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Abstract

Background: Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR) signaling plays a
pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen
signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti
hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. b-TrCP is an E3 ligase
that targets various substrates essential for many aspects of tumorigenesis.

Methodology/Principal Findings: Here we show that b-TrCP depletion suppresses prostate cancer and identify a relevant
growth control mechanism. shRNA targeted against b-TrCP reduced prostate cancer cell growth and cooperated with
androgen ablation in vitro and in vivo. We found that b-TrCP inhibition leads to upregulation of the aryl hydrocarbon
receptor (AhR) mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-
Tetrachlorodibenzo-p-Dioxin (TCDD) did not alter prostate cancer cell growth. We detected high AhR expression and
activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is
also significantly higher in tumor cells compared to benign glandular epithelium.

Conclusions/Significance: Together these observations suggest that AhR activation may be a cancer counteracting
mechanism in the prostate. We maintain that combining b-TrCP inhibition with androgen ablation could benefit advanced
prostate cancer patients.
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Introduction

Prostate cancer is the sixth most common cancer in the world

and the third leading cause of cancer in men. In developed

countries, prostate cancer develops in one of every nine men older

than 65 years. This is a heterogeneous disease in terms of its

clinical course and outcome but androgen signaling seems to be a

common feature in its development and progression [1]. AR

signaling is known to regulate normal, benign and cancerous

prostate cells in various processes (e.g. differentiation and

proliferation). In addition, there are observations indicating that

AR expression is oncogenic in prostate epithelium and promotes

progression to androgen independence [2–8]. The initial treat-

ment of advanced stage and metastatic prostate cancer is

suppression of androgen production by specific drugs or surgical

castration. Later on, essentially all patients develop an androgen

independent stage which does not respond to anti hormonal

treatment. The latter phase is always lethal; thus, alternative

strategies targeting novel molecular mechanisms are required.

The ubiquitin–proteasome system is a crucial determinant of

virtually all biological processes in eukaryotes. In this pathway,

proteins are targeted for degradation by covalent ligation to

ubiquitin, a highly conserved small protein. Protein ubiquitination

involves the concerted action of the E1 ubiquitin-activating

enzyme, an E2 ubiquitin-conjugating enzyme and an E3

ubiquitin-protein ligase, the last of which delivers multiple

ubiquitin molecules to the target protein [9–11]. Inhibiting the

entire ubiquitin proteasome pathway has therapeutic value in

cancer (e.g. Bortezomib,[12]). However, since proteasome inhib-

itors have pleiotropic effects, inhibition of a single key E3 may

offer a more specific treatment option with fewer side effects.

Beta-transducin repeats-containing proteins (b-TrCP) serve as

the substrate recognition subunits for the SCFb-TrCP E3 ubiquitin

ligases. These ligases ubiquitinate phosphorylated substrates

specifically and play a pivotal role in the regulation of cell division

and various signal transduction pathways, which in turn, are

essential for many aspects of tumorigenesis [13]. There are two b-

TrCP genes in mammalian genomes encoding for the two highly

redundant proteins b-TrCP1 and b-TrCP2. In recent years,

diverse b-TrCP substrates involved in different normal and

malignant pathways were discovered [14–23]. Two well charac-

terized bona fide substrates are b-catenin and IkB. Degradation of

the latter frees NF-kB to enter the nucleus and induce

transcription [11,24–27]. On the other hand, b-catenin is
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phosphorylated, directly recognized by b-TrCP and degraded by

the proteasome[24]. Thus, b-TrCP has opposing effects on two

key oncogenic pathways. While the role of b-catenin in prostate

cancer is controversial [28,29], there is evidence suggesting that

NF-kB plays a pro-tumorigenic role in prostate cancer [30–32].

The opposed effect on these two oncogenic proteins exemplifies

the versatility of this particular E3 ligase. Furthermore, b-TrCP is

directly implicated in several cancer types [33–36], thus it is

plausible to further inquire its role in prostate cancer.

In this work, we show that b-TrCP inhibition inhibits prostate

cancer growth showing additive effect with androgen ablation, in

vitro and in vivo. This effect is largely mediated via activation of the

aryl hydrocarbon receptor (AhR) as knocking down this protein

abolishes the effect of b-TrCP inhibition.

Results

NF-kB Activation Correlates with Prostate Cancer
Patients’ Outcome
b-TrCP is an important E3 ligase known to regulate many

different substrates. NF-kB is a well characterized transcription

factor negatively regulated by IkB, thus indirectly positively

modulated by b-TrCP. The involvement of NF-kB in prostate

cancer is well investigated and previous studies showed its

tumorogenic role in the prostate. There is also recent indication

for NF-kB involvement in the progression of prostate cancer to

androgen independent stage [37]. In order to corroborate the

relevance of this factor to prostate cancer progression, we tested its

activation state in primary human prostate cancer samples using

immunohistochemical staining with antibodies against p65

(Figure 1A). 131 prostate cancer specimens, spotted on a single

tissue microarray slide from patients with different Gleason grades

were analyzed. 39% of the samples showed at least some p65

positive nuclei (Figure 1B). We also analyzed 14 prostate cancer

metastases, 64% of which were positive (Figure 1A, B). We set to

evaluate the correlation between prostate cancer Gleason score

and NF-kB activation. Indeed, we found an association between

the two (p = 0.014, Fisher’s exact test). It appeared that NF-kB

nuclear staining was stronger in patients with higher Gleason score

or in metastases raising the possibility that NF-kB activation could

be correlated with prognosis. To test this possibility, we

immunstained 80 primary tumors for p65, from patients that

underwent radical prostatectomy and for which we had clinical

follow-up. 77% of the patients whose primary tumor samples

negatively stained for nuclear p65, showed no recurrence up to 8

years post radical prostatectomy. In contrast, the disease recurred

in 65% of the NF-kB positive patients (Figure 1C). Another

important pro-oncogenic b-TrCP substrate is b-catenin. Since b-

TrCP inhibition would enhance b-catenin stability and promote

tumorigenesis, it was necessary to monitor also b-catening

correlation to prostate cancer patients’ outcome. Nuclear

localization of b-catenin activation did not correlate with disease

severity in the same cohort of patients (Figure S1). Together, these

results imply a clinical advantage for inhibiting b-TrCP in prostate

cancer. Yet, the multitude of b-TrCP substrates (37, with possibly

more to be identified) precludes a comprehensive analysis of all of

Figure 1. NF-kB activation correlates with prostate cancer patients’ outcome. Prostate cancer sections were immunostained using p65
antibodies. A. Representative photomicrographs of a primary tumor (left) and lymph node metastasis (right) from the same patient. B. Percent of
negative, positive and strongly positive cases spotted on a tissue microarray from the indicated Gleason scores (p = 0.0014, Fisher’s exact test). C.
primary prostate tumors (n = 131) were immunostained for p65 and assessed for NF-kB activity. Kaplan-Meier plot revealed a correlation between NF-
kB status and the risk for disease recurrence. Blue, strongly stained samples; Red, weakly stained samples; Green, negative stained samples (p = 0.02).
doi:10.1371/journal.pone.0009060.g001
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them in the same way, and necessitates a direct approach to study

the utility of b-TrCP inhibition in prostate cancer.

b-TrCP Inhibition Reduces Prostate Cancer Cell Growth
We next examined the effect of b-TrCP inhibition on prostate

cancer cell growth. To this end, we constructed a doxycycline

inducible shRNA lentiviral vector targeting both b-TrCP1 and b-

TrCP2 with which we transduced the two androgen-sensitive

human prostate cancer cell lines, LNCaP and LAPC4. Doxycy-

cline treatment of the trasnduced LNCaP cells resulted in efficient

knock down of both b-TrCP genes (85% and 75% for b-TrCP1

and b-TrCP2, respectively) as determined using quantitative real

time PCR (qRT PCR - Figure 2A). This was accompanied by

IkBa stabilization both before and following TNF stimulation,

demonstrating efficient induction of protein down regulation

(Figure 2B). To evaluate the consequence of b-TrCP knock down

on prostate cancer cells, we monitored doxycycline-treated and

untreated LNCaP cells for nine days and measured cell growth in

vitro. Figure 2C shows diminished cell growth after either b-TrCP

inhibition or androgen ablation treatment (lower left and upper

right panels, respectively). Moreover, combining b-TrCP inhibi-

tion with androgen ablation shows an additive effect (Figure 2C

lower right panel and Figure 2D). We next quantified cell growth

using the XTT method and confirmed our morphologic analysis

(Figure 2D). Similar results were obtained with LAPC4 cells

(Figure S2).

To rule out shRNA off target effects, we used a previously

described b-TrCP dominant negative construct lacking the F-box

domain [33]. This variant stabilizes b-TrCP substrates as it binds

the phosphorylated targets, but fails to recruit the additional

components of the SCF complex which are critical for E3 ligase

catalytic activity. The b-TrCP inhibition effects using the

dominant negative form, were essentially similar to the shRNA

results (Figure S3A and B).

b-TrCP Inhibition Cooperates with Androgen Ablation In
Vivo

To further analyze the effect of b-TrCP inhibition on human

prostate cancer tumor growth, we used a xenograft model. We

injected LNCaP cells carrying an inducible b-TrCP shRNA

construct into the subcutis of 39 immunosuppressed Balb/c

Rag12/2 male mice. 25 of the mice (64%) developed visible and

measurable tumors 30 days post injection. Since initial tumor

development was somewhat heterogeneous in size and kinetics,

we randomly divided these 25 mice into four treatment groups:

1. Intact untreated mice (NT, n = 4; mean tumor volume

123.1670.7); 2. Mice given tetracycline in the drinking water

resulting in b-TrCP inhibition (Tet, n = 5; mean tumor volume

80.3698.2); 3. Castrated mice resulting in androgen ablation

(Cast, n = 7; mean tumor volume 121.6695.0); 4. Castration

plus tetracycline (Cast + Tet, n = 8; mean tumor volume

180.36143.9). There was no significant difference in average

tumor size at initiation of treatment between the four groups.

We monitored tumor growth once a week, and sacrificed the

mice 30 days post the initial treatment. RNA extracted from

tumors from the Tet treated mice showed b-TrCP knock down

Figure 2. b-TrCP inhibition reduces prostate cancer cells growth. LNCaP cells were infected with a lentiviral vector bearing an inducible
doxycycline dependent b-TrCP shRNA. A. Cells were treated for 72 hours with 1 mg/ml doxycycline and RNA levels of b-TrCP1 and b-TrCP2 were
measured using qRT PCR. B. Western blot analysis of protein extracts from cells treated with TNF, doxycycline or MG-132 were immunoblotted with
either IkB or tubulin. C. Representative photomicrograph of cells treated as indicated and stained with hematoxylin and eosin. D. XTT assay used to
quantify cell growth at different time points. DOX, doxycycline; NT, no treatment; FCS, conditioned medium containing fetal calf serum; CSS,
conditioned medium containing androgen depleted serum (charcoal stripped serum). Error bars, SD. * Significantly different from non treated cells
and from each other, p-value,0.01, t-test.
doi:10.1371/journal.pone.0009060.g002
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ranging from 50% to 80% (Figure 3A). Similar to our in vitro

findings, inhibiting b-TrCP reduced tumor growth with or

without androgen ablation (Figure 3B). Analysis of tumor

proliferation using BrdU immunostaining revealed that the mice

treated with both androgen ablation and b-TrCP inhibition

showed the lowest proliferation rates (Figure 3C and Figure

S4). Tumor growth suppression could not be explained via

apoptosis, since anti cleaved caspase-3 immunostaining did not

reveal any differences between treatment groups (Figure 3D).

Similar results were obtained with AT2.1 rat prostate cancer

cells stably transfected with an inducible dominant negative b-

TrCP transgene (Figure S2B). In conclusion, our results indicate

that b-TrCP inhibition suppresses prostate cancer growth both

in vitro and in vivo and shows an additive effect with androgen

ablation.

Aryl Hydrocarbon Receptor (AhR) Is Upregulated upon
b-TrCP Inhibition and Androgen Ablation

To elucidate the molecular pathways that are responsible for the

growth inhibitory effect of b-TrCP depletion in combination with

androgen ablation we conducted a wide range microarray

analysis. LAPC4 cells infected with the shb-TrCP lentiviral vector,

were either left untreated or treated for 72 hours with doxycycline,

charcoal stripped serum or both. cDNA samples were subjected to

microarray analysis using U133 Affimetrix chips probing ,30,000

probe sets. We then sought to identify genes which are

cooperatively affected by both androgen ablation and b-TrCP

inhibition. Among the upregulated genes, were potential anti

inflammatory genes (e.g. ANXA1) and among the prominently

downregulated were prostate specific genes (e.g. KLK2). Yet, the

most dramatic increase was the expression of the aryl hydrocarbon

(dioxin) receptor (AhR). This gene was upregulated upon either

androgen ablation or b-TrCP inhibition and was the most highly

changed gene due to the combined treatment (Figure 4). We

could attribute AhR level upregulation to b-TrCP depletion, since

doxycycline alone did not alter the receptor’s mRNA (Figure S5).

The AhR is a ligand activated transcription factor involved in

organogenesis, in detoxification of endo- and xenobiotics and in

mediating diverse organ-specific toxic responses of dioxins. This

receptor belongs to the basic helix- loop-helix (bHLH)/PAS

(Period -Aryl hydrocarbon receptor nuclear translocator-Single

minded) family of heterodimeric transcriptional regulators.

bHLH/PAS proteins are involved in the control of diverse

physiological processes such as circadian rhythms, organ develop-

ment, neurogenesis, metabolism and the stress response to hypoxia

[38–40]. Recent studies revealed a connection between the AhR

pathway and prostate cancer both in vitro and in vivo, showing that

the AhR interacts and inhibits the AR. Moreover, the AhR acts as

an E3 ligase of the AR [41] and AhR null TRAMP mice show

increased prostate tumorigenesis [42]. We used qRT PCR to

validate the cDNA array analysis. We found that while each

treatment alone increased AhR RNA levels more than 2 folds, the

combined treatment resulted in more than 4 fold upregulation in

both LAPC4 (Figure 4B) and LNCaP cells (Figure S6). To test the

functional activity of the AhR pathway we measured the mRNA

levels of its canonical target cytochrome p450 1A1 (CYP1A1). Our

Figure 3. b-TrCP inhibition cooperates with androgen ablation treatment in vivo. LNCaP cells bearing a tetracycline induced b-TrCP shRNA
construct were injected subcutaneously to immunosuppressed Rag12/2 mice. Mice (n$4 in each group) were either untreated (NT), treated with
tetracycline in their drinking water (Tet), physically castrated (Cast) or both (Cast+Tet) for 30 days. Tumor volumes were measured weekly. (A). qRT
PCR for both b-TrCP isoforms was performed on RNA extracted from the tumors harvested at day 30. (B) Tumor growth kinetics. Tissue sections were
stained for BrdU (C) or activated caspase 3 (D) and the proliferation and apoptosis scores, respectively, were determined for each tumor. Shown are
mean 6 standard deviation (A) or 6S.E.M (B, C and D).* p-value,0.05, ** p-value = 0.0002, t-test; p-value in C refers to t-test.
doi:10.1371/journal.pone.0009060.g003
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analyses show that CYP1A1 levels were increased in correlation

with AhR levels in the 4 treatment groups (Figure 4B). It should be

noted that this upregulation occurred without addition of an

exogenous AhR ligand. Addition of the potent AhR ligand TCDD

further augmented CYP1A1 upregulation (Figure 5C and data

not shown).

Figure 4. Aryl hydrocarbon receptor (AhR) expression is increased after androgen ablation and b-TrCP treatments. A. LAPC4 cells
infected with inducible b-TrCP shRNA were treated for 72 hours with the indicated treatment, subjected to RNA extraction and cDNA microarray
analysis (Affymetrix). After data normalization, gene expression profiles were compared between treatment and the untreated control samples. A.
Heat map dendrogram showing the ten most highly up (red) and down (green) regulated genes due to the combined treatment. Fold change refers
to the combined treatment probes values relative to control. Expression of b-TrCP isoforms is presented below. B. LAPC4 cells infected with the same
lentiviral vector and treated as indicated were subjected to RNA extraction and qRT PCR analysis with the listed primers. CSS, charcoal stripped serum;
DOX, doxycycline; Error bars, SD.
doi:10.1371/journal.pone.0009060.g004

Figure 5. AhR mediates the b-TrCP inhibition phenotype. LNCaP cells infected with an inducible lentiviral vector for shAhR alone (A) or
together with shb-TrCP (B) were treated for 72 hours with the indicated treatments and cell growth was measured by the XTT assay. C. qRT PCR
confirmed b-TrCP and AhR efficient knock down. D. Western blots showing b-catenin stabilization after b-TrCP inhibition and confirming AhR protein
level elevation or knock down due to relevant shRNAs. DOX, doxycycline; FCS, fetal calf serum; CSS, charcoal stripped serum. Error bars, SD.
doi:10.1371/journal.pone.0009060.g005
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The Growth Suppression Effect of b-TrCP Inhibition Is
Mediated via Upregulation of the Aryl Hydrocarbon
Receptor

To investigate the significance of the AhR pathway activation

following b-TrCP depletion, we first infected LNCaP cells with

inducible AhR shRNA. While doxycycline treatment resulted in

reduced AhR mRNA levels we could not detect any effect on cell

growth (Figure 5A). Next we co-infected LNCaP cells bearing

inducible b-TrCP shRNA with the inducible AhR shRNA vector.

Addition of doxycycline to the medium of double knockdown cells

resulted in reduced b-TrCP mRNA levels, similar to the single

knockdown cells; yet as expected, in these cells AhR levels were

decreased rather than increased both at the mRNA and protein

levels (Figure 5C, D). Thus, the double knockdown cells allow us

to test whether the growth inhibitory effect of b-TrCP modulation

is mediated via AhR upregulation. Indeed, in the double

knockdown LNCaP cells, b-TrCP depletion failed to reduce cell

growth either with or without androgen ablation (Figure 5B).

Similar results were obtained with a different shRNA targeted

against the AhR (data not shown). Interestingly, addition of the

potent exogenous ligand TCDD did not reduce cell growth alone;

nor had it an effect with any of the different treatments (Figure S7).

This suggests that this AhR effect is ligand independent. Western

blot analysis confirmed b-catenin stabilization and the AhR

mRNA upregulation upon b-TrCP inhibition (Figure 5C). Thus,

the double knockdown results indicate that most of the effect of b-

TrCP knockdown is mediated by upregulation of the AhR.

AhR Expression in Prostate Cancer Patients
Observing AhR upregulation upon b-TrCP inhibition in

prostate cancer cells prompted us to inspect AhR status in various

stages of prostate cancer. To address this aim, we collected 39

specimens of primary prostate cancer tumors from the Hadassah

Medical Center. Out of this cohort, 17 patients suffered from

disease recurrence. We performed immunohitochemical anti AhR

staining and monitored cytoplasmatic and nuclear AhR expres-

sion. First, we detected high AhR in basal cells located in the

benign gland perimeter (Figure 6A). Interestingly, proliferative

inflammatory atrophy (PIA), considered as a precursor lesion to

prostate cancer showed very strong cytoplasmic and nuclear

staining (Figure 6B). We used a subjective score from 0 to 3 to

quantitate staining intensity in normal and malignant epithelial

cells in each specimen. Our analysis demonstrates upregulation of

AhR in both the cytoplasmic and nuclear locations in the

malignant epithelium (Figure 6C, D, p,0.001, Mann-Whitney

test). However, we did not observe a correlation between AhR

expression in the tumor cells and disease recurrence (data not

shown).

Discussion

Prostate cancer is a heterogeneous disease comprising many

genetic and phenotypic features. One important hallmark of

prostate cancer is progression to an androgen independent stage

(AI) after hormonal treatment. The causes for this transition are

not fully understood and adjuvant treatments fortifying hormonal

manipulation are required. One factor that is often implicated in

tumor progression in many types of cancer is NF-kB. Here we

confirm that NF-kB is often activated in advanced prostate cancer

patients (Figure 1). Moreover, NF-kB activation correlates with

prostate cancer recurrence (Figure 1C). One of the major

regulators of NF-kB is the E3 ubiquitin ligase SCFb-TrCP, which

targets IkB as well as many other substrates for ubiquitination and

Figure 6. AhR is upregulated in malignant prostate cells. Prostate sections were immunostained with AhR antibody. Photomicrographs show
strong AhR expression in basal cells (arrows in A) and proliferative inflammatory atrophy (B). C. Higher AhR expression is noted in malignant
glands (T) compared with normal glands (N). D. Normal and malignant glands were scored using a 0–3 scale. Mean values 6S.E.M. are shown
(p-value,0.001, Mann-Whitney test).
doi:10.1371/journal.pone.0009060.g006
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degradation, [27]. b-TrCP is thought to play a pro-tumorigenic

role in certain types of cancers [43]. Based on observed

upregulation of NF-kB, it was important to follow another

common pro-oncogenic b-TrCP substrate, b-catenin, which was

also implicated in prostate cancer [28,29,44]. However, we could

not detect a correlation between b-catenin activation and prostate

cancer recurrence (Figure S1), suggesting that only some b-TrCP

targets are of relevance to the disease progression. To evaluate the

full scope of b-TrCP effects, we set out to inhibit b-TrCP in

prostate cancer cells and to monitor its effect on prostate cancer

cell growth. Our in vitro and in vivo studies revealed that upon b-

TrCP inhibition prostate cancer cell growth is reduced. We could

also detect an additive effect when combining b-TrCP inhibition

with androgen ablation (Figure 2 and 3). To elucidate the

mechanisms of growth suppression by b-TrCP inhibition, we

carried a cDNA array analysis and observed an additive

upregulation of the AhR (Figure 4). AhR was previously

demonstrated to act as an E3 ligase of the AR [41], providing

us a possible link to AR signaling. Moreover, we noted that AhR

expression is higher upon combining androgen ablation and b-

TrCP inhibition. We therefore hypothesized that the upregulation

of the AhR could be mediating the growth inhibitory effect of b-

TrCP knockdown in prostate cancer cells. This notion was

supported by previous reports demonstrating an inhibitory role for

the AhR pathway in prostate cancer. Morrow et al showed an AhR

ligand dependent growth inhibition in LNCaP cells. Likewise,

other studies have also implicated the androgen receptor in AhR

growth inhibition [45,46]. In our study, knocking down the AhR

per se in LNCaP cells did not alter prostate cancer cell growth

(Figure 5A), suggesting that the basal levels of AhR do not exert

an inhibitory effect unless stimulated by ligand. On the other hand

boosting AhR expression via b-TrCP depletion was associated

with considerable ligand-independent growth suppression. AhR

depletion reversed the growth suppression effect of b-TrCP

knockdown, even under androgen ablation, proving that AhR

upregulation, which we also noted in other stress conditions (e.g.

atrophy, inflammation and androgen ablation) accounts for the b-

TrCP inhibitory effect (Figure 5). Interestingly, ligand adminis-

tration did not affect cell growth even though it did upregulate

expression of the classic AhR pathway target CYP1A1. These

results implicate a ligand and CYP1A1 independent AhR pathway

in prostate cancer cells.

Chesire et al identified the AhR as a putative b-catenin target in

LNCaP cells [47]. As we show that b-TrCP depletion stabilizes b-

catenin along with the upregulation of AhR (Figure 5D), it is

possible that the cause of AhR elevation following b-TrCP

depletion is b-catenin stabilization.

Our studies indicate a novel ligand independent strategy of

boosting AhR expression as means of suppressing prostate cancer

growth. This strategy may also be echoed in the natural history of

prostate cancer. We found that AhR is normally expressed at low

levels in the prostatic epithelium basal cells (cytoplasmic and

nuclear staining, Figure 6A) and is substantially upregulated in

areas of proliferative inflammatory atrophy (PIA), considered a

precursor lesion to cancer (Figure 6B). AhR activation in basal

and atrophic cells may therefore be viewed as an anticancer

mechanism. It is possible that microenvironmental inflammatory

signals are responsible for such stress induced signaling. A

mutation in one allele of b-TrCP1 was identified in one human

prostate tumor in a systematic screen of Wnt pathway mutations

[48]. However this mutation is unlikely to have an effect on the

NF-kB pathway as the other allele and possibly both b-TrCP2

alleles were wild type. Similarly, to our knowledge, activating

mutations in the NF-kB pathway were so far not reported in

human prostate tumors. Nevertheless, NF-kB known to mediate

malignant transformation is constitutively upregulated in this

tumor type via multiple mechanisms. We conclude that different

stress signals, including inflammation, atrophy and androgen

ablation upregulate AhR expression in both normal and malignant

prostate cells and conduct a protective mechanism. Inhibiting b-

TrCP at advanced disease stages may be relevant in developing

strategies for enhancing the efficacy of prostate cancer treatments.

Materials and Methods

Ethics Statement
Experiments with human tissues were approved by Institutional

Review Board, Hadassah-Hebrew University Medical Center.

Due to the retrospective nature of this study and according to the

declaration of Helsinki, participants were not obtained constantly

informed. In addition, our IRB waived the need for written

informed consent. All mice experiments were approved by the

IACUC.

Dominant Negative b-TrCP (WD)
Dominant negative b-TrCP (WD) was cloned using E3RS excluded

from pCDNA3-EE-hE3RS plasmids with the primers 59 to 39

forward: GCGGCCGCTATGGACCC-GGCCGAG (with NotI

site in its 59); reverse: TTATCTGGAGATGTAGGTGT; the

product was cloned into TA vector (Invitrogen). The last vector

was cut with AvrII/ASP718, filled in and blunt ligated. The

relevant fragment was cut and inserted into pFLAG-CMVTM-2

expression vector (Sigma-Aldrich) with NotI/BamHI. This proce-

dure produced a WD construct lacking part of the F-box and

conjugated to FLAG. The WD-FLAG was inserted under

bidirectional teracycline promoter expressing GFP. The resulting

plasmid was transfected into AT2.1 Rat prostate cancer cells

expressing the tetracycline trans-activator, using FUGENE

reagent (Roche Applied Science). The transfected cells were

selected using hygromycin and neomycin (Sigma-Aldrich) con-

taining media to produce a stable clone which expresses a

dominant negative b-TrCP upon addition of tetracycline or its

derivate doxycycline.

Inducible b-TrCP and AhR shRNA
The human shRNA 59- GUGGAAUUUGUGGAACAUC 39

targeted against b-TrCP1 and b-TrCP2 was constructed into

pTER plasmid and inserted into a modified pRRL.sin.PPT.

tetO7.MCS.PRE lentiviral vector. The vector consists of an HI

promoter, tet operator, the shRNA coding sequence and eF1a
promoter driving the tet repressor fused to eGFP. Virus

production and infection were carried out as previously described

[49]. To target the AhR we used the following shRNA sequences:

1. 59 CAGCUGAAUUAAAUAACAU 39; 2. 59 CAGACAGUA-

GUCUGUUAUA 39. Both of which proved to be efficient in

knocking down the receptor (the presented data represent those

obtain with the latter sequence). shRNA expression is induced only

after Tetracycline or Doxycycline (Sigma-Aldrich) administration.

The vector alone was used as control. Double knocked down

LNCaP cells were designed by co-infecting shb-TrCP cells with

lentiviral vectors carrying either of the above described sequence.

Cell Culture
DMEM, RPMI 1640, Trypsin EDTA, Penicillin-Streptomycin

solution, L-glutamine, fetal calf serum (FCS), Charcoal Stripped

Serum (CSS) were purchased from Biological Industries, Kibbutz

Beit Haemek, Israel. LAPC4 cells were kindly provided by Prof.

Zelig Eschar (The Weizmann Institute of Science, Rehovot,

b-TrCP-AhR in Prostate Cancer
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Israel); AT2.1, LNCaP and 293T were furnished to us by Dr.

Rachel Bar-Shavit (Department of Oncology, Hadassah Medical

Center, Jerusalem, Israel). All cell lines were incubated at 37uC
5% CO2 in appropriate medium containing 10% FCS or CSS as

indicated.100 pM Methyltrienolone (R1881, Perkin-Elmer, New

England Nuclear) was added to LAPC4 full media.

Cell Proliferation Assay
MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium

bromide) and XTT (2,3-Bis(2-methoxy-4-nitro-5- sulfophenyl)-

2H-tetrazolium-5-carboxanilide) was used as the protocol indicates

(Biological Industries, Kibbutz Beit Haemek, Israel). All experi-

ments were carried out in 96 well plates with eight repeats of at

least 3 independent infections.

Western Blotting
Whole-cell lysates were prepared from transfected or infected

cells by extraction in lysis buffer containing 50 mM Tris (pH 8),

150 mM NaCl, 1% NP-40, 0.1% SDS, 10 mM NaF, 1 mM

Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 1 mg/ml leupep-

tin, 1 mg/ml aprotinin and 1 mM dithiothreitol. Proteins were

resolved by 10% SDS-PAGE, transferred onto nitrocellulose

membranes, probed with appropriate antibodies, incubated with

Peroxidase-conjugated Goat anti mouse or Rabbit IgG (Jackson

Laboratories) and developed using the ECL kit (Pierce). Primary

antibodies used were: anti-Flag (Sigma); anti-IkB, anti-phpspho-

IkB (Cell Signaling); Aryl Hydrocarbon Receptor, CYP1A1

(Santa-Cruz); phospho-b-catenin (BD Biosciences).

Xenografts
AT2.1 or LNCaP cells were harvested washed and reconstituted

in PBS. 106 51B cells per 200 ml volume were injected

subcutaneously to 6–7 weeks old atymic (Nude) male mice. 106

LNCaP cells were injected to 6–7 weeks old rag12/2 male mice

together with Matrigel (BD bioscience). Tumors were measured in

two dimensions with caliper, and tumor volume (mm3) was

calculated with the formula V = (lengthXwidth2)/2. Half of the

mice received Doxycycline (0.2 mg/ml, AT2.1) or tetracycline

(1.5 mg/ml, LNCaP) supplemented with 5% sucrose in their

drinking water. Half of the mice were surgically castrated: mice

were anesthetized using Ketamine/2% Xylazine at 5.7:1 ratio

(0.1 ml per 25–30 gram mouse). Surgical castration was performed

via a midline scrotal incision allowing bilateral access to the

hemiscrotal contents. After exposing each testicle, a 3-0 Vicryl

suture was used to ligate the spermatic cord and then remove the

testicle. Mice were treated with Carprofen (Rimadyl) as analgesics

after surgery. Two hours before sacrifice, mice were injected with

BrdU intraperitoneally 100 ml per 10 grams of body weight

(RPN201, Amersham Pharmacia Biotech Inc). For AT2.1

xenografts, NUDE mice were treated pre-injection and tumors

were weighted at the end of the experiment. LNCaP xenografted

mice were treated 30 days post injection when measurable tumors

were established. Tumor relative growth was calculated individ-

ually for each mouse, comparing each week’s measurement to the

treatments’ day 0 (30 days post injection). All mice experiments

were approved by the IACUC.

Immunohistochimestry
mouse tumor specimens were fixed in 4% neutral-buffered

formalin and embedded in paraffin. Patients paraffin embedded

samples were collected from the archives of the Department of

Pathology at the Hadassah-Hebrew University Medical Center.

Experiments with human tissues were approved by the institu-

tional review board. 5 mM sections were dewaxed and hydrated

through graded ethanol dilutions, then cooked in appropriate

buffer (pH 7.4) in a pressure cooker at 115uC for 3 minutes.

Endogenous peroxidase activity was blocked with 3% hydrogen

peroxide followed by washing. The sections were then incubated

with the indicated antibodies: anti-p65 (Neomarkers; 1:100), anti-

b-catenin (Santa Cruz; 1:300) and anti-AhR (Santa Cruz; 1:200).

All sections were counterstained with hematoxylin.

RNA, cDNA Micrroarray and Real-Time PCR
Total RNA was extracted from LAPC4 or LNCaP cells infected

with b-TrCP shRNA lentiviral vector with TRI Reagent (Sigma).

For cDNA microarray RNA was extracted from LAPC4 infected

cells using TRIzolH (Invitrogen). cRNA preparation and hybrid-

ization was performed using standard manufacture protocol;

Biotin-labeled target synthesis reactions were performed using

standard protocols supplied by the manufacturer (Affymetrix,

Santa Clara CA, USA). From each RNA sample, 5 mg were

converted into double-stranded cDNA by reverse transcription

with SuperScriptTM II Reverse Transcriptase (Life Technologies,

Helgerman CT, USA), using T7-oligo-dT as a primer. Expression

value (signal) was calculated using Affymetrix Genechip software

MicroArray Suite 5.0. Only probe sets that had at least an

intensity of 20 and a present call at one of the microarrays were

selected. Next quantile normalization was applied to the log2

transformed expression values (Bolstad BM Bioinformatics 19:

185–193). For b-TrCP knockdown determination and validation

studies 2 mg of RNA were used as template for synthesis of cDNA

using SuperScriptTM II Reverse Transcriptase. The cDNA was

subsequently used as Real Time PCR template. All Real Time

PCR reactions were carried out using Absolute Blue QPCR SYBR

Green Low ROX Mix (ABgene) with the following primers (59 to

39): b-TrCP1 Forward: ATCGGATTCCACGGTCAGAG, Re-

verse: AATCAACGTGTTTAGCATT-TCACCT; b-TrCP2 For-

ward: CCATCAAAGTCTGGAGCACGA, Reverse: CGCT-

TGTGCCCATTGAGAGTA; AhR Forward: ACATCACC-

TACGCCAGTCG, Reverse: CTCTATGCCGCTTGGAAG-

GAT; CYP1A1 forward: TGAATGCCTTCAAGGAC-CTG,

Reverse: TCAGGCTGTCTGTGATGTCC.

All microarray data is MIAME compliant. The raw data has

been deposited in GEO (accession number GSE19141).

Supporting Information

Figure S1 b-catenin activation does not correlate with prostate

cancer patients’ outcome. Primary prostate cancer tumors were

immunostained using b-catenin antibodies. A. Representative

photomicrographs of samples from negative (left) and positive

(right) b-catenin stained tumors. B. Kaplan Meier curves plotting

b-catenin positive (blue) vs. negative (green) patients’ recurrence

free interval. Scale bars in A, 50 mM.

Found at: doi:10.1371/journal.pone.0009060.s001 (1.02 MB TIF)

Figure S2 b-TrCP shRNA cooperates with androgen ablation to

reduce LAPC4 cell growth. LAPC4 cell infected with the mentioned

inducible lentiviral vector containing b-TrCP shRNA. A. qRT-

PCR demonstrating efficient b-TrCP1 and b-TrCP2 knockdown.

B. XTT assay was used to quantify cells proliferation rates (means 6

S.E.M.). Error bars in A, SD. NT, no treatment; DOX,

doxycycline; CSS, charcoal stripped serum. * All treatments were

statistically different from control (p-value,0.05, t-test).

Found at: doi:10.1371/journal.pone.0009060.s002 (0.19 MB TIF)

Figure S3 Dominant negative b-TrCP expression inhibits

prostate cancer cell growth in vitro and in vivo. A. AT2.1 cells
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stably transfected with an inducible dominant negative b-TrCP

were treated as indicated for 72 hours and subjected to MTT cell

proliferation assay. B. LNCaP cells infected with lentiviral vector

expressing eGFP (GFP) or dominant negative b-TrCP (DF-box)

and assayed using the XTT reagent. C. Athymic 6–8 weeks male

NUDE mice were divided into the 4 indicated groups (n$4) and

subcutaneously grafted with AT2.1 cells bearing the doxycycline

dependent dominant negative b-TrCP construct. Tumor volumes

were measured two weeks post injection. Shown are means 6

S.E.M for A and C and means 6 SD for B. * Significantly

different from control group (p,0.05, t-test); ** Significantly

different from all treatment groups (p,0.01, t-test). NT, no

treatment; DOX, doxycycline; CSS, charcoal stripped serum;

Cast, castrated mice.

Found at: doi:10.1371/journal.pone.0009060.s003 (0.20 MB TIF)

Figure S4 b-TrCP inhibition cooperates with androgen ablation

treatment to reduce prostate cancer cells proliferation in vivo.

LNCaP xenografts from treated Rag12/2 mice were immuno-

stained with anti BrdU antibodies. Representative photomicro-

graphs for each of the four treatment groups are shown. NT, no

treatment; cast, castrated mice; Tet, tetracycline.

Found at: doi:10.1371/journal.pone.0009060.s004 (2.87 MB TIF)

Figure S5 Doxycycline does not upregulate AhR. LNCaP cells

infected with a GFP expressing lentiviral vector were subjected to

qRT PCR analysis with the indicated primers. Means 6 S.E.M of

the relative genes expressions are shown. NT, no treatment; DOX,

doxycycline.

Found at: doi:10.1371/journal.pone.0009060.s005 (0.12 MB TIF)

Figure S6 b-TrCP inhibition upregulates the AhR in LNCaP

cells. LNCaP cells infected with an inducible shb-TrCP lentiviral

vector and treated as indicated were subjected to RNA extraction

and qRT PCR analysis with the listed primers. CSS, charcoal

stripped serum; DOX, doxycycline; Error bars, SD.

Found at: doi:10.1371/journal.pone.0009060.s006 (0.33 MB TIF)

Figure S7 TCDD does not alter LNCaP cell growth in vitro.

LNCaP cells were infected with a lentiviral vector harboring an

inducible doxycycline dependent b-TrCP shRNA. Cells were

treated with 1 mg/ml doxycycline, 10 nM TCDD or both and

XTT assay was used to quantify cell growth at different time

points. Shown are means 6 SEM. NT, no treatment; DOX,

doxycycline.

Found at: doi:10.1371/journal.pone.0009060.s007 (0.07 MB TIF)
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