. This selective regulation of

GPCRs was reminiscent of the previously proposed role of GASPs

(or GPRASPs) in modulating lysosomal sorting of both DOR and

D2 (but not EGF) receptors by direct interaction [22,27]. Further,

co-immunoprecipitation analysis detected association of dysbindin

with GASP1 in cell extracts. Dysbindin knockdown, in contrast to its

pronounced effect on surface expression of both D2 receptors and

DOR, did not detectably affect surface expression of D1 dopamine

receptors. This is consistent with previous data indicating that D1

receptors preferentially recycle after endocytosis, and bind relatively

poorly to GASPs [27]. Thus, taken together, the present results

identify a distinct and essential role of dysbindin in promoting the

lysosomal trafficking of a subset of endocytic membrane cargo after

endocytosis (Fig. 5D). In further support of this we note that a recent

paper, published while the present study was in review, showed that

depleting dysbindin increased D2 receptor recycling in neurons

[28]. Considering that the DTNBP1 gene is broadly expressed, we

believe that dysbindin may play a significant role in controlling the

post-endocytic sorting of various GPCRs and in multiple cell types.

An important direction for future investigation will be to further

elucidate the biochemical mechanism by which dysbindin mediates

its post-endocytic sorting function. The detection of co-immuno-

precipitation with HRS suggests that dysbindin may function at an

early step in lysosomal trafficking, by promoting indirect receptor

connectivity (through GASPs) to the conserved ESCRT machinery.

Dysbindin is known to assemble in a multi-protein complex (BLOC-

1), and has been reported to associate with other cytoplasmic

proteins as well [21,29]. It will be interesting in future studies to

investigate if any of these other components are essential for GPCR

sorting to lysosomes. It will also be interesting to define the

structural basis of the dysbindin-HRS association, and determine

whether this interaction is essential for the observed GPCR sorting

activity. Evidence of dysbindin-HRS interaction was observed

previously in a yeast 2-hybrid screen [25], suggesting that dysbindin

is capable of binding HRS directly.

We propose that the present observations, in additional to their

basic cell biological significance, may contribute to mechanistic

understanding of complex genetic diseases. Mutations in the

dysbindin gene (DTNBP1) have been implicated in various human

neuropsychiatric disorders characterized by disturbances in

cognition, including schizophrenia. Further, a loss-of-function

mutation in dysbindin produces significant neurobehavioral

defects in mice [30,31,32]. While many studies support distur-

bances of D2 receptor signaling or regulation in schizophrenia,

there is evidence for dysregulation of other signaling systems as

well [3]. We suggest that the present results, by identifying a

distinct cellular function of dysbindin that is not restricted to this

particular GPCR, may provide new insight to how mutation in a

single candidate gene can produce complex effects on disease

vulnerability.

Materials and Methods

Cell Culture, cDNA Constructs, and Transfection
A Myc-tagged mouse HRS (Myc-HRS) construct was a gift

from Harald Stenmark (University of Oslo) and was previously

described by his group [33]. A fluorescently tagged version

(Cherry-HRS) was generated by replacing the N-terminal Myc tag

with mCherry using PCR. A version missing the coiled-coil

domain (Myc-HRS-DCC) was constructed using PCR to remove

amino acids 401–508 from the mouse HRS sequence. Mouse

dysbindin was a generous gift from Maria Wei (UCSF) and was

tagged at its C-terminus with either an HA epitope (DYS-HA) or

GFP (DYS-GFP), and inserted into pIREShygro3 (Clontech). A

GFP-tagged version of GASP1 (GFP-GASP1) was constructed

attaching GFP to the N-terminus of the previously described

human GASP1 (GPRASP-1) construct [22]. A GFP-tagged

version of the conserved PDZ domain isolated from mouse

alpha-1 syntrophin (residues 71–177) was used as an additional

non-specific control because this construct (GFP-PDZ) is know to

bind a variety of other cellular proteins. FLAG-tagged versions of

the human D1 and D2 (long isoform) dopamine receptors, and the

mouse delta opioid receptor have been previously described

[34,35]. Stably transfected cells expressing the indicated receptor

constructs were generated by selection for neomycin resistance

using 500 mg/ml G418 (Geneticin, Invitrogen). Resistant colonies

were clonally isolated and selected for further study based on

comparable levels of receptor expression as assessed by fluores-

cence microscopy. HEK293 cells (ATCC, Manassas, VA) were

maintained in Dulbecco’s modified Eagle’s medium supplemented

with 10% fetal bovine serum (University of California, San

Francisco, Cell Culture Facility).

HRS and Dysbindin constructs were expressed by transient

transfection using Lipofectamine 2000 (Invitrogen) according to

the manufacturer’s instructions. Cells expressing FLAG-tagged

receptors were harvested by washing with EDTA and plated in

6 cm dishes at 80% confluence before transfection with plasmid

DNA. Cells were reseeded into polylysine-coated 6-well or 24-well

plates and cultured for an additional 24 h before experimentation.

For knockdown of endogenous Dysbindin, the following siRNA

duplexes were obtained from Qiagen: Dysbindin, DTNBP1

siRNA#1 (Hs_DNTBP1_3), r(ACU GGA GAA UUA CAA

GAA A)dTdT, siRNA#2 r(AAG UGA CAA GUC AAG AGA

A)dTdT, siRNA#3 Ambion: (siRNA ID# s38427) r(CAG CAA

AUC UGA CUC AUU U)dTdT. The control duplex used for

comparison was r(AAU UCU CCG AAC GUG UCA CG)dT.

They were transfected using Lipofectamine RNAi-max (Invitro-

gen) using the optimized protocol provided by the manufacturer

for HEK293 and HeLa cells. In all experiments reagent amounts

were scaled according to surface area of the specific culture dishes

used, based on the optimized protocol listed for 24-well plates.

Experiments were conducted 3 days after siRNA transfection.

Biochemical Detection of Receptors by Immunoblotting
Cell monolayers were washed three times in ice-cold phosphate-

buffered saline (PBS) and lysed in extraction buffer (0.1% Triton X-

100, 150 mM NaCl, 25 mM KCl, 25 mM Tris, pH 7.4) supple-

mented with a standard protease inhibitor mixture (Roche Applied

Science). Extracts were clarified by centrifugation (20,0006g for

15 min) and then mixed with lithium dodecylsulfate (LDS) sample

buffer for denaturation and 1% beta-mercaptoethanol for reduc-

tion, and incubated for 5 minutes at room temperature. Unless

specified otherwise, total protein levels for each well were

normalized to each other by averaging 3 measurements of

Coomassie Plus in a 96 well plate reader. Proteins present in the

extracts were resolved by LDS-PAGE using 4–12% BisTris gels

(NuPAGE; Invitrogen), transferred to nitrocellulose membranes,

and probed for tagged protein by immunoblotting using the

indicated primary antibody. Horseradish peroxidase-conjugated

sheep anti-mouse IgG or donkey anti-rabbit IgG (Amersham

GPCR Sorting by Dysbindin
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Biosciences) was used as secondary antibody, as appropriate,

followed by detection of immunoreactivity using SuperSignal

detection reagent (Pierce). Apparent molecular mass was estimated

using commercial protein standards (SeeBlue Plus2; Invitrogen).

Band intensities of unsaturated immunoblots were analyzed and

quantified by densitometry using FluorChem 2.0 software

(AlphaInnotech Corp.). Antibodies used (all at 1:1000) were anti-

FLAG-M1, anti-FLAG-M2-HRP (Sigma), anti-HA-11 (Covance),

anti-HA(3F10)-HRP (Roche Applied Science), and Mouse Diclonal

anti-GFP (Roche Applied Science). Rabbit anti-Dysbindin was a

generous gift from Esteban Dell’Angelica (University of California

Los Angeles), and has been previously described [36].
Biotinylation-Degradation Assay. Proteolysis of surface-

labeled receptors was assessed using domain-specific biotinylation,

as described previously [17]. Briefly, HEK293 cells expressing the

indicated receptor construct were plated on 6 cm dishes, washed

with ice-cold PBS, and incubated with 300 mg/ml sulfo-N-

hydroxysuccinimide-biotin (Pierce) in PBS for 30 min at 4uC to

selectively label proteins present in the plasma membrane.

Following washing with Tris-buffered saline to remove and

quench unreacted biotinylation reagent, cells were returned to

37uC and incubated in the absence or presence of 10 mM

dopamine for the indicated time period, then extracted as

described above. Extracts were clarified by centrifugation

(20,0006g for 15 min), and biotinylated proteins were isolated

by immobilization on streptavidin-conjugated Sepharose beads

(Pierce). Washed beads were eluted with LDS sample buffer before

resolving by SDS-PAGE, transferred to nitrocellulose membranes,

and probed for FLAG-tagged receptor (M1 antibody; Sigma).

Biotin Protection/Degradation Assay
HEK293 cells stably expressing FLAG-D2 receptors were grown

to 100% confluency in 10-cm plates and subjected to the biotin

protection/degradation assay protocol as described previously

[14,15]. Cells were left untreated or stimulated for 1 hour or

4 hours with 10 mM dopamine for the same times indicated. Briefly,

cells were treated with 3 mg/ml disulfide-cleavable biotin (Pierce) for

30 min at 4uC. Cells were then washed in PBS and placed in

prewarmed conditioned medium for 15 min before treatment with

ligand (or no treatment) for 30 minutes to allow for internalization.

Concurrent with ligand treatment non-strip and strip plates

remained at 4uC. After ligand treatment for 30 minutes, plates

were washed in PBS, and remaining cell surface-biotinylated

receptors were stripped 36 in 100 mM MESNA, 50 mM Tris,

100mM NaCl, 1mM EDTA, and 0.2% BSA at 4uC for 15 minutes.

Cells were quenched with PBS containing 120 mM iodoacetamide,

1% bovine serum albumin and then incubated with agonist for the

indicated time period. The cells were then lysed in 0.1% Triton X-

100, 150 mM NaCl, 25 mM KCl, 10 mM Tris?HCl, pH 7.4, with

protease inhibitors (Roche Applied Science, Basel, Switzerland).

Lysates were cleared at 20,000 g for 15 minutes and then

precipitated with streptavidin beads (Pierce), and resolved by

LDS-PAGE, transferred to nitrocelluse and finally probed for

receptor with anti-FLAG-M2-HRP.

Analysis of Receptor Number and Ligand-Induced Down-

Regulation by Radioligand Binding. Down-regulation of

FLAG-DOR expressed in stably transfected HEK293 cells was

determined by radioligand binding, using the radiolabeled

antagonist [3H]diprenorphine (DPN) (88 Ci/mmol; Amersham

Biosciences) exactly as previously described [37]. Nonspecific

binding was determined by carrying out parallel determinations in

the presence of excess unlabeled competitive antagonist (10 mM

naloxone). Data presented represent the specific binding (total minus

nonspecific binding) at each time point, expressed as a percentage of

specific binding in similarly transfected but agonist-naive cells.

Fluorescence Microscopy. Colocalization of Dysbindin-

GFP with mCherry-HRS was visualized in HEK293 cells plated

on polylysine-coated glass coverslips (Corning Glass). Cells were

fixed 2 days post transfection with 3.7% formaldehyde and

permeabilized with 0.1% Triton X-100 in PBS. Specimens were

imaged by confocal fluorescence microscopy using a Zeiss LSM

510 microscope fitted with a Zeiss 663, numeric aperture 1.4

objective operated in single photon mode, with standard filter sets

verified for lack of detectable cross-channel bleed-through and

standard (1 Airy disc) pinhole. Acquired optical sections were

analyzed with LSM Image Examiner (Zeiss) and rendered with

Adobe Photoshop software.

Fluorescence Flow Cytometry
Surface receptor immunoreactivity was assayed by incubating

intact, non-permeabilized cells with Alexa647-conjugated anti-

FLAG M1 antibody (1 mg/ml for 45 min), washed, and analyzed

by fluorescence flow cytometry using a FACSCaliber instrument

(Becton Dickenson). For each condition, staining was performed in

triplicate and 10,000 cells per tube were were analyzed. Intensity

values were determined using the geometric mean.

Statistical Analysis. Quantitative data were averaged across

multiple independent experiments, with the number of

experiments specified in the corresponding figure legend. Unless

indicated otherwise, the error bars represent the S.E.M. calculated

across experiments. The statistical significance of the indicated

differences was analyzed using Student’s t test, calculated using

Prism 4.0 software (GraphPad Software, Inc.).
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