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Abstract

Microarray-based expression profiling of living systems is a quick and inexpensive method to obtain insights into the nature
of various diseases and phenotypes. A typical microarray profile can yield hundreds or even thousands of differentially
expressed genes and finding biologically plausible themes or regulatory mechanisms underlying these changes is a non-
trivial and daunting task. We describe a novel approach for systems-level interpretation of microarray expression data using
a manually constructed ‘‘overview’’ pathway depicting the main cellular signaling channels (Atlas of Signaling). Currently,
the developed pathway focuses on signal transduction from surface receptors to transcription factors and further
transcriptional regulation of cellular ‘‘workhorse’’ proteins. We show how the constructed Atlas of Signaling in combination
with an enrichment analysis algorithm allows quick identification and visualization of the main signaling cascades and
cellular processes affected in a gene expression profiling experiment. We validate our approach using several publicly
available gene expression datasets.
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Introduction

Microarray-based expression profiling of living systems is a

quick and inexpensive method to obtain insights into the nature of

various diseases and phenotypes. It is also a great way of studying

the functions of individual proteins or drugs by looking at the

affected targets after system distrurbances or genetic modifications

(siRNA, knock-outs, gene over-expression, etc).

The greatest challenge of microarray-based expression profi-

ling is interpreting the obtained results. In a typical microarray

experiment, mRNA profiles are generated for thousands of genes

on a chip from a collection of samples derived from studied

experimental conditions. Thus, the difficulty is finding an un-

derlying biological theme or specific mechanisms hidden behind

the expression profiles. Many of the genes changed in an

experiment may fall outside the area of expertise of an individual

researcher. A common approach has always been focusing on a

handful of most highly changed probes. The main limitation of

this approach is a risk to miss small, but concerted changes in a

group of functionally related genes.

The recent advancement in interpreting the microarray data is

development of the gene set enrichment analysis (GSEA) [1]–a

statistically robust algorithm which compares the entire differential

expression profile against biologically meaningful gene sets,

defined by prior knowledge (e.g. pathways, cellular processes,

etc). The goal of the GSEA is to determine whether all members of

each gene set tend to be synchronously changed in a microarray

experiment. As a result, the microarray experiment is projected on

a much smaller list of statistically significantly changed gene sets

which can summarize the observed expressional changes on a

gene-systems level. A drawback of focusing only on highly

differentially expressed genes lies in the fact that signaling proteins

participating in the observed cellular response might not be

changed on the level of expression even though corresponding

pathways are activated or inhibited.

In this paper, we present a novel approach for analysis of

differential gene expression profiles aimed at identification of key

protein regulators and pathways involved in the differential

response. The major ideas of our approach are:

– Utilizing a gene expression regulatory network built using facts

extracted from literature to generate a comprehensive

collection of gene sets, each representing immediate down-

stream neighbors (sub-networks) of every individual protein in

the network.

– Grouping proteins into functionally coherent groups (either by

protein families performing similar functions or by participa-

tion in common cellular processes) and connecting these groups

by well-established biological regulatory links into a single

overview pathway (Atlas of Signaling) depicting main cellular

signaling channels.

– Interpreting differential gene expression by ‘‘projecting’’ sub-

networks significantly enriched with differentially expressed genes

onto the Atlas of Signaling in order to identify key regulatory

proteins and pathways involved in the differential response.
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Using publicly available gene expression datasets, we demon-

strate that this approach can successfully identify main signaling

cascades involved in the regulation of the cellular response.

Methods

All the analyses described in this paper have been performed

using PathwayStudioH software version 6.2. PathwayStudio is a

commercial product for pathway analysis which contains a

comprehensive database of protein–protein relationships extracted

from literature using MedScanH–a fully automated biomedical

information extraction engine.

An Overview of the Atlas of Signaling
The principal components of the Atlas of Signaling are protein

groups (classes) representing either protein families or molecu-

lar-level cellular processes. Conceptually, we distinguish 5 sub-

categories of proteins: ligands, receptors, signaling proteins,

transcription factors and ‘‘workhourse’’ proteins (Table 1).

Workhorse proteins are grouped into cellular processes. We

thought to develop a minimal set of ubiquitous tissue-independent

molecular events intrinsic to normal physiology of a eukaryotic

cell, e.g. actin cytoskeleton assembly, DNA replication, or

translation. More complex structural processes, such as mitosis,

apoptosis or vesicular transport can be represented in terms of

these elementary processes. For instance, the molecular events of

mitosis include chromatin condensation, spindle assembly, cen-

trosome separation, kinetochore assembly etc. The higher-level

structural process can be represented as a chain of elementary

events, each performed by a limited set of proteins-executors. The

same pertains to the majority of tissue-specific processes. For

example, the process ‘‘neurotransmitter secretion’’ describes a

neuron-specific version of secretory vesicle exocytosis. Proteins of

the SNARE complex and clathrin cage proteins comprise the

group of executors responsible for membrane budding and fusion

during various exocytosis events in different cell types. We

assigned only direct executors (‘‘workhorse proteins’’) or their

direct specific regulators to our minimal set of cellular processes:

biochemical pathways include only biochemical enzymes, trans-

port processes include only transporters, and structural processes

include structural proteins responsible for physical integrity of a

cell or its ‘‘molecular machinery’’ and their direct specific

regulators (e.g. regulatory cytoskeleton- or microtubule-associated

proteins). For instance, the ‘‘microtubule sliding’’ process contains

tubulins, kinesins, dyneins and microtubule-asociated proteins.

Cellular processes also include biochemical and transport

processes that contain major cellular biochemical pathways and

metabolite/ion transport processes respectively.

Ligands, receptors, signaling proteins, and transcription factors

are grouped into protein families based on sequence and

functional similarity. The complete list of protein groups can be

found in the supporting File S1.

We have connected protein groups by regulatory relationships

that are used to describe the signaling information flow inside the

cell. The relationships between protein classes are based on well-

established relationships between individual proteins from the two

classes (Figure 1) described in literature. There are several types of

protein relationships that were originally introduced in ResNet

database for Pathway Studio [2,3]. The complete list of

relationship types and their statistics on the Atlas of Signaling is

shown in Table 2. All relationships between functional groups can

be visualized in Pathway Studio as one big pathway that we call

the ‘‘Atlas of Signaling’’ (Figure 2). The Atlas is focused on the

transduction of signals from extracellular space through receptors

and regulatory cascades to transcription factors and further

regulation of expression of workhorse proteins. Extracellular

ligands are on the top of the map followed by the row of plasma

membrane-localized receptors. Cell processes are positioned at the

bottom, and signaling proteins and transcription factors connect

upper and lower parts of the map. The map contains 381 protein

classes and 861 relations and can be considered a ‘‘scaffold’’ map

of the main signal transduction pathways in a cell. The full list of

relationships in the Atlas of Signaling is provided in the supporting

File S2.

Protein Expression Sub-Networks as Gene Sets
One of the key ideas behind our gene expression interpretation

approach is utilization of a gene expression regulatory network

built from facts extracted from literature. The network is used to

generate a comprehensive collection of gene sets, each represent-

ing immediate downstream neighbors of each individual protein

in the network (Figure 3). We call a ‘‘center’’ protein of such

sub-network the ‘‘seed’’ protein and assume that if the downs-

tream expression targets of the seed protein are enriched with

differentially expressed genes (i.e. the sub-network is found to be

statistically significant in enrichment analysis) then the seed protein

is one of the key regulators of the observed differential response.

Since sub-networks are constructed from all the proteins in the

entire expression network, including ligands, receptors, signaling

proteins and transcription factors, the seed proteins of statistically

significant sub-networks presumably constitute the components of

a regulatory network involved in the modulation of the observed

differential response.

The gene expression regulation relationships are extracted

from PubMed abstracts and full-text papers using MedScan

technology [4,5]. They describe involvement of various proteins:

ligands, receptors, signaling proteins and transcription factors in

regulation of protein expression. The complete gene expression

regulatory network was extracted from entire 2007 PubMed

and the content of 61 freely available full-text journals and

contains 163,945 unique relationships. As noted, the extracted

relationships represent not only direct regulation of expres-

sion by transcription factors, but also indirect relationships

(e.g. ‘‘protein A regulates expression of protein B’’, and similar

statements).

In addition to expression sub-networks, the separate collection

of gene sets was constructed from the members of all the functional

groups themselves to capture the concerted changes in expression

among the members of the groups: ligands, receptors, signaling

Table 1. The main categories and subcategories of protein
groups with annotation statisticsa.

Category Sub-categories
Number of
groups/classes

Number of
proteins

Molecular function Ligands 42 444

Receptors 65 932

Signaling proteins 157 744

Transcription factors 94 1,841

Cellular Process Biochemical processes 41 1,579

Metabolite/ion transport 42 1,056

Structural processes 63 3,821

aThe complete list of protein classes can be found in supporting File S1.
doi:10.1371/journal.pone.0009256.t001

Atlas of Signaling
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groups and transcription factors, as well as cellular processes

‘‘groups’’–biochemical pathways, transport processes and struc-

tural processes.

Enrichment Analysis of Differential Gene Expression
Using Expression Sub-Networks and the Atlas of
Signaling

The following steps describe our approach for interpreting

differential gene expression in the context of the Atlas of Signaling

1. Differential gene expression between samples of interest is

calculated using T-test.

2. The enrichment analysis is performed for normalized log ratio

differential samples using Mann-Whitney test [6] against the

collection of gene sets generated as described above. All gene

sets with a p-value ,0.05 are considered significant and are

selected for further analysis.

3. Significant gene sets are mapped to the Atlas of Signaling

pathway as follows:

Figure 1. Reduction of a pathway complexity using Atlas of Signaling. (A) Signal transduction pathway from integrin receptors to actin
cytoskeleton built from individual proteins (red shapes) using relationships found in ResNet 6 database. Entrez official gene symbols are used for
protein names. (B) Example of how a relation between two groups (functional classes) is formed in the Atlas of Signaling. (C) Same pathway as in (A)
built with ontological groups: functional classes (orange hexagons) and cell process ‘‘actin-based cytoskeleton assembly’’ (yellow rectangle). The
description of relationships between entities on the pathways is provided in the legend to Table 2.
doi:10.1371/journal.pone.0009256.g001

Atlas of Signaling
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Figure 2. Atlas of Signaling. The major known signaling cascades were combined in one pathway diagram to provide ‘‘birds-eye’’ view of cellular
signaling. Signaling functional groups are shown as orange hexagons; secondary messengers/small molecules–as green circles, and cellular
processes–as yellow rectangles.
doi:10.1371/journal.pone.0009256.g002

Table 2. Relation types on the Atlas of Signaling.

Relation type Description Count

ProtModification Protein members of the regulator class phosphorylate or otherwise modify proteins in the target class 243

DirectRegulation Protein members of one class bind and regulate proteins in another class 160

Binding Protein members of one class bind proteins in another class 18

PromoterBinding Protein members of one class bind promoters of genes encoding proteins in another class 8

Expression Protein members of one class regulate expression of proteins in another class 28

MolTransport Protein members of one class regulate export, import or release of proteins in another class 6

MolSynthesis Protein members of one class regulate level of proteins in another class or level of a small molecule/metabolite 12

ChemicalReaction Protein members of a class synthesize small molecule(s)/metabolite(s) 2

Regulation Protein members of one class indirectly regulate proteins in another class 384

doi:10.1371/journal.pone.0009256.t002

Atlas of Signaling
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a. Gene sets corresponding to the cellular processes and functional

groups are directly selected on the ‘‘Atlas of Signaling’’ pathway

b. Individual signaling/regulatory proteins representing the

seeds of gene sets are first mapped to corresponding functional

groups by containment, which are then selected on the ‘‘Atlas

of Signaling’’ pathway.

All unmapped functional groups and cellular processes not

selected by this mapping procedure are then removed from the

Atlas of Signaling. The resulting ‘‘partial’’ pathway constitutes the

‘‘interpretation model’’ for a specific differential expression profile;

it contains classes of proteins whose members or ‘‘expression

targets’’ have revealed statistically significant changes in the

differential expression profile. Figure 3 illustrates the procedure of

sub-network generation and mapping the seeds of significant sub-

networks onto the Atlas of Signaling.

Results and Discussion

We have validated our approach by interpreting several publicly

available expression microarray experiments using the Atlas of

Signaling pathway. Since current focus of the Atlas is signal

transduction from surface receptors to transcription factors, we

have chosen experiments that measure response of normal human

tissues to different hormones.

We first analyzed GDS1036 experiment from NCBI GEO that

profiles gene expression in microglial cells in response to 200 u/ml

interferon-gamma (IFN-gamma). IFN-gamma is a soluble cytokine

and the only member of the type II class of interferons. In contrast

to interferon-alpha and interferon-beta, which can be expressed by

all cells, IFN-gamma is secreted only by T-lymphocytes, dendritic

cells and NK cells. Produced by lymphocytes activated by specific

antigens or mitogens, IFN-gamma, in addition to having antiviral

Figure 3. An overview of enrichment analysis and mapping onto the Atlas of Signaling. The ResNet gene expression regulatory network is
split into individual sub-networks around each protein. Each sub-network contains immediate downstream neighbors of an individual protein in the
network. In the depicted exemplary network, there are three sub-networks - build around ‘‘seed’’ proteins 1, 4 and 5; they are surrounded by dotted
lines. The projection to the Atlas of Signaling is done by selecting the functional groups on the Atlas containing the seed proteins of sub-networks
which were found to be statistically significant in the enrichment analysis. The three selected groups (rectangles) and relationships between them on
the Atlas are shown in solid lines. The remaining (un-involved) groups and relationships are shown by dotted lines.
doi:10.1371/journal.pone.0009256.g003

Atlas of Signaling
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activity, has important immunoregulatory functions. It is a potent

activator of macrophages, it has anti-proliferative effects on trans-

formed cells, and it can potentiate the antiviral and antitumor

effects of the type I interferons.

The imported data set contained three time points: 1, 6, and

24 hours of IFN-gamma exposure. Data for each time point were

generated using microglial cell isolated from four different brain

specimens. Analysis of differential expression between untreated

samples and samples after 6 or 24 hours of exposure returned

very similar lists of differentially expressed genes. Therefore, for

further analysis, time points 6 and 24 hours were combined and

compared to corresponding untreated control samples. The

differential gene expression was calculated, followed by enrich-

ment analysis using Mann-Whitney test [6] against ‘‘expression

subnetwork’’ gene sets as described above. The significant sub-

networks (p,0.05) were mapped on the Atlas of Signaling and the

resulting pathway is shown on Figure 4. The majority of mapped

functional classes on the Atlas of Signaling formed a well-

connected sub-network with principal components being the

classical JAK-STAT pathway and interferon-response factors

(IRFs) that have been shown to be downstream of IFN-gamma

in numerous publications [7,8]. In addition, such cell processes as

prostaglandin synthesis, spindle assembly, lipid transport, and Ser/

Gly metabolism were also affected by IFN-gamma treatment in

microglial cells. Down-regulation of prostanoid production by

IFN-gamma has been shown previously [9]. Activation of spindle

assembly and Ser/Gly metabolism are indicative of cell prolifer-

ation that occurs upon microglia activation [10]. It was shown that

activated microglia export apolipoprotein E and J involved in lipid

transport [11]. Apolipoprotein E was linked to microglial

activation and to increased neurotoxicity in several publications

[12,13]. Our enrichment-mapping analysis also revealed all

components of tumor necrosis factor (TNF)-NF-kappa-B pathway

as significant. IFN-gamma-dependent production of TNF-alpha

mediated by STAT1 was previously reported [14]. Activation of

NF-kappa-B suggests activation of apoptosis in microglia that was

also documented previously [15]. Thus, TNF-alpha can also

provide a negative feedback loop to slow-down the spread of

microglia activated by IFN-gamma. One possible scenario is that

IFN-gamma induction activates microglia migration towards the

Figure 4. Projection of groups involved in IFN-gamma response in microglial cells onto Atlas of Signaling. The protein groups found by
projection of the results of enrichment analysis of GEO dataset GDS1036 were connected using existing relations in Atlas of Signaling. Group shapes
are as described in legend to Figure 2.
doi:10.1371/journal.pone.0009256.g004

Atlas of Signaling
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Figure 5. Projection of groups involved in TGF-beta response in lamina cribrosa cells onto Atlas of Signaling. (A) The protein groups found by
projection of the results of enrichment analysis of GEO dataset GDS1313 were connected using existing relations in the Atlas of Signaling. (B) Significant
groups not connected by direct relations from the Atlas were linked to the core network by adding minimal number of secondary messengers (green ovals)
and functional classes not significant according to enrichment results (highlighted in blue). Group shapes are as described in legend to Figure 2.
doi:10.1371/journal.pone.0009256.g005

Atlas of Signaling
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Figure 6. Projection of groups involved in TNF-alpha response in microvascular endothelial cells onto Atlas of Signaling. GEO
dataset GDS1543 was analyzed as described in legend to Figure 5.
doi:10.1371/journal.pone.0009256.g006

Atlas of Signaling
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injury site and initiates TNF-alpha release to kill the damaged

neurons, but also to initiate death of activated microglia in order to

stop the spread of inflammation beyond the site of injury.

Next, we analyzed the experiment GDS1313 which profiles the

response of the glial fibrillary acidic protein (GFAP)-negative

lamina cribrosa (LC) cells to a 24-hour exposure to Transforming

Growth Factor beta (TGF-beta) 1 at 10 ng/ml concentration.

TGF beta is a multifunctional protein that controls proliferation,

differentiation, and other functions in many cell types. Application

of the Transforming Growth Factors to normal rat kidney

fibroblasts induces proliferation in cultured cells that results in

overgrow that is no longer subjected to the normal cell-contact

inhibition. The GFAP-negative LC cells are used as a model for

primary open-angle glaucoma (POAG) when TGF-beta level is

elevated in human LC tissue. We have performed a similar

analytical workflow: differential gene expression followed by

enrichment analysis against ‘‘expression sub-network’’ gene sets

followed by mapping of significant sub-network seeds to the Atlas

of Signaling. The results of the analysis are shown on Figure 5. As

expected, the classical TGFbeta/SMAD pathway is identified as

significant along with the extracellular matrix proteins that are

directly regulated by SMADs. Involvement of extracellular matrix

(ECM) proteins identified by our analysis is in perfect agreement

with the fact that pathological hallmarks of the glaucomatous optic

nerve head include retinal ganglion cell axon loss and extracellular

matrix (ECM) remodeling of the lamina cribrosa layer [16].

Interestingly, the results also suggest involvement of p38 MAPK,

AKT and PKA pathways in the observed response which regulate

ECM deposition, cytoskeleton and focal junction assembly, protein

folding and several metabolic processes (Figure 5A). There is a

handful of unconnected protein classes (upper right corner of the

map), but they can be joined to the core network by a few

secondary messengers or functional classes whose expression was

not significantly affected by TGF-beta treatment (Figure 5B).

Finally, we have analyzed the experiment GDS1543 from

NCBI GEO repository measuring the effect of tumor necrosis

factor (TNF)-alpha on microvascular endothelial cells (HMEC)

(5 h, 2 ng/ml TNF). TNF-alpha is a cytokine involved in systemic

inflammation and is a member of a group of cytokines that

stimulate the acute phase reaction. It is mainly secreted by

macrophages and can induce cell death of certain tumor cell lines.

It is a potent pyrogen causing fever by direct action or by

stimulation of interleukin-1 secretion. Under certain conditions it

can stimulate cell proliferation and induce cell differentiation.

For the analysis, 2 samples (GSM50775 and GSM50773) were

excluded from the experiment because they have shown an

inconsistent clustering: they represent control and treatment

samples which clustered to each other as opposed to clustering

with other control and treatment samples. The pathway obtained

by mapping significant sub-network seeds on the Atlas of Signaling

is shown on Figure 6.

The universal feature of the TNF pathway conserved in

evolution and among different human tissues is believed to be

the activation of NF-kappa-B transcription factor [17]. Our

analysis has revealed an activation of NF-kappa-B in HMEC cells.

Nevertheless, TNF-alpha exhibits diverse effects on different

tissues [18,19]. The tissue specificity of TNF-alpha action is

determined by the tissue-specific expression of TNF receptor-

associated adaptors acting as scaffolds to associate different sets of

downstream signaling molecules with TNF-receptor in different

tissues, resulting in regulation of tissue-specific processes [20].

Gene expression analysis helps to select a particular set of such

target processes. For instance, our analysis revealed large number

of transport processes affected in HMEC cells by TNF-alpha

treatment. This can be a specific feature of endothelial cells. On

the other hand, membrane depolarization [21] and changes in cell

volume due to deregulation of ion homeostasis [22] is now

believed to play a pivotal role in early stages of apoptosis, which is

the main process regulated by NF-kappa-B.

In conclusion, we have developed a novel approach for a

systems-level interpretation of microarray expression data in the

context of manually constructed ‘‘overview’’ pathway depicting

the main cellular signaling channels. Using publicly available gene

expression datasets, we have demonstrated that the developed

approach can highlight the biologically plausible sub-networks of

the global cellular signaling network. We believe that the

developed approach can be used for general systems-level

interpretation of differential expression profiling experiments.
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