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Abstract

Training has been shown to improve perceptual performance on limited sets of stimuli. However, whether training can
generally improve top-down biasing of visual search in a target-nonspecific manner remains unknown. We trained subjects
over ten days on a visual search task, challenging them with a novel target (top-down goal) on every trial, while bottom-up
uncertainty (distribution of distractors) remained constant. We analyzed the changes in saccade statistics and visual
behavior over the course of training by recording eye movements as subjects performed the task. Subjects became experts
at this task, with twofold increased performance, decreased fixation duration, and stronger tendency to guide gaze toward
items with color and spatial frequency (but not necessarily orientation) that resembled the target, suggesting improved
general top-down biasing of search.
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Introduction

Bottom-up, stimulus-driven processes as well as top-down, goal-

driven processes exert influence on perception and therefore on

the ability to perform visual tasks. Experts in a wide range of fields

[1], from radiologists detecting tumors [2], image analysts

screening baggage at the airport [3], pilots scanning their

instrument panel [4], to chess grand masters [5] rely on their

perceptual discrimination and selection abilities to make judge-

ments often in life threatening situations. Tasks performed by these

experts rely on both bottom-up and top-down processes to search

for and direct attention towards features of the image that are

crucial to enabling perceptual judgement with confidence. The

central question in this study is whether, and to what extent,

training and expertise improve, or otherwise modify, how rapid

top-down goal-driven tuning of visual processing can enhance

visual information for perceptual decisions, specially in feature rich

enviornments.

Guidance of visual search for features in an image by top-down

processes poses a constant demand on the visual and attentional

systems to convert descriptions of desired target(s), which may

change from moment to moment depending on behavioral goals,

into appropriate guiding signals that can facilitate localization of a

target. The quality of the guidance is determined by a number of

factors including, i) the properties of the tuning functions of the

sensory system [6], ii) the ability of the sensory system to eliminate

noise [7], and iii) the discriminability of the target from distractors

and background clutter (signal-to-noise ratio). On a short time

scale, attention can enhance guidance through enhanced gain [8],

enhanced spatial resolution [9], effective stimulus strength [10], or

noise exclusion [7]. Analogous effects have been observed in

perceptual learning studies over a longer time scale of up to a few

days or longer.

Perceptual learning studies have shown that practice can

improve performance in discrimination [11–14] and detection

[15,16]. These studies have shown improvement in either a

spatially or featurally specific manner and thus implicated early

sensory cortex as the locus of plasticity and this has also been

observed in electrophysiological studies [17,18]. Although most

studies limit their training to either specific spatial locations or

specific stimulus feature ranges, there has been some speculation

about mechanisms of more general improvement in tasks. Some

studies for example, have implicated the higher cortex [19–21] in

learning. Plasticity effects have been observed in later visual areas,

namely V4 and FEF (frontal eye fields), as a result of perceptual

learning [22,23]. Learning in tasks such as visual search has also

been shown to be less specific [24]. Sireteanu et al. [25] have

shown non-specificity of perceptual learning effects specially in

visual search tasks, and thus placed the locus of plasticity for

learning a visual search task at a higher level than sensory cortices.

One question which has remained outstanding, however, is

whether training can improve the effectiveness of the dynamic

top-down attention biasing process itself through what has been

termed process-based learning [26], as opposed to exhibiting

sharper visual discrimination abilities for a specific type of target or

location (perceptual learning or automaticity through better

memory retrieval [26]), or generally improving speed and/or

performance on a task (task acquisition for search). This type of

non-specific learning remains understudied and more specifically,

the pairing of learning within a visual search task to observe the

effects of training top-down attention remains relativity unex-

plored (although see [27]).
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In this study we address the question of whether expertise can

be gained in a triple-conjunction (color, spatial frequency, and

orientation) search task when both the features and spatial

location of the target are changed from trial to trial while

maintaining a persistent level of bottom up uncertainty in the

Shanon entropy sense. This imposes a novel and interesting new

constraint on the type of learning that can occur, eliminating the

cases of (perceptual) learning due to ‘stimulus imprinting’ [28]

and focusing on what Goldstone [28] has termed ‘attention

weighting’. Specifically, this type of paradigm makes a demand

on the observers to make fast trial-by-trial adjustments of top-

down biasing weights in order to succeed in the search task. We

also ask what difference, if any, training makes on the subjects’

saccadic eye movements and the types of distractors that they

look at. This is a departure from a typical learning paradigm

where the stimulus set is often restricted in either space or feature

set. We look for mechanisms of acquisition of general domain

expertise when the observers are given a task that requires

attention to the stimulus in order to achieve success. By

analyzing eye movements we can ensure that effects beyond

general task acquisition are captured. Changing the target on

each trial puts the spotlight on mechanisms of attentional biasing

efficacy rather than simple perceptual learning. We hypothesized

that better biasing would lead to increased guidance towards

items that are similar to the target as the biasing process would

render items sharing features with the target more salient. Thus

the number of items that were viewed need not necessarily be

reduced but the quality of the set may improve. An alternate

outcome would be that subjects view a smaller number of items

which would suggest a trend toward automaticity or more pre-

attentive guidance.

We show that learning occurs even when the target is changed

in both features and spatial location on every trial. The

improvement is marked by a decrease both in intersaccadic

interval (ISI) and reaction time. The decrease in ISI suggests an

improvement in discrimination and a stronger emphasis on the

selection (detection) task. However, we did not observe a

significant drop in saccade counts which suggests that the

improvement in selection was limited to improving the ‘quality’

of the subset of items on the display that are scrutinized (the size of

the subset remaining fairly consistent). We also find that subjects

tend to exploit two of the three features of the stimuli, making

saccades towards items that are similar to the target in color and

spatial frequency but, interestingly, not necessarily in orientation.

In sum, our results provide evidence for a mechanism of

expertise acquisition that is driven by production of better top-

down biasing signals, the behavioral correlate of which is the

increased similarity effect observed. This coupled with improved

discrimination, likely driven by multiple exposures to the family of

stimuli used in the task, define the enabling mechanisms that allow

the transition from novice to expert.

Methods

Ethics Statement
Subjects gave written consent under a protocol approved by the

Institutional Review Board of the University of Southern

California, and were paid for participating in the study.

Subjects
Human subjects recruited for this study were undergraduate

and graduate students at University of Southern California.

Subjects included four males and one female aged 21–26 years. All

subjects had normal or corrected vision. Subjects gave written

consent under a protocol approved by the Institutional Review

Board of the University of Southern California, and were paid for

participating in the study. Subjects were naive to the purpose of

the experiment and had never seen any of the stimuli before.

Stimuli
A set of colored Gabor patches were designed for this

experiment, which provided the ability to vary features along

three dimensions: color, spatial frequency, and orientation. The

luminance profile of each Gabor patch is given by the following

equation:

g(x,y,h,w)~e
{
x2zy2

s2 e(2pwi(x cos hzy sin h)) ð1Þ

where h is the orientation of the patch, w is the spatial frequency.

Each patch subtended 40 of visual angle. The phase of the sinusoid

at each point was used to modulate the color of the pixels along the

hue axis in the HSV color space, as shown in figure 1a. By sliding

a window along the hue axis, the range of colors in the patch was

changed, thus modifying the appearance of the patch. The

window spanned from 0 to 360 and a hue shift essentially

recentered the window around a given value. Each Gabor patch

was then defined by its spatial frequency which ranged from 1.7 c/

deg to 5.2 c/deg, orientation, which ranged from 250 to 1550, and

finally a color hue value that determined the shift of the hue

window.

Search arrays were constructed from 32 Gabor patches

embedded in 1/f noise in a 468 grid, with slight spatial jitter (10

along the x or y direction) applied to each patch. One of the Gabor

patches was randomly chosen as the target for each search array.

Paradigm
Subjects conducted 1,000 trials of visual search over the

course of ten consecutive days. Each day consisted of a session of

100 trials with a break after 50 trials. Stimuli were presented on

a large (1920|1080 pixels) LCD monitor (Sony Bravia XBR-III)

and subjects were seated in a comfortable chair with their head

stabilized by a chin rest. The viewing distance was 97.8 cm,

corresponding to a field of view of 54:80|32:70. A typical trial,

as illustrated in figure 1b, began with a fixation cross at the

center of the display followed by a 2 second target preview,

presented at the center with a gray background. The gray value

of this background was equal to the mean gray of the 1=f noise

of the corresponding search array display. Subjects were

instructed to find the target as fast and accurately as possible

and had a maximum of ten seconds to find the target. Their eye

movements were recorded as they searched for the target (see

below for eye-tracking methods). Upon locating the target,

subjects pressed a response button, at which point the search

array disappeared. A display consisting of numbers that

corresponded to the Gabor patch locations was then displayed

for 200ms. Subjects had to read and key-in the number at the

location of the target using a keyboard. The font size was

sufficiently small that one could not read the numbers

corresponding to one Gabor patch while fixating at the location

of any other Gabor patch. The goal of this ‘no cheat’ procedure

was to ensure that subjects reported correctly the patch which

they thought was the target(for more details on this procedure

see [29]). After subjects provided input, they were given feedback

as a ‘correct’ or ‘incorrect’ response, as well as the current level

of performance (% correct responses so far). Each session lasted

approximately 45 minutes.

Training Top-Down Attention
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Stimulus Presentation and Eye-Tracking Procedures
The subjects’ eye movements were recorded as they searched

for the target in the search array. Eye movements were recorded at

a sampling frequency of 240 Hz, using an infrared-video-based

eye-tracker (ISCAN RK-464) and the pupil and corneal reflection

from the right eye were used to determine the gaze position with

an accuracy of ƒ10. Calibration was performed using an online

system that presented subjects with a central fixation point

followed by a point at one of nine locations on a 363 grid.

Subjects had to saccade from the central fixation point to one of

the nine locations and maintain stable fixation (x and y position

variance v5 pixels) for 300ms (75 samples). Once stable fixation

was established the next location was presented. This process was

repeated until stable fixations at all nine points were found. The

eye positions obtained were then used to perform an affine

transform and the transformed eye positions were displayed on the

screen for the experimenter to confirm that an accurate calibration

session had been conducted. During offline analysis a further thin-

plate-spline interpolation [30] was performed to obtain accurate

transformation from eye-tracker coordinates to screen coordinates.

A recalibration session was performed every 20 trials to correct for

possible head movements. Once transformed, the eye-traces could

be overlaid on the images for further analysis as shown in

figure 1(d).

Data Analysis
The subjects’ eye movements were calibrated as described

above and an algorithm was used to parse the eye movements into

saccades using a combination of filtered instantenous velocity

measurements and a simple windowed Principal Components

Analysis (PCA). Eye movement segments with a minimum velocity

300=s and a minimum amplitude of 20=s were classified as

saccades. Blinks were identified by a pupil diameter reading of

zero and trials with either blinks or loss of tracking for more than

10% of the trial were removed from further analysis. Unfortu-

nately, on day two, one of the subjects’ eye movements were lost

due to machine failure; however, he completed all trials and

continued to participate in the study. This loss not withstanding,

we retained 97% of the 4,900 available trials, obtaining a total of

76,287 saccades for analysis.

We performed analysis on changes over time in the subjects’ eye

movements by constructing feature similarity maps and correlating

these with binary saccade maps. The feature similarity maps were

constructed as follows. We first discretized the feature space by

dividing each dimension into ten bins (several numbers were tried

for this and numbers between 10–25 bins gave similar results).

Each Gabor patch was then defined as a triplet of bin values

Gi~fhi,fi,oig where hi,fi,oi are the bins of hue, frequency, and

orientation respectively of Gabor patch i. A feature similarity map

Figure 1. Stimulus and Paradigm. (a) Color Gabor patches constructed by first applying a gaussian envelope over a sinusoid as shown. At each
point the phase of the sinusoid was used to modulate a hue axis in the HSV color space. (b) A trial started with a two-second target preview followed
by a display of the search array for a maximum of ten seconds. If subjects found the target before the 10 seconds elapsed they hit a key to move to the
next display. The next display showed numbers corresponding to Gabor patch locations in the search display. The numbers were displayed for only
200ms to ensure that subjects fixate the target in order to report the correct number. Subjects were then aske d to report the number at the target
location. (c) A typical eye trace overlayed on a search array, showing an early trial. (d) A typical eye trace overlayed on a search array, showing a late trial.
doi:10.1371/journal.pone.0009127.g001
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for each trial consists of 32 cells arranged in a 468 grid each

corresponding to one of the color Gabor patch in the search array

for that trial. Similarity maps for each feature were constructed

individually. A feature similarity map for hue, for example would

contain in each cell i the difference between the hue bin value hi of

the Gabor patch and the hue bin ht of the target Gabor patch t for

the trial. In order to maintain an intuitive sense of the similarity

measure (high values for high similarity) we computed similarity

between the target patch t and a Gabor patch i for each feature f
as s

f
it~{jfi{ftjzgranularity (where granularity was set to ten

since we divided the feature space into ten bins). Large values in

cells therefore mean that the particular distractor was very similar

to the target and vice versa.

As described before we drew the features of the distractors in

each display from a uniform distribution and therefore by design

the bottom up uncertainty in each display averaged across

sessions should remain constant. In order to ensure that this was

the case we computed the Shannon entropy in each feature

similarity map. This enabled us to quantify the amount of

uncertainty in our arrays. We then computed the average

entropy per session and ran a regression to look for any trends

over time. As expected we found no significant trends (color

r2~0:03,p~0:63; frequency r2~0:12,p~0:33, orientation

r2~0:22p~0:17).

To construct binary saccade maps we first assigned saccade end

points to Gabor patches if the distance from the end point to the

center of the Gabor patch was smaller than 3:50. These

assignments allowed us to fill a 468 grid of cells corresponding

to the 468 grid of Gabor patches, with 1 for a saccade end point

landing on the Gabor patch and a 0 for no saccade towards the

patch. In this manner binary saccade maps were constructed and

later correlated with the feature similarity maps. When a particular

patch was fixated several times we still placed a one in the map in

order to retain the binary nature of the saccade maps.

Results

Performance
Measuring performance as the percentage of correct trials for

each 100-trial session, we found that subjects showed improved

performance over the course of the trials (figure 2). The mean

percentage performance of the group was computed by taking an

average of the percentage correct responses by each of the five

subjects for each session. A one-way ANOVA showed an effect of

session on mean performance (F(9,40) = 6.88 pv0:01). The change

in performance measured by the slope (indicative of learning rate) of

the logistic fit on the data halfs at day five and later levels off,

hovering around 70% to 80% correct as shown in figure 2.

This indicates that the subjects improved on the task and

answered correctly a greater percentage of time after conducting

several hundreds of trials of the task, despite the fact that the

features and spatial location of the target was changed on every

trial. Pooling together the reaction times for each subject and

averaging across the sessions revealed an effect of session on the

mean reaction time (figure 3a) for our pool of subjects (one-way

ANOVA F(9,4990) = 50.71 pv0:01). A similar but weaker effect

in number of saccades was observed (one-way ANOVA

F(9,4766) = 12.62 pv0:05) as shown in figure 3c. To ensure that

the performance improvements observed were not due to a speed-

accuracy tradeoff, we normalized performance by the mean

number of saccades and mean reaction time separately. Mean

performance normalized by the mean number of saccades gave us

a measure of subjects’ per-saccade search efficiency. Plotting this

as a function of sessions (figure 3d), we find an increased per

saccade efficiency (one way ANOVA F(9,40) = 2.43 pv0:05).

Similarly, plotting mean performance (figure 3b) per session

normalized by the mean reaction times we find an upward trend of

search performance per unit time spent searching (one-way

ANOVA F(9,40) = 3.71 pv0:01). These results show a clear

improvement of all subjects on the task with training. To confirm

that learning was not just a result of improvement in reporting the

numbers in the brief display, we examined the accuracy of

reporting the number at the position last fixated. We found that

the number at the position of last fixation matched the reported

number 82:6% of the time on incorrect trials and 92:8% on

correct trials. Further pooling the trials together and computing an

average over each session, normalized by the number of incorrect

trials, we find no effect of session on report accuracy (one-way

ANOVA F(9,40) = 0.77, p = 0.65). Thus, we can rule out that

performance improvements might have been due to an improved

ability to read and report the numbers.

Differences in Basic Eye Movement Statistics
The eye movements of all the subjects were grouped by session,

and statistics were then computed on this data. We first analyzed

the main sequence, which plots peak velocity against saccadic

amplitude. The main sequences for session one and session five are

shown in figure 4a. To determine whether there was a difference

between the two sequences we first fitted a linear function to the

main sequence of session one and then used this model to predict

saccade amplitudes using the peak velocity data from session five

saccades. We then ran a two-sample t-test between predicted

saccade amplitudes and real saccade amplitudes for session five

and found no significant difference (p = 0.50). The analysis of the

main sequences therefore revealed no effect of training on these

saccade statistics, and the subjects’ eye movements were similar in

this regard. Similarly, no significant trend was found in saccadic

amplitude or velocity individually (data not shown). However,

when we analyzed the ISI we found a significant drop from

early sessions in training to late sessions, as illustrated in figure

4b. Specifically, a one-way ANOVA showed a strong effect

(F(9,73481) = 43.95, pv0:05) of session on intersaccadic interval.

Figure 2. Performance results. Mean percentage correct perfor-
mance obtained by taking a mean across subjects for each of the 10
sessions. Error bars are SEM across subjects. Smooth curve is a fit to a
logistic function (r2~0:62,pv0:05).
doi:10.1371/journal.pone.0009127.g002
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These results demonstrate a change in saccadic strategy on the part

of the observes, a change marked by increased efficiency in

examining the Gabor patches and greater speed in rejecting non-

target Gabor patches. As expected a fall in ISI resulted in a drop in

reaction time (RT). However, we found that RT was more strongly

dependent on the number of saccades made rather than on ISI.

We found a significant dependence (r2~0:69,pv0:05) of RT on

the number of saccades made (figure 4c). A weaker dependence

(figure 4d) of RT on ISI was found (r2~0:18,pv0:05). The data

shown in the figures is for trials where reaction time was v10s; the

results for the full dataset were similar (RT vs saccade count

r2~0:57,pv0:05 and RT vs ISI r2~0:22,pv0:05). Therefore

number of saccades appeared to be more important in determining

RT than ISI.

Individual Feature Similarity Map and Saccade Map
Correlations

Having constructed feature similarity maps and binary

saccade maps, a correlation value between the binary saccade

map and each of the feature correlations maps were computed

for each trial. Correlation values for each session were computed

by pooling together trials of all subjects within a session and then

computing the mean. Figure 5 shows that, i) feature similarity

maps and binary saccade maps are correlated, and ii) hue and

frequency similarity maps become increasingly correlated as the

sessions progress, however, no such trend can be observed for

orientation. The positive trend indicates correlations between

non-zero values in the binary saccade map with high values in

the feature similarity maps. This demonstrates a higher

likelihood of subjects making saccades towards items that are

similar to the target.

The significant increase in correlation of the hue map from

session one to session five (paired t-test pv0:05) demonstrates

that subjects increasingly looked at items that were closer in hue

to the target. There was also a significant increase in frequency

correlation from session one to session five (paired t-test

pv0:01), once again demonstrating a tendency to saccade

towards items with frequency more similar to the target. This

Figure 3. Reaction time and saccade count data. (a) Reaction time plotted as a function of session computed by pooling together all trials by all
subjects for each session and taking the mean. Errorbars are SEM. (b) Reaction time Normalized Performance (RNP) score computed by normalizing
mean performance by mean reaction time per session. Error bars are SEM taken across sessions. (c) Saccade counts plotted as a function of session,
computed by pooling together data from all subjects per session and taking a mean. Errorbars are SEM. (d) Saccade count Normalized Performance
(SNP) score computed by normalizing mean performance by mean saccade count per session. Errorbars are SEM.
doi:10.1371/journal.pone.0009127.g003
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was not the case for orientation, where we found a non-

significant (p = 0.36) difference between session one and session

five.

We further quantified this result by running a multiple logistic

regression on the data, examining the combined effect of feature

distances on the probability of making a saccade towards the

target in a given session. Coefficients obtained from this

regression were then plotted as a function of session and fitted

to a logistic function y~
L

1zce{ax
(figures 6a, b, and c), where

L is the upper limit of the curve, and a determines the slope of

the curve, while c determines shift of the inflection point of the

function. L is evaluated by computing an average of the

coefficient values for sessions seven through ten. The coeffi-

cients’ trends plateau at seven coinciding with a plateau in

performance thus we use the mean to compute L. We then

linearized the function to run a linear regression that provided a

method for computing the parameters c and a. The regressions

yielded significant trends for hue (r2~0:50,pv0:05), and

frequency (r2~0:49,pv0:05) coefficients but not for orientation

(r2~0:18,p~0:2216).

These results demonstrate a tendency of subjects to exploit hue

and frequency as the primary features while giving lowest priority

to orientation. This effect has also been observed in previous

studies [31–33] that found a hierarchy of feature efficacy in biasing

saccades towards targets, with color being the dominant feature

followed by size and orientation.

Feature Combination Rules
We also investigated the question of what combinations of

features might be learned. Several feature combination rules were

tested by combining the similarity maps using different computa-

tions. Figure 7 plots the correlation values across the sessions for

maps constructed using various methods of combining the individual

feature maps. A linear combination rule for individual features is

most widely used [34,35] where individual features are combined

through a linear operation to form a final saliency map that guides

Figure 4. Saccade statistics. (a) Main sequence, plotting saccade amplitudes against peak velocity for the first session (red) and fifth session (blue).
Overlap shows no difference in main sequence. (b) Intersaccadic interval reduces with session data. Points were computed by pooling saccades for
each session for all subjects and taking a mean. Error bars are SEM. (c) Reaction time as a function of number of saccades. Regression line shows
significant correlation (r2~0:58,pv0:05). (d) Reaction time as a function of intersaccadic interval. Regression shows weak correlation
(r2~0:22,pv0:05).
doi:10.1371/journal.pone.0009127.g004
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attention. Top-down attention has been hypothesized to modulate

the contribution from each map in an optimal manner [36] by

adjusting biasing weights [37,38]. Correlation between binary eye

movements maps and feature similarity maps constructed by

combining linearly the hue, frequency, and orientation similarity

maps (appropriately weighted) should therefore be high.

We constructed similarity maps by linearly summing the

individual feature similarity maps for all combinations of the

Figure 5. Single feature correlations. Feature similarity maps are shown on the left with hot colors showing high similarity. These similarity maps
are correlated with saccade maps to yield a correlation value rxy. The plot shows mean correlations per session for each feature. Error bars are SEM.
doi:10.1371/journal.pone.0009127.g005

Figure 6. Multiple Logistic regression results. (a) Coeffecient values for each feature plotted as a function of session. (b) Regression line fitted to
the coefficient values for hue (r2~0:50,pv0:05), (c) frequency (r2~0:49,pv0:05) and, (d) orientation (r2~0:18,pv0:2216).
doi:10.1371/journal.pone.0009127.g006
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three features, and found that the map formed from a linear

combination of the hue and frequency maps (H+F), was most

strongly correlated with eye movements.

To obtain an upper bound of correlation against which each

rule in figure 7 could be compared, we created a maximum map

(labeled ‘‘MaxMap’’ in the figure). The correlation values for this

map were computed by taking the feature similarity map on each

trial that had the strongest correlation with the saccade maps and

storing this correlation value. The mean across trials was then

computed from this trial-wise maximum, thus yielding an upper

bound. We found that the map formed from the linear

combination of hue and frequency (H+F map) was the closest to

the upper bound. A significant effect of session on correlation

values for this map was also observed (one-way ANOVA

F (9,4666)~6:61pv0:05). This suggests that subjects attended to

the hue and frequency features and improved on the task by

appropriately tuning top-down signals in the hue and frequency

dimensions.

We also explored a multiplicative combination rule whereby we

combined the maps in a point-wise multiplicative manner. Thus if

a feature at a particular location is poorly matched to the target’s

feature it will eliminate the chance for all other features to select

this location as a potential target. This predicts a sparse saliency

map, and has the elements of an AND operation on the multiple

feature maps. However, if we look at the correlation values for the

multiplicative map H*F*O they are not as strongly correlated as

the H+F map. Despite the weak correlation we do find a trend in

the correlation values for the H*F map (one-way ANOVA

F (9,4666)~5:61pv0:05). These results demonstrate a general

improvement in the subjects’ tuning to the features of the target

upon preview and also suggests that while the multiplicative rule

makes for a computationally useful guidance strategy, a linear rule

may be a more biologically plausible operation.

We then constructed a point-wise minimum map which would

have the highest signal-to-noise ratio. The map was constructed by

placing in each cell the value of the least similar item. In this

manner the map contains low values in all locations except at the

target cell location where the three feature maps would contain

equal values. This strategy would call on a hypothetical observer to

adopt the counter-intuitive strategy of searching for features that

are most dissimilar to the target, thus highlighting a single location

(target location) where no dissimilarities are found. However, it is

difficult to conceive of a neural strategy that would enable such a

mechanism since it would require pre-computation of all three

feature maps, extraction of the most discriminative feature for

each item, followed by construction of the final guidance map.

Discussion

The triple conjunction search task learned by subjects in this

study consisted of displays that remained consistent in the number

of items and bottom-up uncertainty, however, the target changed

both its location and features on each trial. Learning still took

place under these conditions and the combined behavioral,

occulomotor, and perceptual signatures of the improvement point

towards effects beyond task acquisition. Behaviorally we saw an

improvement in performance with subjects reporting the correct

target on average 44% of the time at the beginning of the task to

an average of 71% after developing expertise in this feature-rich

environment. The occulomotor correlate of learning was evident

from the changes in saccadic behavior, namely in the shorter ISI

with training. Differences in basic saccade statistics in conjunction

with visual search as well as learning have not been studied

extensively. Phillips et al. [39] argue that gains in visual search

performance are a result of an expansion in the ‘perceptual span’

and forward saccade amplitude, with a small effect of fixation

duration which is equivalent to the ISI in our case. The

improvement obtained in our case suggests both that there was

an increase in perceptual span, as well as reduced dwell time for

extracting information from each fixation.

Hooge & Erkelens [40] conducted experiments to specify the

role of fixation duration in visual search tasks. The most salient

feature of their study was the reconciliation of contradictory

findings of [41] who found significant guidance of saccades

towards items that were similar in color to the target, and Zelinsky

[42] who did not find such guidance. Hooge & Erkelens [40]

provide a means to make a leap from occulomotor dynamics to

visual search performance using fixation duration as the vehicle for

understanding the difference. They suggest that tasks involving

difficult discriminations but easy peripheral selections tend to

invoke longer fixation durations, while tasks involving easy

discrimination but difficult peripheral selection (due to either an

abundance or similarity of distractors around a target) tend to have

shorter fixation durations but evoke a greater number of saccades.

Our task is a difficult conjunction search where distractors share

features with the target, this makes it a ‘hard-discrimination, hard-

selection’ task. Therefore, initially we obtain high ISI’s (in fact ISI

goes up from session one to session two) which perhaps suggests

that our subjects’ occulomotor strategy focused on the foveal

discrimination early in the task. High saccade count and reaction

times suggest that the selection task was not easy either. However,

with training we obtain much lower ISIs which implies that

subjects improved on the discrimination task and could now

concentrate resources on the selection task. Further, we find that

the mean number of saccades stays fairly constant with subjects

scanning over half the number of items on average. Thus, there is

no significant change in the number of selections made during the

search process, however, the ‘quality’ of the selections improves,

i.e. the distractors chosen as potential targets are closer in their

Figure 7. Feature combination correlations. Plots showing
correlations of feature similarity maps combined using various
methods, as a function of sessions. The black curve (Max map)
represents an upper bound computed by taking the most correlated
feature map on each trial and computing averages across all trials for
each session. The correlation values for this upper bound can be used
to compare mean correlation values for all other combination rules H*F
(red), H*F*O (green), H+F (blue), H+F+O (cyan) and, point wise
minimum rule (magenta).
doi:10.1371/journal.pone.0009127.g007
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features to the target. The quicker ISIs may point toward an

increased ‘perceptual span’ [43] or ‘visual lobe’ [44] that enables

examination of a greater number of items in each saccade,

however, additional experiments would be required to confirm this

claim.

The occulomotor correlate of learning (i.e. improved

discrimination by moving from discriminative search to selective

search) then makes the prediction that subjects would have a

higher tendency to make saccades towards patches that are

similar to the target as they transition from discriminative search

to selective search. Indeed this is what we found when we

correlated saccade maps with feature similarity maps. By

running a multiple logistic regression we found that whether a

patch was selected for fixation could be predicted by the

similarity of its features to the target and level of training of the

subjects. These results on the similarity effect [45] serve as

corroboration of several previous studies including [31] who

found that monkeys make fixations to items that are similar in

color but not orientation. Findlay & Gilchrist [45] also found a

proximity effect, i.e., a tendency of saccades to fall near the

target in space. Motter & Belky [31] also investigated this

selection for color as a guiding feature over orientation. They

conclude from their 1998 study, as well as electrophysiological

studies in V4 [46,47], that V4 neurons coded more strongly for

stimuli in their receptive field that matched the top-down goal

rather than the absolute color of the stimuli. This suggests that a

color feature map would be the tool of choice for top-down

attention in the guidance of saccades. Our study also

demonstrates a preference for spatial frequency over orienta-

tion. Several other studies [32,33] have found a similar

preference for color as a guiding feature, and Wolfe & Horowitz

[48] have placed color on top of the list of features that guide

attention. We hypothesize that spatial frequency could be

considered a ‘surface property’ much like texture and color that

have desirous qualities for the guidance of attention. However,

the current experiment does not address this feature-selective

guidance and it would require further experiments to verify why

orientation is a weaker cue for top-down attention in the

presence of other features.

In this study the top-down goal changed on each trial and

despite this we saw an increased similarity effect which suggests

that activity of neurons in the visual cortex (e.g. V4 neurons) can

be biased in a highly dynamic and rapid manner from one trial to

the next. Therefore departing from typical perceptual learning

studies we show evidence for learning that involves top-down

processes. Herzog & Fahle [49] put forward a recurrent neural

network model of perceptual learning that empahsizes the role of

plasticity in the top-down connections as an enabling process for

perceptual learning. They show that even in a task like vernier

discrimination, where learning is both specific to stimulus features

and spatial location, a model that incorporates top-down

influences has more explanatory power than pure bottom-up

models of improvement. Specifically they show that in a model

where top-down connections gate flow of bottom-up inputs to

decision units, learning acts upon the weights of the top-down

connections rather than tuning properties of the bottom-up

(sensory) inputs. The current study can also be placed in this

context, situating the locus of plasticity in the top-down process

rather than the bottom-up sensory process. However, in addition

to this the increase in the similarity effect that we find, suggests

that the ability to quickly switch the top-down signal also

improved. It is certainly the case that there is a task-based effect

and we cannot ascertain the exact amount of contribution which

exclusive improvement in top-down biasing made toward progress

in the task. However, it is clear from our analysis of correlation

between feature similarity maps and binary saccade maps that

there is enhanced guidance through better top-down biasing. We

find that training enhances the similarity effect and a possible

mechanism for this is improved top-down biasing. This enhances

the right neurons which in turn guides attention to patches that are

increasingly similar to the target.

Conjunction searches define targets using a combination of

features, and binding of these features according to feature

integration theory [34] requires attention. We examined the

correlations of binary saccade maps and different combinations of

feature similarity maps and found that a linear combination of the

features hue and frequency was most highly correlated with

saccade maps. We tried a multiplicative rule which provides the

sparsest final similarity since it penalizes differences in a single

feature while greatly boosting locations with a single matched

feature. A similarity map constructed from a multiplication of hue

and frequency was closely matched in terms of correlation with eye

movements to the linear H+F map however, the H*F*O map was

poorly corrleated with eye movements. A multiplicative rule

however, does not account for the serial search times for

conjunction searches since a precomputation of this multiplicative

combination of features would put a hot-spot in a salience map at

the location where all features match the target with high SNR.

Overall this exploration points towards a linear combination rule

that may be at play. That said, our discussion of the similarity

effect also suggests a pre-attentive guidance of saccades towards

potential targets. And if guidance is pre-attentive and feature

combination requires attention, the prediction would be that

conducting a conjunctive search is a serial process with respect to

spatial attention and feature-based attention, and thus inefficient.
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5. Ferrari V, Didierjean A, Marmèche E (2008) Effect of expertise acquisition on

strategic perception: the example of chess. Q J Exp Psychol (Colchester) 61:

1265–80.

6. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention.

Annual Review of Neuroscience 18: 193–222.

7. Dosher BA, Lu ZL (2000) Noise exclusion in spatial attention. Psychological

Science 11: 139–146.

8. Treue S, Maunsell JH (1996) Attentional modulation of visual motion processing

in cortical areas mt and mst. Nature 382: 539–541.

9. Yeshurun Y, Carrasco M (1998) Attention improves or impairs visual

performance by enhancing spatial resolution. Nature 396: 72–75.

10. Reynolds JH, Pasternak T, Desimone R (2000) Attention increases sensitivity of

v4 neurons. Neuron 26: 703–714.

11. McKee S, Westheimer G (1978) Improvement in vernier acuity with practice.

Perception & Psychophysics 24: 258–62.

12. Vogels R, Orban GA (1985) The effect of practice on the oblique effect in line

orientation judgments. Vision Research 25: 1679–1687.

13. Karni A, Sagi D (1991) Where practice makes perfect in texture discrimination:

evidence for primary visual cortex plasticity. Proceedings of the National

Academy of Sciences 88: 4966–4970.

Training Top-Down Attention

PLoS ONE | www.plosone.org 9 February 2010 | Volume 5 | Issue 2 | e9127



14. Li W, Piech V, Gilbert CD (2004) Perceptual learning and top-down influences

in primary visual cortex. Nature Neuroscience 7: 651–657.

15. Ahissar M, Hochstein S (1996) Learning pop-out detection: specificities to

stimulus characteristics. Vision Research 36: 3487–3500.

16. Schoups A, Orban GA (1996) Interocular transfer in perceptual learning of a

pop-out discrimination task. Proceedings of the National Academy of Sciences

93: 7358–7362.

17. Schoups A, Vogels R, Qian N, Orban G (2001) Practising orientation

identification improves orientation coding in v1 neurons. Nature 412: 549–553.

18. Ghose G, Yang T, Maunsell J (2002) Physiological correlates of perceptual

learning in monkey V1 and V2. Journal of Neurophysiology 87: 1867–1888.

19. Dosher BA, Lu ZL (1998) Perceptual learning reflects external noise filtering and

internal noise reduction through channel reweighting. Proceedings of the

National Academy of Sciences 95: 13988–13993.

20. Ahissar M, Hochstein S (2004) The reverse hierarchy theory of visual perceptual

learning. Trends In Cognitive Science 8: 457–464.

21. Law C, Gold JI (2008) Neural correlates of perceptual learning in a sensory-

motor, but not a sensory, cortical area. Nature Neuroscience 11: 505–513.

22. Yang T, Maunsell J (2004) The effect of perceptual learning on neuronal

responses in monkey visual area V4. Journal of Neuroscience 24: 1617–1626.

23. Raiguel S, Vogels R, Mysore SG, Orban GA (2006) Learning to see the

difference specifically alters the most informative v4 neurons. Journal of

Neuroscience 26: 6589–6602.

24. Fahle M (2005) Perceptual learning: specificity versus generalization. Current

Opinion in Neurobiology 15: 154–160.

25. Sireteanu R, Rettenbach R (1995) Perceptual learning in visual search: fast,

enduring, but non-specific. Vision Research 35: 2037–2043.

26. Logan G (1988) Toward an instance theory of automatization. Psychological

review 95: 492–527.

27. Shiffrin R, Schneider W (1977) Controlled and automatic human information

processing: II. Perceptual learning, automatic attending, and a general theory.

Psychological review 84: 127–190.

28. Goldstone RL (1998) Perceptual learning. Annual Review of Psychology 49:

585–612.

29. Navalpakkam V, Itti L (2006) Top-down attention selection is fine grained.

Journal of Vision 6: 1180–1193.

30. Itti L (2005) Quantifying the contribution of low-level saliency to human eye

movements in dynamic scenes. Visual Cognition 12: 1093–1123.

31. Motter BC, Belky EJ (1998) The guidance of eye movements during active visual

search. Vision Research 38: 1805–1815.

32. Bichot NP, Schall JD (1999) Effects of similarity and history on neural

mechanisms of visual selection. Nature Neuroscience 2: 549–554.
33. Rutishauser U, Koch C (2007) Probabilistic modeling of eye movement data

during conjunction search via feature-based attention. Journal of Vision 7: 5.

34. Treisman AM, Gelade G (1980) A feature-integration theory of attention.
Cognitive Psychology 12: 97–136.

35. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for
rapid scene analysis. IEEE Transactions on pattern analysis and machine

intelligence 20: 6.

36. Navalpakkam V, Itti L (2007) Search goal tunes visual features optimally.
Neuron 53: 605–617.

37. Wolfe J (1994) Guided search 2. 0. A revised model of visual search.
Psychonomic Bulletin & Review 1: 202–238.

38. Hillyard SA, Vogel EK, Luck SJ (1998) Sensory gain control (amplification) as a
mechanism of selective attention: electrophysiological and neuroimaging

evidence. Philosophical Transactions of the Royal Society B: Biological Sciences

353: 1257–1270.
39. Phillips MH, Edelman JA (2008) The dependence of visual scanning

performance on saccade, fixation, and perceptual metrics. Vision Research
48: 926–936.

40. Hooge IT, Erkelens CJ (1999) Peripheral vision and oculomotor control during

visual search. Vision Research 39: 1567–1575.
41. Luria SM, Strauss MS (1975) Eye movements during search for coded and

uncoded targets. Perception & Psychophysics 17: 303–308.
42. Zelinsky GJ (1996) Using eye saccades to assess the selectivity of search

movements. Vision Research 36: 2177–2187.
43. Engel FL (1971) Visual conspicuity, directed attention and retinal locus. Vision

Research 11: 563–576.

44. Courtney AJ, Chan HS (1986) Visual lobe dimensions and search performance
for targets on a competing homogeneous background. Perception & Psycho-

physics 40: 39–44.
45. Findlay J, Gilchrist I (2003) Active vision: The psychology of looking and seeing

Oxford University Press Oxford.

46. Motter BC (1994) Neural correlates of feature selective memory and pop-out in
extrastriate area v4. Journal of Neuroscience 14: 2190–2199.

47. Motter BC (1994) Neural correlates of attentive selection for color or luminance
in extrastriate area v4. Journal of Neuroscience 14: 2178–2189.

48. Wolfe JM, Horowitz TS (2004) What attributes guide the deployment of visual
attention and how do they do it? Nature Reviews Neuroscience 5: 495–501.

49. Herzog M, Fahle M (1998) Modeling perceptual learning: Difficulties and how

they can be overcome. Biological Cybernetics 78: 107–117.

Training Top-Down Attention

PLoS ONE | www.plosone.org 10 February 2010 | Volume 5 | Issue 2 | e9127


