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Abstract

We demonstrate that tissue plasminogen activator (tPA) and its inhibitors contribute to neurite outgrowth in the
central nervous system (CNS) after treatment of stroke with multipotent mesenchymal stromal cells (MSCs). In vivo,
administration of MSCs to mice subjected to middle cerebral artery occlusion (MCAo) significantly increased activation
of tPA and downregulated PAI-1 levels in the ischemic boundary zone (IBZ) compared with control PBS treated mice,
concurrently with increases of myelinated axons and synaptophysin. In vitro, MSCs significantly increased tPA levels
and concomitantly reduced plasminogen activator inhibitor 1 (PAI-1) expression in astrocytes under normal and
oxygen and glucose deprivation (OGD) conditions. ELISA analysis of conditioned medium revealed that MSCs
stimulated astrocytes to secrete tPA. When primary cortical neurons were cultured in the conditioned medium from
MSC co-cultured astrocytes, these neurons exhibited a significant increase in neurite outgrowth compared to
conditioned medium from astrocytes alone. Blockage of tPA with a neutralizing antibody or knock-down of tPA with
siRNA significantly attenuated the effect of the conditioned medium on neurite outgrowth. Addition of recombinant
human tPA into cortical neuronal cultures also substantially enhanced neurite outgrowth. Collectively, these in vivo
and in vitro data suggest that the MSC mediated increased activation of tPA in astrocytes promotes neurite outgrowth
after stroke.
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Introduction

Cultured medium from multipotent mesenchymal stromal cells

(MSCs) increases neurite outgrowth in cultured neurons [1], and

MSC treatment of stroke enhances functional recovery and

increases neurite outgrowth in rodents [2,3]. MSCs secrete and

stimulate parenchymal cell production of bioreactive factors in

brain after stroke [4–7]. We therefore sought to identify the

key restorative factors that promote MSC stimulated neurite

outgrowth.

The plasminogen activator (PA)/plasmin system is a major

proteolytic system in the adult central nervous system (CNS)

[8–11]. With specific inhibitors, i.e., plasminogen activator

inhibitor (PAI)-1 (encoded by serpine 1 gene, secreted by

neurons and active astrocytes) and neuroserpin (encoded by

serpini 1 gene, secreted by neurons) [12–14], the activity of the

PA/plasmin system is in equilibrium in the mammalian brain.

The PA/plasmin system and its inhibitors participate in a

number of physiological and pathological events in the CNS

[15–17], and facilitate neurite outgrowth and sustain synaptic

plasticity via interaction with extracellular matrix proteoglycans

[18–20].

In brain, tissue plasminogen activator (tPA) expression in

astrocytes is the primary source of plasminogen activator and PAI-

1 is the dominant inhibitor of tPA [21]. Gene array analysis of

primary astrocyte cultures derived from wild-type (WT) and glial

fibrillary acidic protein (GFAP)/vimentin (Vim) double knock-out

mice reveal that only the PAI-1 gene, out of 1200 genes measured

was downregulated by threefold or higher in the knock-out

animals [22]. MSCs modify ischemia-induced astrocytic activation

and reduce GFAP expression in astrocytes in vitro [23] and

significantly reduce the thickness of the scar wall in vivo [3,24].

Therefore, we hypothesize that MSCs decrease PAI-1 expression

and stimulate tPA after ischemia and thereby promote neurite

remodeling.

In this study, we measured tPA/PAI-1 expression and tPA

activity in astrocytes cultured under normal and oxygen and

glucose deprivation (OGD) conditions and co-cultured with or

without MSCs as an in vitro ischemia model. To test the effects of

tPA/PAI-1 in astrocytes on neurite outgrowth, conditioned media

from cultured astrocytes were added to primary cultured cortical

neurons. In addition, mice subjected to middle cerebral artery

occlusion (MCAo) were employed to test for tPA activity and

neurite outgrowth in vivo.
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Results

MSC Co-Culture Alters tPA and PAI-1 Expression in
Normal and OGD Astrocytes

qRT-PCR was employed to measure tPA and PAI-1 mRNA in

cultured astrocytes responding to OGD and MSC co-culture.

Fig. 1a, b shows that normal cultured astrocytes express tPA and

PAI-1 mRNA. tPA and PAI-1 mRNA levels were significantly

increased in astrocytes subjected to OGD compared to normal

astrocytes, respectively. MSC co-culture significantly increased the

tPA mRNA levels in both normal and OGD astrocytes, whereas

MSCs significantly decreased the PAI-1 mRNA level in OGD

astrocytes (1b) compared to normal and OGD astrocytes without

MSC co-culture, respectively.

Western blot was employed to measure the tPA and PAI-1

protein levels in cultured astrocytes in response to OGD and MSC

co-culture (Fig. 1c, d). OGD treatment significantly increased tPA

and slightly increased PAI-1 protein levels in astrocytes. MSC co-

culture significantly increased tPA and decreased the PAI-1

protein levels in normal and OGD astrocytes compared to normal

and OGD astrocytes without MSC co-culture, respectively (1d).

MSC Co-Culture Alters tPA Level and Activity in
Conditioned Medium

When tPA is bound with PAI-1 or its other inhibitors, tPA is

inactive [25]; conversely, tPA is active when unbound. Active

mouse tPA binds to the biotinylated human PAI-1 coated on a

microtiter, and an ELISA kit can be used to measure the active

tPA in conditioned media. The total tPA protein and active tPA in

various conditioned media were measured with ELISA kits

(Table 1). Normal cultured astrocytes secreted tPA at a

concentration of 1.2760.02 ng/mL, and normal astrocytes co-

cultured with MSCs significantly (p,0.05) increased the tPA

concentration to 1.3260.01 ng/mL. In OGD astrocytes, MSC co-

culture increased the tPA concentration to 2.2460.08 ng/mL

compared to OGD astrocytes without MSC co-culture

(2.1460.14 ng/mL). tPA concentrations were significantly in-

creased in OGD astrocytes with or without MSC co-culture

compared with normal cultured astrocytes (p,0.01), respectively.

The active tPA concentration in normal cultured astrocyte

medium was 0.3160.01 ng/mL, and MSCs significantly increased

the active tPA concentration in normal astrocytes to 0.496

0.02 ng/mL. MSC co-culture significantly increased the active

tPA concentration to 0.3660.02 ng/mL in OGD astrocytes

compared with OGD astrocytes without MSC co-culture (0.246

0.03 ng/mL).

Only active tPA can perform proteolytic function; we there-

fore used the direct casein zymography assay to visualize and

measure tPA activity in cultured astrocytes and conditioned

media under normal and OGD conditions and to determine

whether tPA activity is modified by MSC co-culture. Fig. 2a, 2b

Figure 1. tPA and PAI-1 mRNA and protein levels in treated
astrocytes. qRT-PCR shows mRNA levels of tPA and PAI-1 in normal
cultured astrocytes (A), astrocytes co-cultured with MSCs (A-M), OGD
astrocytes (AO) and OGD astrocytes co-cultured with MSCs (AO-M) (a).
OGD treatment significantly increased tPA and PAI mRNA levels in
astrocytes. MSC co-culture significantly increased tPA mRNA level in
both normal and OGD astrocytes whereas MSC co-culture significantly
decreased PAI-1 mRNA level (b) in OGD astrocytes. Western blot shows
protein levels of tPA and PAI-1 in normal cultured astrocytes (A),
astrocytes co-cultured with MSCs (A-M), OGD astrocytes (AO) and OGD
astrocytes co-cultured with MSCs (AO-M) (c). OGD treatment increased
tPA and PAI protein level and co-culture MSCs increased tPA protein
level whereas MSCs decreased PAI-1 protein level (d). *P,0.05,
**P,0.01, compared with group A; ++P,0.01, compared with group
AO.
doi:10.1371/journal.pone.0009027.g001

Table 1. Total tPA protein and active tPA concentration in
various conditioned media (n = 6/group).

Groups
Total tPA concen-
tration (ng/mL)

Active tPA concen-
tration (ng/mL)

A 1.2760.02 0.3160.01

A-M 1.3260.01* 0.4960.02**

AO 2.1460.14** 0.2460.03*

AO-M 2.2460.08** 0.3660.02##

A: medium from normal cultured astrocytes; A-M: medium from normal
astrocytes co-cultured with MSCs; AO: medium from OGD astrocytes; AO-M:
medium from OGD astrocytes co-cultured with MSCs.
*P,0.05.
**P,0.01 compared with group A.
##P,0.01 compared with group AO.
doi:10.1371/journal.pone.0009027.t001

Figure 2. tPA activity of astrocyte lysates and conditional
media. Zymography (a, b) shows that MSCs significantly increased tPA
activity in normal cultured astrocytes and in OGD treated astrocytes (c),
and similar results were obtained using the conditioned media
harvested from the concomitant groups (d). Marker: prestained protein
marker; A: normal cultured astrocytes; A-M: normal astrocytes co-
cultured with MSCs; AO: OGD astrocytes; AO-M: OGD astrocytes co-
cultured with MSCs. *P,0.05, **P,0.01, compared with group A;
##P,0.01, compared with group AO.
doi:10.1371/journal.pone.0009027.g002

MSCs Regulate tPA Activity
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show that OGD treatment significantly decreased the tPA

activity in astrocytes. MSCs significantly increased this ac-

tivity both in normal astrocytes and in OGD treated astro-

cytes. Similar results were obtained in the conditioned media

harvested from the concomitant groups of cultured astrocytes

(Fig. 2c, 2d).

MSCs Increase Neurite Outgrowth of Cortical Neurons via
Activated tPA

To test whether tPA in conditioned media affects neurite

outgrowth, a primary culture cortical neuronal system was used.

Primary cultured cortical neurons were treated with various

conditioned media for 4 days. A tPA neutralizing antibody was

used to reduce the effects of tPA, and rh-tPA was used as a positive

control. The normal control group was cultured with neurobasal

culture medium.

Fig. 3a shows the typical morphology of cultured neurons

treated with conditioned media. rh-tPA treatment significantly

increased the neurite branch number and total neurite length of

cultured neurons. Compared to neurobasal medium cultured

neurons, the neurite branch number and total length were

significantly increased when treated with the normal cultured

astrocyte conditioned medium. The OGD astrocyte medium

significantly decreased neurite branch number and total length.

Co-culture with MSCs significantly increased neurite branch

number and total length both of neurons cultured with normal

cultured astrocyte medium and with OGD astrocyte medium,

respectively. The tPA neutralizing antibody sharply counteract-

ed the effects of MSC co-culture media on neurite number and

total length, and neurite branch number and length were

significantly reduced compared with normal control group

(Fig. 3b, 3c). To verify the neurite outgrowth promoting effect of

tPA secreted by astrocytes, the siRNA technique was used to

knock-down the tPA expression in astrocytes. Fig. 3d shows the

tPA level was substantially down regulated by transfecting

astrocytes with tPA siRNA. Medium from tPA knock-down

astrocytes significantly reduced the neurite number and total

length of cultured neurons compared with medium from normal

astrocytes or negative control siRNA transfected astrocytes

(Fig. 3b, 3c).

Figure 3. Neurite outgrowth in primary cultured cortical neuron after conditional media treatment. Fluorescence microscopy (a) shows
cortical neurite outgrowth. Control: primary cultured cortical neurons with neurobasal medium; medium from normal cultured astrocytes (A)
increased neurite number and total length compared to those in control group; medium from OGD astrocytes (AO) significantly decreased neurite
number and total length; media from normal astrocytes co-cultured with MSCs (A-M) and OGD astrocytes co-cultured with MSCs (AO-M) increased
neurite total length compared to that in A and AO groups, respectively, and increased neurite number in AO-M group compared with AO group. tPA
neutralizing antibody specifically antagonized tPA effects of AM and AO-M groups in neurite number and total length (b, c). Western blot shows that
tPA expression in astrocytes was substantially down regulated by tPA siRNA (d). Medium from tPA knock-down astrocytes significantly reduced the
neurite number and total length of cultured neurons compared with that from normal astrocytes or negative control siRNA transfected astrocytes (b,
c). A-MT: medium from normal astrocytes co-cultured with MSCs, t-PA neutralizing antibody presented; AO-MT: medium from OGD astrocytes co-
cultured with MSCs, t-PA neutralizing antibody presented; t-PA: 15nM rh-t-PA alone; AC: medium from astrocytes transfected with negative control
siRNA; AS: medium from astrocytes transfected with tPA siRNA. Scale bars = 50 mm. *P,0.05, ** P,0.01, compared with control group; #P,0.05,
##P,0.01, compared with A group; ++P,0.01, compared with A-M group; ‘‘P,0.01, compared with AO group; {{P,0.01, compared with AO-M
group; &&P,0.01, compared with AC group. Data are presented as Mean6SE, (neurons n = 50/group, Adjusted p-value = 0.0042).
doi:10.1371/journal.pone.0009027.g003
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Endogenous tPA Expression Level and Activity in Mouse
Brain after Stroke with and without MSC Treatment

Stroke significantly increased expression of tPA and PAI-1 in

the ischemic hemisphere compared to non-ischemic brain (Fig. 4a,

4b). Treatment of stroke with MSCs significantly increased tPA

expression and decreased PAI-1 expression compared with PBS

treatment. tPA activity in the MCAo control brain extract and in

the MCAo MSC treated brain extract was measured using

zymography. Fig. 4c, 4d show that MSC treatment significantly

increased the activity of tPA compared to MCAo alone mice at 14

days after stroke.

tPA and PAI-1 mRNA Levels in Astrocytes Located within
the Ischemic Boundary Zone (IBZ) Respond to MSCs

We employed laser capture microdissection (LCM) combined

with RT-PCR to measure tPA and PAI-1 mRNA levels in

astrocytes in the IBZ (Fig. 5a) after stroke with or without MSC

treatment. Fig. 5b shows that MSC treatment significantly

increased the tPA mRNA level and concomitantly decreased the

PAI-1 mRNA level. These data indicate that astrocytes in the IBZ

respond to MSC treatment and increase tPA and concomitantly

decrease PAI-1 gene expression.

MSC Treatment Increases Axonal Fiber and Synaptic
Regeneration in the IBZ

Double staining of Bielshowsky silver and Luxol fast blue can

identify axonal fibers and myelin, respectively, in the white matter

of the brain [26]. The ischemic attack severely damaged white

matter bundles in the core lesion area and axon-myelin bundles

were altered and appeared disorganized in the IBZ (top-left in

Fig. 6b, 6c) of the striatum compared to normal mice (Fig. 6a).

Axonal fiber density in the IBZ of the striatum was significantly

increased after MSC treatment (Fig. 6c, 6d) compared with MCAo

control animals (Fig. 6b, 6d).

Synaptophysin is an indicator of presynaptic plasticity and

synaptogenesis [27]. Stroke decreased synaptophysin expression in

the IBZ of the striatum (Fig. 6f) compared to the normal mice

(Fig. 6e). MSC treatment significantly increased synaptophysin

expression (Fig. 6g, 6h) compared with MCAo control mice

(Fig. 6f, 6h), suggesting that MSC treatment increases synaptic

regeneration after MCAo.

To identify the effects of MSCs on neuronal apoptosis, we

performed double staining with TUNEL and MAP 2. At 14 days

after stroke, only few scattered apoptotic neurons were evident,

and MSCs decreased the number of apoptotic neurons compared

to MCAo control animals (Fig. 6i–6l). These data suggest that,

although we cannot exclude a contribution of MSC induced

neuroprotection to the MSC mediated increase in axonal fiber

density and synaptophysin expression, the reduction in apoptosis

likely plays a minor role in the observed white matter remodeling.

Discussion

MSCs are localized to the boundary region of the ischemic

infarct in rodents [28–32], MSCs improve recovery from stroke in

mice and rats directly by secreting soluble factors [5,6] and

indirectly by stimulating parenchymal cells of the stroke brain to

secrete bioactive factors [4,7,33–37], which induce neurogenesis,

angiogenesis, white matter change, synaptogenesis and reduce

apoptosis [4,7,38–41]. In this study, we show for the first time that

MSCs also enhance neurite outgrowth, which benefits brain

recovery after stroke, by concomitantly decreasing the expression

of the tPA inhibitor PAI-1 and increasing the activity of tPA in

astrocytes in the peri-infarct area of ischemic brain. Thus, the

modulation of tPA activity by MSCs likely promotes neurite

remodeling and thereby may improve functional outcome after

stroke.

tPA, which influences neurite outgrowth, is expressed by many

types of neural cells in the developing brain, including astrocytes

Figure 4. tPA and PAI-1 levels and tPA activity in mice
subjected to MCAo with or without MSC treatment. Western
blot shows tPA protein level (a) and zymography shows tPA activity (b)
in MCAo mice with or without MSC treatment. tPA and PAI-1 expression
was significantly increased in the IBZ of mice subjected to MCAo
compared with normal mice. tPA expression was significantly increased
and PAI-1 expression was significantly decreased in the IBZ of MCAo
mice after MSC treatment compared with MCAo alone mice (c). MSC
treatment significantly increased the activity of tPA in the IBZ compared
with MCAo alone mice (d). N: normal mouse brain tissue; C: IBZ tissue
from MCAo mice; M: IBZ tissue from MCAo mice after MSC treatment.
**P,0.01, compared with normal mice; #P,0.05, ##P,0.01, com-
pared with control MCAo mice.
doi:10.1371/journal.pone.0009027.g004

Figure 5. tPA and PAI-1 level in MCAo mouse IBZ astrocytes
respond to MSC. (5a) presents the individual IBZ astrocytes dissected
using LCM (before and after dissection), and tPA and PAI-1 mRNA level
in these astrocytes with or without MSC treatment are shown in (b).
MSC treatment significantly increased tPA mRNA level and concomi-
tantly decreased PAI-1 mRNA level. Scale bars = 50 mm. *P,0.05
compared with MCAo mice.
doi:10.1371/journal.pone.0009027.g005

MSCs Regulate tPA Activity
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[42]. Treatment of primary cortical neurons with an antibody

against tPA significantly reduced neurite outgrowth and branch

numbers compared to control neurons without tPA treatment.

Using LCM, we have demonstrated that astrocytes in the IBZ

respond to MSC treatment by increasing tPA activity (i.e. increase

of tPA level with a concomitant decrease of PAI-1 level). We do

not exclude a contribution from other parenchymal cells to the

MSC enhanced tPA activity; however, the high concentration of

astrocytes in the IBZ and the predominance of numbers astrocytes

in parenchymal tissue, suggest that the astrocyte is a robust

contributor to the MSC mediated tPA activity and subsequent

functional recovery. This is the first study to suggest that tPA

activity enhanced by astrocytes contributes to the therapeutic

benefits of a cell-based therapy.

Extracellular matrix (ECM) degradation is needed for neurite

outgrowth and the remodeling of crossing axonal fibers [18]. The

plasmin system plays an active role in tissue remodeling. Plasmin

degrades the ECM, directly by removing glycoproteins from the

ECM [43] and it releases axonal guidance molecules from the

extracellular matrix [19]. tPA has multifaceted effects on tissue; it

interacts with parenchymal cells through proteolytic plasminogen

or non-plasminogen pathways [44–47]. The proteolytic plasmin-

ogen/plasmin function of tPA cleaves the precursor forms of

neurotrophins to the active forms of these trophic factors, e.g.

proteolytic activity by tPA converts proBDNF and proNGF in the

ECM to active trophic factors, respectively [48–50]. These trophic

factors promote neurite remodeling [51–55]. The plasmin

dependent pathway has multiple roles in addition to the cleavage

of pro-neurotrophins into the active form [56]. Plasmin also

activates the N-methyl-D-Aspartate receptor (NMDAR) which can

subsequently enhance neurite remodeling [57]. Moreover, recent

studies report that the NMDAR can act independently of the

plasminogen pathway and stimulate nitric oxide synthase (NOS),

which increases nitric oxide (NO) and subsequently increases

cyclic guanosine monophosphate (cGMP) which can foster neurite

remodeling [58]. Similarly, the low-density lipoprotein receptor

pathway (LDLR), has been shown to mediate enhancement of

NMDAR function by tPA [59]. In addition to the PA/plasmin

system, tPA interacts with other effectors such as low-density

lipoprotein receptor-related protein (LRP) [60,61] and latent

platelet-derived growth factor-CC (PDGF-CC) [62,63] which may

subsequently influence the brain ECM remodeling and neurite

outgrowth. tPA converts PDGF-CC to an active form PDGF-C,

which is expressed in embryonic and adult mouse brain and

contributes to brain remodeling and spinal cord development [64].

MSC treatment increases tPA activity in astrocytes and thereby

promotes white matter remodeling which likely contributes via

multiple pathways to recovery of neurological function after stroke.

As a member of the serpine gene family, PAI-1 is the major

inhibitor of tPA [21], and is largely produced by reactive

astrocytes in the CNS after stroke [65,66]. PAI-1 plays an

important role in the process of peripheral tissue remodeling and

fibrinolysis through inhibition of plasmin-dependent ECM degra-

dation [67]. Hypoxia and many growth factors, including

transforming growth factor beta (TGFb) and tumor necrosis

factor alpha (TNF-a), as well as other chemicals/agents, induce

PAI-1 expression in cultured cells and in vivo [68]. The con-

comitant MSC induced reduction of PAI-1 and increase of tPA

in astrocytes of the IBZ thereby amplify tPA activity which

contributes to neurite outgrowth.

Figure 6. MSCs promote neurite outgrowth, synaptic plasticity and cell survival. Double staining (Bielshowsky, black for axons, indicated
by green arrow; Luxol fast blue for myelin, indicated by red arrow.) shows axonal and myelin fibers in the striatum (b–c) along the IBZ after MCAo
compared to normal brain (a). The integrated density (indicated the axonal and myelin fibers number) of white matter bundles in IBZ of striatum was
decreased compared with that in normal brain, The axonal fibers and myelin of the striatum were enhanced by MSCs (c, d, Adjusted p-value = 0.0167).
Immunofluorescent staining (e–g) shows synaptic regeneration (indicated by synaptophysin). Synaptophysin expression significantly increased in
MSC treated rats (g, h, Adjusted p-value = 0.025). Apoptosis neuron (indicated by white arrow) is shown with double staining with TUNEL and MAP 2
(i–k), MSCs decreased the apoptosis neuron number (k, l, Adjusted p-value = 0.01667). Scale bars = 25 mm. **P,0.01, compared with normal mice;
##P,0.01, compared with control MCAo alone mice.
doi:10.1371/journal.pone.0009027.g006

MSCs Regulate tPA Activity
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Both growth promoting and growth-inhibitory molecules are

upregulated within the peri-infarct region of the brain early after

stroke [69]. tPA expression as well as its inhibitors PAI-1 and

neuroserpin are up-regulated in the acute stage of cerebral

ischemia and hemorrhage [13,70,71]. An increase of parenchymal

cell expression of tPA early after stroke may be a negative factor

for neural cell survival and for sustaining blood-brain barrier

(BBB) integrity. Elevated PAI-1 expression inhibits tPA activity

and reduces injury from stroke [72,73]. In addition to its damaging

role, the tPA/plasmin proteolytic system provides benefits by

facilitating neurite outgrowth and pathfinding [10,11]. Our in

vitro studies which mimic ischemic conditions show increased tPA

and PAI-1 expression in OGD astrocytes, and that MSC-astrocyte

co-culture concomitantly decreased the PAI-1 expression and

increased tPA activity in astrocytes. In vivo, treatment of MCAo

with MSCs increased tPA activity, and this increase likely

contributed to the observed neurite outgrowth and synaptic

plasticity. Our data provide a new insight, that MSC cell based

therapy for stroke promotes neurite outgrowth, axonal regenera-

tion and synaptic plasticity via the astrocytic tPA system.

The roles that reactive astrocytes take after brain injury

are multi varied [74–76]. Astrocytes promote or inhibit axonal

regeneration. The glial scar formed by the astrocyte has an initial

beneficial effect of walling off the lesion from the intact

parenchyma, likely protecting the intact tissue from the invading

macrophages and other potentially toxic events. Rapidly expand-

ing astrocytic processes create functional walls surrounding the

ischemic core, which extend the time available for marshalling

endogenous repair mechanisms, e.g., redirection of blood flow to

still salvageable parts of the brain and redirection of neurite

sprouting and synapse formation to build new circuitry [77]. The

glial scar, also produces inhibitory glycoproteins [78,79], which

reduce neurite outgrowth. Administration of MSCs to rodents

reduces the glial scar and also reduces the expression of inhibitory

glycoproteins, thereby creating a permissive environment for

neurite outgrowth [24,80]. The tPA/PAI-1 system associated

with the reactive astrocyte impacts ischemic damage and

regenerative events. Early after stroke, reactive astrocytes secrete

abundant factors, such as tPA as well as PAI-1 [24,81–83].

Increasing PAI-1 inhibits tPA activity and subsequently inhibits

the tissue damage within the ischemic area [84,85]. However,

during the sub-acute stage after stroke, our data support the

hypothesis that the tPA/PAI-1 system of the reactive astrocytes is

beneficial, increasing neurite outgrowth. MSCs reduce PAI-1 in

reactive astrocytes, which thereby increase tPA activity. This

enhanced tPA activity may increase active neurotrophins

[48–50,86]. The mechanisms by which MSCs increase PA

activity, await further investigation.

There are many factors that contribute to the improvement of

neurological function after MSC treatment of stroke [28,41,87–

91]. We propose that astrocytes contribute to the beneficial effects

of exogenously administered MSCs in the CNS. Although the

most abundant cells in the CNS, astrocytes have been neglected as

modulators of brain remodeling and functional recovery. The

tPA/PAI-1 system in astrocytes by promoting brain plasticity

leading to functional recovery after treatment of stroke with MSCs

may provide a new therapeutic target for stroke and CNS diseases.

Materials and Methods

All experimental procedures were carried out in accordance

with the NIH Guide for the Care and Use of Laboratory Animals

and approved by the Institutional Animal Care and Use

Committee of Henry Ford Hospital.

Cell Culture
The MSCs employed in our studies are very well characterized

and are provided to us by Theradigm, Inc. (Baltimore, MD) and

produced in a GMP facility. Briefly, the bone marrow harvested

from the hind legs of C57/Bl6 mice (2,3 m) were prepared, as

previously described [31,92–94]. The MSCs are a heterogeneous

cell population, and comply with three well established criteria;

they 1. are plastic-adherent, 2. express specific surface antigen

expression, and 3. in vitro can differentiate into osteoblasts,

adipocytes, and chondroblasts [95]. The mouse MSC populations

were analyzed for the following surface antigens for phenotypic

characterization: CD29 (.90%), CD44 (.80%) and CD105

(.80%) and were free of hematopoietic cell phenotype CD11b

(,1%), CD34 (,1%), and CD45 (,1%). MSCs were cultured

with a-modified MEM medium (Hyclone, Logan, UT) containing

20% fetal bovine serum (FBS, Gibco Laboratory, Grand Island,

NY) and penicillin-streptomycin on 75 cm2 tissue culture flasks

(Corning St. Louis, MO). Mouse cortical astrocytes, C8-D1A

(Astrocyte type I clone from C57/BL6 strains), were obtained from

the American Type Culture Collection (ATCC, CRL-2541TM,

Arlington, VA). Cells were cultured in high glucose Dulbecco’s

modified eagle medium (DMEM, Invitrogen, San Diego, CA) with

10% FBS, containing penicillin-streptomycin on 75 cm2 tissue

culture flasks, and all the cells were placed in an moist incubator

and cultured at 37uC, with 5% CO2.

OGD Treatment of Astrocytes
Astrocytes (16105) were seeded in each well of a 6-well plate

containing normal medium. After cells grew to 70% confluence,

the medium was replaced with non-glucose culture media and

cultured in an anaerobic chamber (model 1025, Forma Scientific,

OH) for 2 hrs. The astrocytes were then cultured under normal

conditions with or without MSCs. For co-culture with MSCs, an

upper chamber of the transwell insert dish (Becton Dickinson

Labware, FALCONH) was used with a ratio 1:100 of co-cultured

MSCs to astrocytes. Astrocytes with or without MSC co-culture

were detached and collected for RNA and protein extraction after

24 hrs.

Preparation of Conditioned Media
To prepare the conditioned media for the primary cortical

neuronal culture, GibcoTM NeurobasalTM Medium (Invitrogen,

Cat No. 21103) supplemented with B27 (Invitrogen, Cat

No. 17504-044) and L-Glutamine-Penicillin-Streptomycin solu-

tion (Sigma-Aldrich, Cat No. G6784) were used as basal culture

media. Briefly, following 2 hrs of OGD and subsequently normal

culture conditions with or without MSCs co-cultured for 24hrs,

normal and OGD astrocytes, respectively, were rinsed with basal

culture media. These astrocytes were then cultured in the basal

culture media for an additional 12 hrs with MSCs omitted. Media

from the various treatment groups are referred to as conditioned

media. Conditioned media were filtered with a 0.22mm-pore filter

and stored in -80uC for further studies. The conditioned media

were harvested from the replaced fresh basal culture media;

therefore, the tPA activity in the conditioned media derive solely

from the cultured astrocytes.

To knock-down the tPA expression in astrocytes, siRNA

technique was employed. Following the protocol provided by the

company, tPA siRNA (M-048467-01-0005, Thermo Fisher

Scientific. Lafayette CO 80026) and negative control siRNA were

transfected into triple well cultured astrocytes seeded in six well

plates, respectively. Conditioned media from these astrocytes

as well as normal cultured astrocytes were made following the
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procedure described above, and the astrocytes in individual wells

were lysed and for Western blot analysis.

ELISA Detection of the Total tPA and Active tPA
A mouse tPA total antigen assay kit (Innovative research,

Catalog No. MTPAKT-TOT) and a mouse tPA activity assay kit

(Innovative research, Catalog No. MTPAKT) were used to detect

the total tPA protein and active tPA level in conditioned media,

respectively. Following the manufacturer’s assay procedures,

conditioned media from normal and OGD astrocytes with or

without MSC co-culture were added into the wells of ELISA

plates, as well as various diluted tPA standards. The primary

antibody and second antibody were sequentially added. The

reaction was quenched by the addition of 1M H2SO4, The

absorbance values were read at 450nm.

MCAo and Tissue Preparation
Adult male mice (C57/BL6 strains, 2 months old, weighing 25–

29g) were employed in our study. Briefly, mice were initially

anesthetized with 3.5% isoflurane and maintained with 1.0% to

2.0% isoflurane in 70% N2O and 30% O2 using a facemask. The

rectal temperature was controlled at 37uC with a feedback-

regulated water heating system. The right common carotid artery,

external carotid artery (ECA), and internal carotid artery (ICA)

were exposed. A length of 6-0 monofilament nylon suture (8.0–

9.0 mm), determined by the animal weight, with its tip rounded by

heating near a flame, was advanced from the ECA into the lumen

of the ICA until it blocked the origin of the MCA. At 1 day

post-ischemia, randomly selected mice (n = 9) received MSC

transplantation.

For MSC transplantation, mice were initially anesthetized with

3.5% Isoflurane and maintained with 1.5% Isoflurane in 70%

N2O and 30% O2 using a face mask. Approximately 16106

MSCs in 0.2 ml total fluid volume of phosphate-buffered saline

(PBS) were injected into a tail vein. Immunosuppressants were

not used in any animal. Mice injected with PBS alone were

employed as MCAo control (n = 9). A third group of naive mice

without surgery and treatment was employed as normal controls

(n = 9).

All animals were sacrificed under deep ketamine anesthesia at

14 days after MCAo, among which 9 mice (n = 3 for normal

control, MCAo alone and with MSC treatment, respectively) were

employed for tissue protein extraction, which were used for

Western blot and direct casein zymography. The remaining 18

mice (n = 6 for normal control, MCAo alone and with MSC

treatment, respectively) were perfused with 0.9% saline, and a

series of frozen brain coronal sections (8 mm) were obtained

for histochemistry staining and Laser Capture Microdissection

(LCM).

Protein and RNA Isolation
Brain tissues from mice (n = 3/group) along the IBZ ipsilat-

eral to the injury were extracted. These brain tissues were

homogenized, and were used to isolate total RNA and protein

with TRIzol (Invitrogen, San Diego, CA), following a standard

protocol.

The astrocytes cultured under various conditions were harvest-

ed and rinsed with PBS, then lysed in the RIPA lysis buffer

containing proteinase inhibitor cocktail (Roche, Indianapolis, IN).

Protein concentrations were determined using the Bicinchoninic

Acid (BCA) protocol (Pierce, Rockford, IL), loaded on 10% Bis-

Tris Gels (Invitrogen, San Diego, CA), and then processed for

Western blotting.

LCM Isolation of Reactive Astrocytes in the IBZ
Cryostat sections stored at 280uC were immediately immersed

in acetone for 2 min fixation and air-dried for 30 sec. After a

brief rinse with 0.1% diethylpyrocarbonate treated phosphate-

buffered saline (PBS), sections were incubated with GFAP

antibody (Dako Z0334; Dako, Carpinteria, CA) at 1:50 dilution

for 5 min, rinsed with PBS twice, and then incubated with 1:100

dilution CY3-conjugated F(ab9)2 anti-rabbit IgG secondary

antibody for 5 min. rinsed with PBS twice and air-drying for

5 min, GFAP positive reactive astrocytes along the ischemic

boundary were cut using Leica LMD6000 system. All reaction

steps were performed in RNase-free solutions. Approximately

5,000 cells were dissected and collected in Eppendorf tubes

containing 100 mL of lysis buffer. The samples were stored in

280uC before RNA isolation.

Quantitative Real Time PCR (qRT-PCR)
qRT-PCR was performed with the isolated total RNA

transcribed into cDNA using poly-dT oligonucleotides following

the manufacturer’s instructions. Quantitative PCR for total

cDNAs was performed in the ABI PRISM 7000 Sequence

Detection System, using the standard protocols with the Quantitec

SYBY Green PCR Kit (Qiagen, Valencia, CA). The following

primers were purchased from Invitrogen: mouse tPA, forward:

CTGAGGTCACAGTCCAAGCA, reverse: ACAGATGCTGT-

GAGGTGCAG; mouse PAI-1, forward: GTCTTTCCGACCA-

AGAGCAG, reverse: ATCACTTGGCCCATGAAGAG; and

mouse GAPDH, forward GTCTACTGGTGTCTTCACCAC-

CAT, reverse: GTTGTCATATTTCTCGTGGTTCAC. GAP-

DH was used as an internal control for gene expression.

Western Blot Assay
The total protein was used for Western blot assay following the

standard Western blotting protocol (Molecular Clone, Edition II).

The concentrations of the primary antibodies employed were: tPA

(1:2000, Santa Cruz, sc-15346), PAI-1 (1:2000, Santa Cruz, sc-

8979), and beta actin (1:5000, Santa Cruz, sc-1616). Respective

horseradish peroxidase (HRP) labeled secondary antibodies were

applied and enhanced chemiluminescence (ECL) detection was

used according to the manufacturer’s instructions (Pierce, Rock-

ford, IL). The integrated density mean grey value of the band was

analyzed under ImageJ software and the corresponding relative

expression ratio was calculated.

Direct Casein Zymography for tPA Activity
Proteins from culture supernatant, cells and brain tissues were

separated by 10% SDS-PAGE and tPA activity was assayed by

zymography, as detailed previously [96]. Briefly, 10mg protein

samples or 30mL conditioned supernatant were mixed with the

sample loading buffer without b-ME, and heating was omitted.

The mixture of the lower gel (10% acrylamide) contained casein

(1 mg/ml, Sigma) and plasminogen (13 mg/ml, American Diag-

nostica, Greenwich, CT) as substrates for plasmin and PA,

respectively. The gel was then washed for 30 min with 2.5%

Triton X-100 to remove SDS and further washed for 10 min with

0.1 M Tris buffer, pH 8. The new Tris buffer was replaced and

the gel was incubated for 4 hrs at 37uC to allow caseinolysis occur.

On the darkly stained casein background, PA activity was

visualized as light bands resulting from casein degradation. To

verify loading variations, duplicate samples were used in gel

electrophoresis. After electrophoresis, the gel was stained with

Coomassie Blue R-250 and destained with 40% methanol as well

as 10% acetic acid.
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Cortical Cell Primary Culture
The cortices were dissected from 17–18 day embryos of C57/

BL6 mice and dissociated in Ca2+- and Mg2+- free Hanks balance

salt solution (HBSS) containing 0.125% trypsin for 30 min. Cells

were washed with DMEM containing 5% FBS, triturated in

DMEM/5% FBS and passed through the cell strainer (BD Falcon

REF 352350). The cell density was determined by a hemacytom-

eter and 26104 cells per well were plated on eight-well chamber

slides (Nalge Nunc International, Naperville, IL). The cells were

incubated at 37uC with 5% CO2 overnight and switched to the

serum-free Neurobasal medium with B27 supplement for 3 days,

and the medium was then changed to conditioned media.

Treatment groups include: 1) neural basal medium as control,

2) medium from normal cultured astrocytes, 3) medium from

normal cultured astrocytes co-cultured with MSCs, 4) medium

from normal cultured astrocytes co-cultured with MSCs and

200ng/mL tPA neutralizing antibody (Product No. 1188, Amer-

ican Diagnostica Inc., Stamford, CT) [97–99] was added, 5)

medium from OGD astrocytes, 6) medium from OGD astrocytes

co-cultured with MSCs, 7) medium from OGD astrocytes co-

cultured with MSCs and 200ng/mL tPA neutralizing antibody

was added, 8) 15nM rh-tPA (Genentech Inc., South San

Francisco, CA), 9) medium from astrocytes transfected with

negative control siRNA, and 10) medium from astrocytes

transfected with tPA siRNA.

Neurite Outgrowth Assay
After 4 days in culture, neural cells were fixed with 4%

paraformaldehyde and stained with immunofluorescence for beta-

tubulin (Tuj 1) identification. To analyze neurite outgrowth, TuJ1-

positive cells were digitized using a 206 objective (Zeiss) via the

MicroComputer Imaging Device (MCID) analysis system (Imag-

ing Research, St. Catharines, Ontario, Canada). Neurite out-

growth was quantified using a software program developed in our

laboratory that includes measurements of the number and length

of branches [100]. At least fifty TuJ1-positive cells, distributed in 9

random fields per well and triple wells per group, were measured,

all measurements were performed by experimenters blinded to

each culture condition.

Histochemistry and Immunostaining
The axonal fibers of the mouse striatum were examined using a

combined Nissl- and silver-staining method (Bielshowsky staining)

[101]. Double staining for Bielshowsky and Luxol fast blue [26]

was used to demonstrate axons and myelin, respectively. Briefly,

for Bielshowsky staining, frozen brain slides centered at the

ischemic core (coordinates bregma 20.5,0.5 mm) [102] were

placed in 20% silver nitrate in the dark, then ammonium

hydroxide was added to stain the slides until the tissues turned

brown with a gold background and they were then treated with

sodium thiosulfate. Slides were then stained in Luxol fast blue

solution, washed in 95% alcohol, and subsequently placed in

lithium carbonate. Nuclei should be colorless; myelin should be

blue, and axons should appear black. Sections were analyzed with

an optical microscope and pictures were obtained along the IBZ of

the striatum.

Frozen brain sections were incubated with the primary antibody

against synaptophysin (1:100, 60min, RT, Chemicon, MAB5258),

followed with Cy3 labeled secondary antibody. Sections were

observed with a fluorescence microscope and pictures were taken

along the IBZ.

MCID software was used to analyze the integrated density of

labeled axonal fibers and synaptophysin in the IBZ. Five randomly

selected areas along the IBZ were analyzed per animal.

To identify the neuronal apoptosis in the IBZ, double-staining

with an ApopTagH Fluorescein In Situ Apoptosis Detection Kit

(Millipore, Cat # S7110) and with antibody against microtubule-

associated protein 2 (1:200, 4uC overnight, Chemicon, MAB3418)

was employed to stain the frozen brain sections. Sections were

evaluated using a fluorescence microscope and pictures were taken

along the IBZ. The double stained cells in eight randomly selected

areas along the IBZ were measured per section and 3 sections were

taken per animal.

Statistics
Data are expressed as means6SE. The differences between

mean values were evaluated with the two tailed Student’s t-test (for

2 groups) and the analysis of variance (ANOVA, for .2 groups).

All calculations and statistical tests were performed by the

computer programs Microsoft Excel 2000 (Microsoft, Redmond,

WA) or SPSS 11.5 (SPSS, Chicago, IL). P,0.05 was considered

significant for all analyses.
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