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Abstract

Exogenous retroviruses are obligate cellular parasites that co-opt a number of host proteins and functions to enable
their replication and spread. Several host factors that restrict HIV and other retroviral infections have also recently
been described. Here we demonstrate that Mov10, a protein associated with P-bodies that has a putative RNA-helicase
domain, when overexpressed in cells can inhibit the production of infectious retroviruses. Interestingly, reducing the
endogenous Mov10 levels in virus-producing cells through siRNA treatment also modestly suppresses HIV infectivity.
The actions of Mov10 are not limited to HIV, however, as ectopic expression of Mov10 restricts the production of other
lentiviruses as well as the gammaretrovirus, murine leukemia virus. We found that HIV produced in the presence of
high levels of Mov10 is restricted at the pre-reverse transcription stage in target cells. Finally, we show that either
helicase mutation or truncation of the C-terminal half of Mov10, where a putative RNA-helicase domain is located,
maintained most of its HIV inhibition; whereas removing the N-terminal half of Mov10 completely abolished its activity
on HIV. Together these results suggest that Mov10 could be required during the lentiviral lifecycle and that its
perturbation disrupts generation of infectious viral particles. Because Mov10 is implicated as part of the P-body
complex, these findings point to the potential role of cytoplasmic RNA processing machinery in infectious retroviral
production.
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Introduction

The replication of retroviruses within target cells requires the

participation of host factors at every step of the virus lifecycle.

Indeed, genetic screens have suggested hundreds of host factors to

contribute to HIV-1 replication [1]. As a consequence, hosts have

developed potent retroviral restrictive proteins, which act as an

intrinsic defense mechanism [2,3]. Among the most prominent of

this group are the APOBEC3 proteins, which manifest a potent

cellular defense mechanism that has expanded in the primate

family to prevent infection by viruses that require the production

of ssDNA as part of their lifecycle [4]. This model of an antiviral

countermeasure has been of particular importance in the quest to

better understand the interaction between HIV-1 and various host

proteins. Though APOBEC3G was initially identified as an

inhibitor of HIV-1 replication in the absence of vif [5], it has since

been suggested that APOBEC3G exerts a more nuanced role

inside the cell and during the replication cycle of HIV-1 [6].

Recent evidence suggests a complex interplay between APO-

BEC3G and the cytoplasmic foci of proteins, referred to as P-

bodies, which are thought to be involved in variety of RNA

processing functions [7,8]. One of the components of P-body

complexes is a protein called Mov10, which was found to be

associated with APOBEC3G in large complexes [6,9]. Mov10 was

first identified in screens that examined failure of infectious

Moloney murine leukemia virus (MLV) production in mice [10].

Subsequent sequence analysis revealed seven consensus sequences

of RNA helicases at the C-terminal end of the protein [11]. Recent

evidence implicates Mov10 as a host factor required for hepatitis

D virus replication [12]. In this study, it was shown that

knockdown of Mov10 in host cells by siRNA significantly reduced

hepatitis D viral replication, but not hepatitis D antigen

production. [12].

Similar to previous reports, we found that Mov10 was the

predominant protein associated with APOBEC3G in large protein

complexes. We therefore examined the role of Mov10 in the

retroviral lifecycle and discovered that the perturbation of Mov10

levels in producer cells greatly reduces the infectivity of HIV-1 and

other retroviruses. Furthermore, we found that HIV-1 produced in

the presence of high levels of Mov10 is restricted in infection of

target cells either prior to or at the initiation of reverse

transcription. Structure function analysis of Mov10 suggested that

this potent activity on infectivity of HIV-1 is not dependent on its

putative RNA-helicase domain.
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Results

Overexpression of Mov10 Reduces the Specific Infectivity
of HIV-1

In order to identify proteins that interact with APOBEC3G, we

performed a mass spectrometry analysis of proteins co-immuno-

precipitated with APOBEC3G from primary CD4+ T cells or

293T cells. We found that the putative RNA helicase, Mov10, was

reproducibly and predominantly associated with high-molecular

weight APOBEC3G preparations. This finding was in line with

observations from other reports that detected Mov10 in similar

mass spectrometry analysis [6,9]. Although in subsequent analysis

we did not find a direct association between APOBEC3G and

Mov10 (data not shown), we asked whether perturbation of

Mov10 expression could impact HIV-1 infectivity in a manner

similar to APOBEC3G. Accordingly, 293T cells were transfected

with different Mov10 plasmid amounts. Mov10 was highly

expressed upon transfection (Fig. 1A), and this expression level

was not immediately toxic to cells as no cell death was observed

over three days following transfection (data not shown).

We next determined whether viruses produced in the presence

of ectopic Mov10 exhibited reduced infectivity similar to that

typically observed with APOBEC3G-transfected 293T cells. To

address this point, we co-transfected 293T cells with GFP-

expressing HIV-1 (with or without Vif), a vesicular somatitis virus

glycoprotein (VSV-G) expression construct, and either a Mov10 or

APOBEC3G expression plasmid. Two days later, VSV-G

pseudotyped HIV-1 vectors produced from the transfected 293T

cells were used to infect the Jurkat T cell line. Remarkably, we

found that overexpression of Mov10 almost completely abolished

infectivity of HIV-1 produced by 293T cells (Fig. 1B). However, in

contrast to APOBEC3G overexpression, the Mov10-mediated

reduction of HIV-1 infectivity could not be rescued by co-

expression of HIV-1 vif (Fig. 1B). These data suggested that

increased levels of Mov10 have a profound effect on the

generation of infectious HIV-1.

We then asked whether the suppression of HIV-1 infectivity

through Mov10 overexpression was due to reduced HIV-1 particle

production. We found that at varying ratios of plasmids encoding

HIV-1 to Mov10, the HIV-1 particle production, as assessed by

p24 protein levels in supernatant, was mostly unaffected (Fig. 2A

and Fig. S1A); while the infectivity of the viruses normalized to

p24 levels were greatly reduced using either luciferase- or GFP-

expressing viruses (Fig. 2B, 2C and Fig. S1B). However, at the

ratios where Mov10 levels were highest, we also observed a

notable reduction in the level of p24 generated by producer cells

(Fig. 2A and Fig. S1A, lowest HIV-1/Mov10 expressing plasmid

ratios). Similar inhibition of HIV-1 infectivity was observed when

viruses were produced from 293T cells stably overexpressing

Mov10 for prolonged periods (Fig. S2).

We next determined whether Mov10 could also inhibit the

generation of replication-competent HIV-1 from primary human

CD4+ T cells. For this experiment, highly purified CD4+ T cells

were nucleofected with a replication-competent, CCR5-tropic

HIV-1 plasmid (R5.HIV.GFP) in the presence of a Mov10

expression plasmid or control plasmid (pcDNA3). The virus

produced from CD4+ T cells from this transfection was in turn

used to infect CCR5+ Hut78 T cells (experimental setup shown in

Fig. 3A). Virus production in primary cells was slightly impaired

in the presence of Mov10 (Fig. 3B). However, when supernatants

containing identical levels of p24 were applied to Hut78 cells, a

significant reduction in HIV-1 infectivity due to Mov10

overexpression was observed (Fig. 3C). Next, we co-transfected

viral plasmids for other retroviruses, SIV, MLV, FIV and EIAV,

along with the Mov10 expression plasmid or empty vector to

produce the respective viruses in presence or absence of Mov10.

We tested their infectivity on HeLa cells and found that in the

presence of Mov10, similar to HIV-1, infectivity of all of the

tested lentiviruses and the retrovirus were profoundly suppressed

(Fig. 4).

Because overexpression of Mov10 impaired HIV-1 infectivity,

we asked whether endogenously expressed Mov10 was also

inhibitory to HIV-1 replication. To address this we silenced

Mov10 expression in producer cells using siRNAs targeting

Mov10. Surprisingly, reduced levels of Mov10 also suppressed

HIV-infectivity (Figure 5), suggesting a positive role for Mov10 in

the generation of optimally infectious virions. To further test

whether Mov10 levels were indeed critical or whether the siRNA

was acting ‘‘off target,’’ Mov10 was ectopically expressed in

siRNA-treated cells from which HIV-1 was produced. Because

high levels of Mov10 would be inhibitory to HIV-1, the

Figure 1. Overexpression of Mov10 decreases HIV-1 infectivity.
(A) 293T cells were transfected with different amounts of Mov10
plasmid, and the expression of Mov10 was determined by Western blot.
(B) 293T cells were transfected with 0.5 mg of either pCMV6-XL5
plasmid (control), Mov10 or APOBEC3G in the presence or absence of
0.5 mg vif as well as 1 mg HIV-1-GFP (Denv, Dvif, Dvpr, Dnef) and 0.5 mg
p-L-VSV-G. Virus was collected 24 h later, and then added to Jurkat T
cells. Virus transfer was standardized across treatment conditions by
p24 levels as described (Materials and Methods). Percent infected cells
was then determined using FACS analysis for GFP-expression after virus
was allowed to incubate with target cells for 72 hours. Error bars
represent one standard deviation.
doi:10.1371/journal.pone.0009081.g001
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knockdown cells were complemented with a wild-type form of

Mov10 that remained susceptible to the siRNA pool to restrict

increased expression. In the absence of Mov10 siRNA,

transfection of increasing amounts of the Mov10 expression

plasmid leads to a dramatic increase of Mov10 levels even at

relatively low input DNA amounts (Fig. 5A, left). At the highest

levels of Mov10 (0.1 mg DNA), the specific infectivity of HIV-1 is

diminished (Fig. 5B). In the presence of Mov10 siRNA, Mov10

levels, relative to protein loading controls, are less dramatically

increased by Mov10 plasmid transfection (Fig. 5A, right). Without

Mov10 plasmid transfection, siRNA targeting of endogenous

Mov10 led to a 2-fold reduction in HIV-1 particle infectivity

(Fig. 5B). The restoration of Mov10 expression to endogenous

levels (0.1 mg DNA) was sufficient to increase HIV-1 specific

infectivity. These data indicate that endogenous Mov10 aids in

HIV-1 replication and that slight variation from the wild type

level of Mov10 can drastically affect the infectivity of HIV-1.

How Does Mov10 Decrease Infectivity of HIV-1
In order to determine how Mov10 reduces the infectivity of

HIV-1, we analyzed the early events in the lifecycle of HIV-1

produced in the presence of perturbed Mov10 levels. Accordingly,

we first determined whether Mov10 interfered with the incorpo-

ration of viral glycoproteins in HIV-1 particles. We constructed

virion-like particles (VLP) that express GFP through fusion to Gag

and trans-incorporate VSV-G. The VLPs were then used to assess

their binding capacity to a T cell line by analysis for GFP. When

the target cells were analyzed by flow cytometry, there was no

decrease in the ability of VLPs produced in the presence of Mov10

to bind to Jurkat cells (Fig. 6). We next asked whether Mov10-

treated HIV-1 has defects during its early, post-entry stages. We

used quantitative real-time PCR to analyze the early and late

HIV-1 reverse transcripts (Fig. 7). Compared to virus from cells

expressing a control plasmid, virus from Mov10-overexpressing

cells was 80% less efficient in synthesis of early reverse transcripts

Figure 2. Mov10 decreases specific infectivity of HIV-1. Supernatants of 293T cells that had been transfected with varying amounts of Mov10-
expressing plasmid were assayed for (A) HIV-1.Luc p24 levels and (B) after standardization by p24 content, infectivity of target cells was determined
by luciferase activity from VSVG.HIV.Luc, which encodes all the HIV accessory genes. For simplicity, the amount of Mov10 plasmid that was
transfected is expressed as a ratio of HIV-1 plasmid to Mov10 plasmid and plotted logarithmically. In the experiment (see Materials and Methods for
further explanation) HIV-1 plasmid levels remained constant, while Mov10 plasmid was used at levels of 1/6 to 1/1500 that of the HIV-1 plasmid. Error
bars represent one standard deviation. (C) Representative plots of Jurkat T cells infected with GFP-expressing virus produced in the presence of either
pcDNA3 or Mov10 (ratio of Mov10 to HIV-1 plasmid was 1/25) three days after infection. Quantification of experiments performed using GFP-
expressing virus is shown in supplemental figure 1.
doi:10.1371/journal.pone.0009081.g002
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(minus-strand strong-stop DNA). This suggests that the defect

induced by Mov10 manifests prior to the initiation of reverse

transcription during the early stages of post-entry replication of the

virus.

Mov10’s Anti-HIV-1 Activity Is Independent of Its Putative
RNA Helicase Domain

Because a potential RNA helicase domain has been identified

for Mov10 and because RNA helicases have been implicated as

modulators of HIV-1 replication [13,14], we hypothesized that

Mov10’s antiviral activity could be due to the presence of its

putative helicase domain. To analyze the roles of the particular

domains of Mov10, we split the protein into N-terminal and C-

terminal portions (Fig. 8A). The C-terminal half of the protein

contains the putative RNA helicase domain of the protein [11]

while the N-terminal half is not yet characterized [15,16]. In

addition we generated a point mutation of a motif predicted to be

essential for ATP binding to the potential helicase (Fig. 8A), based

upon previous reports of an inactivating mutation in an RNA

helicase [17]. HIV-1 particles were produced by co-transfection

of 293T cells in the presence of either empty vector, Mov10,

Mov10 N-terminus, Mov10 C-terminus or the helicase domain

mutant of Mov10. All HA-tagged proteins were detectably

expressed in cells (Fig. 8B). Upon examining the infectivity of the

produced virions, we found that both the N-terminal half of

Mov10, which lacks the helicase domain, and the helicase

domain point mutant diminished infectivity of HIV-1 particles

nearly as well as wild type Mov10 (Fig. 8C). By contrast, the C-

terminal domain alone had no effect. These data show that the

N-terminal portion of the protein was required for Mov10-

mediated virus suppression and that the putative RNA helicase

domain did not contribute to Mov10’s antiviral activity under

these experimental conditions.

Discussion

In this study, we have shown that the RNA helicase Mov10 can

modulate the production of infectious HIV-1. Ectopic expression

of Mov10 diminishes per-particle infectivity resulting in virus

impaired at an early step of infection in target cells. This effect is

observed in both primary and transformed cells using HIV-1

single-cycle vectors or replication-competent genomes. Important-

ly, endogenous Mov10 appears to contribute to HIV-1 replication

as virions produced from cells that have been depleted of Mov10

are also less infectious. These data suggest that Mov10 is at a

critical nexus of HIV-1 replication and perturbation of this factor

is restrictive to the virus. Notably, other retroviruses are also

sensitive to elevated expression of Mov10.

Mov10 has been found in association with Ago1 and Ago2 in

the RISC, together with TNRC6B, which are also found to

localize to P-bodies [8,18,19]. In addition, ectopically expressed

Mov10 appears to be enriched in P-bodies [20], similar to

Figure 3. Mov10 impairs HIV-1 replication in primary CD4+ T cells. Supernatants of activated CD4+ cells that had been nucleofected with a
replication competent, CCR5-tropic HIV-1 viral plasmid and either Mov10 or control (pcDNA3) plasmid ([A] schematic) were assayed for p24
production (B) and then standardized by p24 concentration and used to infect CCR5+ Hut cells. (C) Infection success was determined by flow
cytometry analysis of GFP expression.
doi:10.1371/journal.pone.0009081.g003
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APOBEC3G [6,21]. While P-body components are essential for

retrotransposition of yeast Ty1 and Ty3 elements [22,23], their

role in retroviral replication has not been established. Pertur-

bation of P-bodies could affect cellular RNA metabolism and

thus limit HIV-1 production. However, we observed no

quantitative change in levels of intracellular HIV-1 RNA (data

not shown), particle release, or vRNA incorporation in particles

(data not shown). The infectivity defect was apparent after

normalizing for particle amounts. Unlike GW182 or other P-

body components, Mov10 is not known to be essential to the

genesis or turnover of P-bodies. These data suggest that the role

of Mov10 in HIV-1 replication could be independent of RNA

metabolism.

The incorporation of APOBEC3G by different retroviruses

suggests that they may traffic via P-bodies during viral production.

Indeed, Mov10 was also reported to be incorporated in HIV-1

particles [24]. The presence of a RISC component in HIV-1

particles is provocative given that RISC may be physically

associated with multivesicular bodies [25], which are essential

for the production and release of retroviruses [2]. It is tempting to

speculate that retroviral RNA modifications or association with the

viral core components may require RISC or P-body machinery,

which in turn could be disrupted by modulating Mov10 expression

levels. Understanding how Mov10 interacts with HIV-1 and

cellular machinery may eventually help reveal its mechanism of

inhibition when its expression is perturbed.

Paradoxically, silencing a portion of Mov10 expression in

producer cells also reduced infectivity of HIV-1, albeit with much

lower potency compared to inhibition seen in over-expression

experiments. It will be of interest to determine whether the

removal of Mov10 from virions or the absence of functional

Mov10 in virus-producers cells underlies the loss in infectivity.

Alternatively, it is conceivable that perturbation of Mov10 levels

disrupts other components of the P-body machinery, which are

required for viral RNA processing and assembly. It will also be

important to determine the physiological function of Mov10 in

primary human T cells and macrophages, which are the natural

targets of HIV-1.

Figure 4. Broad inhibition of infectious retroviruses by Mov10.
Virions derived from 293T cells transfected with various viral plasmids
(as described in Materials and Methods) and either pcDNA3 or pcDNA3-
Mov10 were used to infect HeLa cells. The % infected cells represents
the percentage of GFP-positive cells in the cell population.
doi:10.1371/journal.pone.0009081.g004

Figure 5. An optimal concentration of Mov10 is required for
HIV-1 infectivity. 293T cells were transfected with a non-targeting
siRNA or Mov10-specific siRNA. At 48 h post-siRNA transfection, the
cells were transfected with 1.5 mg of pHIV-RFP, 0.7 mg of p-L-VSV-G
and increasing amounts of the Mov10 expression plasmid. At 96 h
post-siRNA transfection: (A) the cell lysates were examined by
Western blot for Mov10 levels using an anti-Mov10 antibody. Equal
protein loading was confirmed by probing with anti-tubulin antibody.
(B) After normalizing for p24 values, virus obtained from the
transfections was used to infect HeLa cells and infectivity was
measured by FACS. The % infected cells represents the percentage of
RFP-positive cells in the cell population. Error bars represent one
standard deviation.
doi:10.1371/journal.pone.0009081.g005
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Mov10 may prove to be an attractive therapeutic target given

the small window in which cellular levels are compatible with

production of infectious HIV-1. Elevated levels of Mov10 in

primary cells are sufficient to hinder HIV-1 replication, and it is

conceivable that pharmacological treatment of these cells with

drugs that stabilize or increase P-body numbers may in turn

increase Mov10 levels. Notably, Mov10 lacking an RNA

interaction domain through limited mutagenesis or complete

removal of the C-terminal domain is antiviral when ectopically

expressed. Thus fragments of the protein could be used as

antivirals and potentially minimize effects on the cell biology.

The N-terminal domain also provides an attractive tool with

which to select for HIV-1 resistance to better understand the

interaction of Mov10 with the virus. However, it is not yet clear

how the N-terminal half of Mov10, which lacks the putative

helicase domain, is potently functional in reducing HIV-1

infectivity. It is possible that the N-terminal domain, could

either be interacting with and disrupting other components of

the P-body machinery, or it may have a yet to be identified

function in RNA processing.

The effect of Mov10 depletion or overexpression on HIV-1

replication is reminiscent of the effect that the ESCRT

component Tsg101 can have on HIV-1 production [26].

Depletion of Tsg101 impairs HIV-1 release, overexpression of

Tsg101 interferes with HIV-1 release, and expression of

Tsg101 fragments prevents HIV-1 Gag interactions with

Tsg101 or other ESCRT components thus blocking virus

release. As our knowledge of cellular proteins manipulated by

HIV-1 expands, we expect that more proteins will be

discovered that exhibit similar characteristics to Mov10—these

being a narrow expression window in which HIV-1 is capable

of reproducing. HIV-1’s requirement of an optimal level of

Mov10 during virion production is reminiscent of Robert

Southey’s classic tale of Goldilocks seeking nourishment and

comfort that comported to a narrow range when sojourning in

an ursine abode [27]. Proteins with such Goldilocks quality

provide excellent, potential targets for therapy because

perturbation of their levels in either direction reduces HIV-

1’s ability to reproduce.

Materials and Methods

Cell Purifications and Culture
Blood samples were obtained from anonymous healthy donors

as buffy coats (New York Blood Center). New York Blood Center

obtains written informed consent from all participants involved in

the study. Because all the samples were sent as anonymous, the

Institutional Review Board at New York University medical center

determined that our study was exempt from further ethics

approval requirement. Peripheral Blood Mononuclear cells

(PBMC) were isolated with Ficoll-Hypaque (Amersham Pharma-

cia). CD4+ T cells were isolated from PBMC using magnetic bead

sorting (Invitrogen, Dynabeads). Purified CD4+ T cells were

activated using anti-CD3/CD28 coated beads (Dynabeads,

Invitrogen) and cultured in RPMI media (Life Technologies) with

10% fetal calf serum (FCS; Atlanta Biologicals) and supplemented

with IL-2 (200 U/ml). Jurkat and Hut78 cells were also grown in

RPMI-10% FCS media. HEK293T and HeLa cell lines were

maintained in DMEM supplemented with 10% FCS, 100 U/ml

penicillin and 0.1 mg/ml streptomycin.

Plasmids and Mov10 Mutants
The HIV-RFP plasmid was constructed from the HIV-EGFP

plasmid [28] and has been described previously (Lee et al., in

press). HIV Vif gene cloned in pcDNA 3 [29] was obtained from

NIH AIDS reagent repository. Wild type Mov10 (NCBI accession

number BC009312.2, cDNA obtained from Origene) and mutant

Mov10s, Mov10-Nterm (corresponds to amino acids 1–495),

Mov10-Cterm (corresponds to amino acids 496–1003) and

Mov10.EQ (putative helicase motif mutant) were PCR amplified

and subcloned into the pcDNA3 vector that, contained an in

frame 59 HA tag, using BamHI and NotI restriction sites to create

HA-tagged mutants. Following primers were used for PCR

amplifications: For full-length Mov10: 59 TAC GCC GGA TCC

CCC AGT AAG TTC AGC TGC CGG CAG – 39 CGT TAG

GCG GCC GCT CAG AGC TCA TTC CTC CAC TCT GGC

TCC. For Nterm mutant: 59 TAC GCC GGA TCC CCC AGT

AAG TTC AGC TGC CGG CAG – 39 CGT TAG GCG GCC

GCT CAC CGG TCG TAC AGC TTG AGT TTC ACA. For

Figure 6. Viral glycoprotein incorporation is not affected by Mov10 overexpression. 293T cells were transfected with plasmids
necessary for the production of VSV-G pseudotyped Virion-Like Particles (VLPs) containing a GFP tag (as a Gag-GFP fusion) as well as either
control or Mov10. Supernatant from these cells was then collected and added to Jurkat T cells and assayed for binding to target cells. Cells
bound by one or more VLPs are GFP+ by FACS.
doi:10.1371/journal.pone.0009081.g006
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Cterm Mov10: 59TAC GCC GGA TCC AGT CTG GAG TCA

AAC CCA GAG CAG, 39 CGT TAG GCG GCC GCT CAG

AGC TCA TTC CTC CAC TCT GGC TCC. The point

mutation in the DEAG sequence of Mov10 was created by

replacing glutamate residue at position 646 with glutamine

(DEAG to DQAG) and named Mov10-EQ. APOBEC3G was

similarly subcloned into pcDNA3 vector for transfections. The

pNL4.3.R-.E-.Luc vector was kindly provided by Dr. Nathaniel

Landau (New York University). Replication competent CCR5-

tropic HIV (R5.HIV) expressing GFP was previously described

[30]. Virion-like particles (VLPs) were generated using plasmid

expressing HIV-1 Gag fused to GFP (kind gift of Dr. Paul

Spearman, Emory University).

Virus Stocks
Virus stocks were produced by DNA transfection on

monolayer cultures of 293T cells grown in six-well plates

(Corning) using either Hilymax (Dojindo) or Lipofectamine

2000 (Invitrogen) transfection reagents. To produce HIV-1

vectors (VSVG.HIV-RFP or VSVG.NL4.3.R-.E-.Luc), each

well of 293T cells in a six-well plate was cotransfected with

3 mg of HIV and 0.5 mg of p-L-VSV-G [31]. In experiments

where Mov10 was also cotransfected, the plasmid was used in

amounts ranging from 0.5 mg to 0.002 mg, which corresponds

to ratios of HIV-1/Mov10 of 1/6 to 1/1500. 293T cells were

cotransfected with 2.5 mg of pMIGR1 [32], 1.5 mg of pJK3

[31], 0.5 mg of pCMV-Tat and 1 mg of p-L-VSV-G plasmids

[31] to produce the murine leukemia virus (MLV) stock; with

2 mg of pV1EGFP (SIV vector) and 2 mg of pUpSVODy (SIV

structural proteins) (kindly provided by Hung Fan) and 0.5 mg

of pCMV-VSVG to produce the simian immunodeficiency

virus (SIV) stock; with 2 mg of pGinSin (FIV vector) and 2 mg

of pFP93 (FIV structural proteins) (kindly provided by Eric

Poeschla) and 0.5 mg CMV-VSVG to produce the feline

immunodeficiency virus (FIV) stock; and with 2 mg of

p6.1G3CeGFPW (EIAV vector), 2 mg of pEV53B (EIAV

structural proteins) (kindly provided by John Olsen) and

0.5 mg of pCMV-VSV-G to produce the equine infectious

anemia virus (EIAV) stocks. To examine the effects of Mov10

on viruses produced, the 293T cells were also cotransfected

with either the empty pcDNA3 plasmid as control or the

pcDNA3-HA-Mov10 plasmid. Culture supernatants from the

293T cells were collected 48 h post-transfection, clarified by

low-speed centrifugation (1,0006g, 10 min), and filtered

through 0.45 mm pore-size sterile filters.

HIV-1 p24 ELISA
For the HIV-1 vectors, the clarified supernatants were analyzed

for p24 antigen concentration by enzyme-linked immunosorbent

assay (PerkinElmer) following manufacturer’s instructions. HRP

levels were detected via colorimetry and quantified following

manufacturer’s protocol on an Envision 96-well plate reader

(PerkinElmer). HIV-1 capsid monoclonal antibody was obtained

through the NIH AIDS Research and Reference Reagent

Program, Division of AIDS, NIAID, NIH (183-H12-5C, contrib-

uted by Bruce Chesebro and Hardy Chen). Secondary antibodies

included HRP-conjugated goat anti-mouse, goat anti-human, and

goat anti-rabbit antibodies (GE Healthcare).

Infection Assays
Infectivities of non-HIV retroviruses were determined either by

titration of virus supernatants on HeLa cells and of HIV-1 on

Jurkat or Hut78 cells using virus samples normalized by p24

(capsid) levels. The expression of GFP or RFP following infection

by the HIV-1, MLV, SIV, FIV and EIAV viruses was measured

by fluorescence-activated cell sorter (FACS) analysis (FACSCali-

bur, Becton Dickinson). The percent infected cells represents the

percentage of GFP-positive or RFP-positive cells in the cell

population. Alternatively, for luciferase reporter viruses, Jurkat

cells (1.56104 per well) were infected for 3 days with VSV-G-

pseudotyped NL4.3.R-.E-.Luc (VSVG.HIV.Luc) and luciferase

activity was measured by LucLite kit from PerkinElmer according

to the manufacturer’s protocol using an Envision 96-well plate

reader (PerkinElmer).

Knockdown of Endogenous Mov10
Transient silencing of target genes was achieved by transfecting

the gene-specific siRNAs (Dharmacon, ON-TARGETplus

SMARTpool L-014162-00) into 293T cells using Oligofectamine

(Invitrogen). 50 nM of the nontargeting control siRNA or gene-

specific siRNA was transfected into 293T cells 48 h prior to

plasmid transfections. Knockdown of Mov10 protein was

confirmed by Western blot.

Figure 7. Early and late reverse transcription is suppressed in
virus produced from cells overexpressing Mov10. Synthesis of
reverse transcripts by real-time PCR after infection by HIV-1 produced in
the presence of either empty vector (pcDNA3) or Mov10 expressing
plasmid was measured. No significant difference between production of
(A) Early (R-U5) or (B) Late (R-Gag) DNA products of reverse
transcription was observed. (C) Infectivity of virions produced in the
presence of Mov10 was significantly inhibited. Input viruses were
normalized for p24. Results are representative of one out of three
similar experiments.
doi:10.1371/journal.pone.0009081.g007
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Nucleofection of Primary T Cells
One day after activation, sorted human CD4+ were nucleo-

fected using the Amaxa Nucleofector System (Lonza) with

R5.HIV.GFP plasmid (1 mg) and either Mov10 or pcDNA3

plasmid (0.5 mg). 48 hours after nucleofection, viral supernatants

were collected and analyzed for p24 concentration by ELISA as

previously described [30]. Aliquots containing 100 pg of p24 were

then used to infect 1.56104 CCR5+ Hut78 cells. After 3 days of

culture percent of infected cells was analyzed by FACS.

Real-Time PCR Analysis of Virus Infection
The 293T-derived HIV-1 virions were treated with 50 U/ml

DNaseI (Roche) for 30 minutes. These DNaseI treated HIV-1

virions were standardized by p24 concentration and then used to

infect HeLa cells for different times. At each time points cells were

collected, lysed and total DNA was extracted using the QIAmp

Blood Mini Kit (Qiagen). As a control for plasmid contamination,

an equivalent amount of virus was either boiled for 10 minutes

before infecting cells or the reverse transcriptase inhibitor

efavirenz (100 nM) was added at the time of infection. Samples

were assayed by Real-Time PCR using Platinum qPCR Super-

Mix-UDG (Invitrogen) with primers, probes and PCR conditions

as described previously [33]. Duplicate samples of serial dilutions

of plasmid DNAs containing the target sequences were used to

generate a standard curve, which was used for quantification of

PCR products.

Figure 8. The helicase domain of Mov10 is not required for HIV-1 restriction. Virions were produced by cotransfection of 293T cells with
HIV-1 vector and either empty vector or Mov10, Mov10 N-terminus, Mov10 C-terminus or the putative helicase motif mutant expression plasmids. (A)
Schematic of wild-type and mutated human Mov10 constructs. (B) Cell lysates were probed with anti-HA, anti-Mov10, and anti-tubulin. Lanes: 1)
pcDNA3, 2) Mov10, 3) Mov10 Nterm, 4) Mov10 Cterm, and 5) Mov10-EQ. Arrows indicate molecular weight of native Mov10. (C) Infectivity of virions
produced was examined by FACS after infection of HeLa cells. The % infectivity represents the percentage of RFP-positive cells in the cell population.
Error bars represent one standard deviation.
doi:10.1371/journal.pone.0009081.g008
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Western Blot Analysis
Transfected cells were lysed and solubilized in RIPA buffer

(Sigma) (50 mM Tris-HCl, pH 8.0, with 150 mM sodium

chloride, 1.0% Igepal CA-630 [NP-40], 0.5% sodium deoxycho-

late, and 0.1% sodium dodecyl sulfate). The cell lysates were then

mixed with a 2X Laemmli sample loading buffer (BioRad)

(62.5 mM Tris-HCl, pH 6.8, 25% glycerol, 2% SDS, 0.01%

bromophenol blue and 5% 2-mercaptoethanol), boiled and then

samples were loaded and separated on 10.0% polyacrylamide gels

containing SDS. Following electrophoresis, proteins were trans-

ferred to a PVDF membrane by electroblotting and incubated for

1 hr at room temperature in blocking buffer (5% nonfat dry milk

in PBS). The blocked blot was exposed to the appropriate primary

antibody in blocking buffer with constant mixing. After extensive

washing, bound antibodies were detected by chemiluminescence

using horseradish peroxidase-conjugated, species-specific, second-

ary antibodies as described by the manufacturer (GE Healthcare).

The following antibodies were used for the western blot analysis:

anti-Mov10 (Proteintech Group, Inc.), anti-HA epitope (Sigma)

and anti-a-tubulin (Sigma), using the manufacturer’s recommend-

ed antibody concentrations.

Supporting Information

Figure S1 Mov10 decreases specific infectivity of HIV-1.

Supernatants of 293T cells that had been transfected with varying

amounts of Mov10-expressing plasmid were assayed for (A) HIV-1

CA (p24) levels and (B) infectivity after standardization by p24

content. The particular HIV-1 vector used in this experiment

expresses GFP and lacks any of the HIV accessory genes (Vif, Vpr,

Nef and Vpu). For simplicity, the amount of Mov10 plasmid that

was transfected is expressed as a ratio of HIV-1 plasmid to Mov10

plasmid and plotted logarithmically. In the experiment (see

‘‘Materials and Methods’’ for further details) HIV-1 plasmid

levels remained constant, while Mov10 plasmid was used at levels

of 1/6 to 1/1500 that of the HIV-1 plasmid. Error bars represent

one standard deviation.

Found at: doi:10.1371/journal.pone.0009081.s001 (0.33 MB TIF)

Figure S2 HIV-1 produced in cells stably expressing Mov10 is

less infectious. 293T cells were stably transfected with a vector

expressing Mov10 and selected with 0.5 mg/ml G418. When

these cells were subsequently transfected with an HIV-1 vector,

the virus produced from them was less infectious to Jurkat T cells

than virus produced in cells stably transfected with a control

(pcDNA3) vector. Error bars represent standard error of the mean.

Found at: doi:10.1371/journal.pone.0009081.s002 (0.24 MB TIF)
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