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Abstract

Background: One of the most intriguing patterns in mammalian biogeography is the ‘‘island rule’’, which states that
colonising species have a tendency to converge in body size, with larger species evolving decreased sizes and smaller
species increased sizes. It has recently been suggested that an analogous pattern holds for the colonisation of the deep-sea
benthos by marine Gastropoda. In particular, a pioneering study showed that gastropods from the Western Atlantic showed
the same graded trend from dwarfism to gigantism that is evident in island endemic mammals. However, subsequent to the
publication of the gastropod study, the standard tests of the island rule have been shown to yield false positives at a very
high rate, leaving the result open to doubt.

Methodology/Principal Findings: The evolution of gastropod body size in the deep sea is reexamined. Using an extended
and updated data set, and improved statistical methods, it is shown that some results of the previous study may have been
artifactual, but that its central conclusion is robust. It is further shown that the effect is not restricted to a single gastropod
clade, that its strength increases markedly with depth, but that it applies even in the mesopelagic zone.

Conclusions/Significance: The replication of the island rule in a distant taxonomic group and a partially analogous
ecological situation could help to uncover the causes of the patterns observed—which are currently much disputed. The
gastropod pattern is evident at intermediate depths, and so cannot be attributed to the unique features of abyssal ecology.
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Introduction

The island rule states that after island colonisation, animals

undergo predictable patterns of body size evolution, with larger

colonising species becoming smaller, and smaller species becoming

larger. The result is a graded trend from dwarfism in the largest

colonists to gigantism in the smallest [1–4]. Because insular

habitats are distinctive in a number of ways, this pattern might be

variously explained, and a variety of hypotheses have indeed been

proposed in the literature [1–11]. Recently, McClain et al. [12]

made an important advance by testing for analogous patterns of

body size evolution in a non-insular system. Specifically, they

compared body sizes of animals living in deep-sea benthic habitats

with their shallow-water living congeners. Using the Malacolog

database version 3.3.3 of Rosenberg [13], McClain et al. [12] took

the gastropods of the western Atlantic as a case study, and

reported that a highly significant trend from dwarfism to gigantism

was evident in the deep-sea species.

From the perspective of understanding the island rule, this result

is exciting, because the deep-sea benthos shares some but not all of

the ecological characteristics of insular habitats [3–5,12,14–16];

see Discussion. But unfortunately, the debate about the ecological

and evolutionary processes is hindered by uncertainty about

where, if anywhere, the island rule applies [4,17–20]. In particular,

since the appearance of McClain et al.’s study [12], it has been

shown that many common tests of the rule are subject to high

levels of false positive error [19–21]. In particular, if the mainland

populations have undergone any body size evolution since the last

common ancestor of the genus, then data can appear to manifest

the island rule, even if, in reality, there were no differences

between patterns of island and mainland evolution. Intuitively, the

reason is that when mainland populations have increased in size,

they are both more likely to be classified as ‘large’, and more likely

to be larger than their insular relatives, regardless of how the latter

have evolved. The reverse applied if mainland populations have

decreased in size, and together, this can create the misleading

impression of a graded trend from dwarfism to gigantism. Price

and Phillimore [21] suggested using standardized-major-axis

regression to avoid this problem, and Welch [20] suggested a

Monte Carlo permutation approach to assess its significance. This

test is parametric (contra incorrect statements in [20]) but it is

distribution-free, and so avoids the assumptions of normality and

homogeneity of variance that are unlikely to hold for comparative

data [22,23], and which can also mislead the standard tests.

Here, I re-examine whether deep-sea gastropods manifest the

island rule, making use of the improved statistical methods, and

data collated from the recently updated Malacolog database [24],

which has been both expanded, and revised to reflect advances in
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gastropod systematics [25]. It is found that the central conclusion

of McClain et al. [12] is robust, and that gastropod colonists of the

deep-sea benthos do indeed exhibit island-rule-like evolution.

Methods

All data analysed here were taken from Malacolog version 4.1.1

[24]. This version of the database contains data for non-gastropod

Mollusca, but not in sufficient numbers for a statistically robust

test, so the present analysis is restricted to gastropods. Details of all

species (or in some cases subspecies) with the appropriate

measurements were downloaded, yielding 4256 taxa in total. All

data are available as Table S1. The measure of body size was the

maximum recorded shell length (mm), which was logarithmically

transformed. This measure can create artefacts, because its value

can depend on sample size - larger samples tending to have larger

maximum values [17] - and the raw data necessary to calculate

sample means were not available for most of the species

represented here. Nevertheless, in the present analysis the use of

maxima would cause a bias only if the reported shell lengths do

depend strongly on number of measured individuals, and if this

number varied with body size in a different way at different

depths, i.e., if bigger, but not smaller taxa were under-sampled in

deep waters. To classify each species as deep-water, shallow-water

or neither, the shallowest and deepest reported depth (m) were

used. Following [12], the boundary between the two regions was

set at 200m - the average limit of the continental shelf in the

Atlantic ocean, and the limit of the oceanic photic zone, capable of

sustaining photosynthesis [12,15,16,26]. As such, species were

classified as ‘‘shallow’’ if the chosen measure of their depth range

was #200m (various measures were used; see Results). Only

genera that contained both deep and shallow members were

retained for further analysis, and each data point consisted of a

shallow and deep size estimate for a different genus - in most cases,

the mean of the log body sizes of all deep or shallow congeners

(taking means after log transformation to avoid bias). Analyses

were also repeated after equalizing the number of deep and

shallow species in each genus. This was done because most genera

contained fewer deep than shallow species, and a smaller number

of species will be associated with a smaller sample variance, which

could be falsely taken to imply a genuine narrowing in the

distribution of body sizes in deep seas, as predicted by the island

rule. To equalize the numbers of deep and shallow species, I

excluded species so as to maximize the difference in the depth

range midpoints (i.e., the mean of the maximum and minimum

recorded depths) between the deep and shallow species; for

example, in a genus with two deep and five shallow species, I

removed the three shallow species with the deepest range

midpoints. This is equivalent to the common practice in the

island rule literature of retaining the species from the smallest

island when multiple equally close insular relatives of a mainland

taxon are available (see e.g., [27]). The procedure should

maximise the chances of observing an effect, without introducing

a bias under the null. The alternative strategy of excluding species

at random introduces the problem of combining p-values from

multiple non-independent tests.

To analyse the data, the deep-sea body sizes for each genus

were regressed onto the shallow-water body sizes. Under the null

hypothesis of no effect of deep-sea colonization, these two values

should be equal on average, and so the best-fit line should have a

slope of one. A shallower slope is consistent with the island rule,

and represents a narrowing of the distribution of body sizes in the

deep-sea species [3]. To obtain the best-fit slope, standardized-

major-axis regression was used [21,28]. The test statistic for this

type of regression is the correlation coefficient between x+y and

x2y (where x is the shallow-water body size and y is the deep-sea

body size). Significance was assessed by randomly permuting the

labels for the deep and shallow species within each genus 100,000

times, to generate a null distribution of the test statistic. The p-

value was calculated as the proportion of these randomized

coefficients that were equal to or more extreme in value than the

true test statistic, doubled for a two-tailed test [20]. To replicate

the method of [12], an ordinary-least-squares regression was also

carried out, calculating significance with the standard t-test [28].

All statistical tests were carried out in R [29], and made use of the

smatr package [23], including its common slope test (‘‘slope.com’’),

which compares the fit of a one- and two-slope model to the

subdivided data. All code is available on request.

Results

To demonstrate the liberal nature of the standard tests of the

island rule, consider results when deep-sea habitation is defined via

the midpoint of the recorded depth range, i.e., ‘‘deep-sea species’’

have a range midpoint below 200m, and all other species are

deemed ‘‘shallow-water’’. With this definition, 254 genera

contained both deep and shallow species, and their generic mean

body sizes are plotted in Figure 1A. Applying the standard test

[3,12], the ordinary-least-squares regression slope (dashed line) is

found to be highly significantly less than one (n = 254; b = 0.902; t-

test p = 0.0015), which offers strong apparent support for the

island rule. However, assigning species groups to the ‘‘deep’’ or

‘‘shallow’’ categories at random, showed that even stronger

support was obtained with ,43% of 100,000 randomized data

sets, suggesting that there is nothing exceptional in the trend

observed in the true data. Accordingly, the standardized-major-

axis slope (solid line) was very close to one, and the permutation

test showed no significant deviation from the pattern expected if

deep-sea colonization had no effect on body size evolution

(n = 254; b = 1.020; permutation p = 0.476).

The results above cast doubt on conclusions reached with the

standard tests, but they do not refute them. To ask whether an

effect really is present, it is better to adopt a more stringent

definition of deep-sea habitation [12], Accordingly, let us define as

‘‘shallow-water’’ those species never observed below 200m, and as

‘‘deep-sea’’ those species found only below either 200m, 400m,

600m or 800m. Adopting a range of depth cutoffs is appropriate

because the ecological factors responsible for any effect are likely

to correlate with depth even below 200m [15,16,26]. The data

now show strong evidence of the island-rule trend, and the

strength and significance of this trend increase steadily with cutoff

depth (Table 1 part A(i)). It is possible that these results are an

artefact of the use of generic mean body sizes [30]. For example,

most genera contain many more shallow-water than deep-sea

species (possibly for sampling reasons [31]), and this could bias the

regression slope - which is the ratio of the samples’ standard

deviations [28]. To exclude this possibility, tests were repeated

with equal numbers of deep and shallow species per genus (Table 1

part A(ii); Figure 1B), or, as is usual in the literature, with a single

species of each type per genus (Table 1 part A(iii)). In both cases,

evidence for the graded trend remained, and in some cases

became stronger, probably reflecting the preferential inclusion of

species with extreme depth ranges (see Methods).

Averaging across species has untested statistical properties [30],

but it does have the advantage of reducing noise and the influence

of anomalous data. For example, Figure 1B plots results for

balanced samples with ‘‘deep-sea’’ defined as .400m. These data

are clearly noisy, and the slope is strongly influenced by a single
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outlier (the largest value on both axes). This point represents the

genus Fasciolaria, which contains just a single deep-sea species, the

recently discovered Fasciolaria tephrina [32]. To restrict the influence

of such isolated observations, McClain et al. [12] excluded from

their analyses all genera with fewer than two shallow and two deep

species. Despite reducing sample size by ,2/3, this procedure

strengthens the observed effect, with a highly significant departure

from the null now apparent at the shallowest cutoff depth (Table 1

part B; Figure 2).

These results demonstrate the island rule pattern, but they do

not tell us whether it represents a consistent trend across the

marine Gastropoda; indeed, the same pattern could arise from

clade-specific responses to deep-sea colonization, which are

associated with large and small size merely by chance [19].

Phylogenetic tests of this hypothesis were recently introduced [19],

but these are difficult to apply to Gastropoda, where much of the

phylogeny remains unknown [25], and in any case, can be highly

conservative [20]. An ad hoc alternative is to test for the consistency

of the effect across taxonomic groups. The well-supported clade

Neogastropoda (unranked by [25]) is represented by around half of

the genera in the present data set, and also contains most of the

larger-bodied genera. Figure 2 demonstrates that the regression

slopes for this clade alone are very close to those for the remainder

of the data, and do not differ significantly at any depth [common

slope tests: A p = 0.969; B p = 0.935; C p = 0.971]. Furthermore,

evidence for the island rule is similarly strong in both halves of the

data [permutation tests: A Neogastropoda: n = 28 p = 0.049,

Others: n = 26 p = 0.022; B Neogastropoda n = 17 p = 0.048,

Others n = 25 p = 0.069]. These tests lack power, but are at least

consistent with an effect that applies homogenously across the

group.

Results above suggest that the strength of the effect observed

increases with depth (Table 1; Figure 2), and this is analogous to

suggestions that the island rule applies most strongly on the

smallest islands, and not at all on the largest islands, whose

ecologies can approximate those of continents [4,6,18,27]. In the

present context, it is important also to distinguish between

different types of deep-sea habitat. In particular, the bathyal zone

(including the continental slope) and the deeper abyssal zone differ

fundamentally not only from the photic ocean (,200m), but also

from each other, both in faunal composition (including body size

ranges), and overall ecosystem function [15,16,26]. The Malacolog

data set includes many species whose ranges are wholly or partly

abyssal (defined as deeper than 3000m [26]), and so it is important

Table 1. Deep-sea gastropod body size evolution.

A (i) (ii) (iii)

Deep sea n b p b P b p

.200m 153 0.948 0.203 0.921 0.090 0.908 0.061

.400m 111 0.862 0.019* 0.805 0.001** 0.832 0.006*

.600m 74 0.779 0.004** 0.742 0.002** 0.778 0.010*

.800m 52 0.700 0.001** 0.641 0.000** 0.711 0.008*

B

.200m 54 0.837 0.003** 0.797 0.004** 0.819 0.014*

.400m 42 0.781 0.013* 0.762 0.008* 0.777 0.020*

.600m 25 0.763 0.020* 0.735 0.020* 0.738 0.068

.800m 20 0.714 0.010* 0.672 0.011* 0.701 0.041*

Regressions of deep-sea onto shallow-water body sizes. Deep-sea species were
defined as those never observed above the depth in the far left-hand column,
and shallow-water species as those never observed below 200m. Part A: (i) the
mean log body sizes of all species in each genus meeting the depth criteria; (ii)
the mean log size of all deep-sea congeners, and an equal number of shallow
species, chosen to maximise the difference in midpoint depth range (or vice
versa for genera with more deep than shallow species); (iii) the single deep and
shallow species with maximal difference in midpoint depth range. n: sample
size (i.e., the number of genera); b: standardized-major-axis regression slope;
p: p-value from 100,000 random permutations of the data.
*p,0.05.
**p,0.005.
For Part B, genera with fewer than two deep- and two shallow-water species
were excluded (so B(iii) uses exactly four species from each genus).
doi:10.1371/journal.pone.0008776.t001

Figure 1. Body sizes of deep-sea gastropods and their shallow-
water congeners. Part A shows how different tests of the ‘island rule’
can give qualitatively different results. ‘‘Deep-sea’’ species were defined
as those with a depth range midpoint .200m, and all other species
defined as ‘‘shallow-water’’. The ordinary-least-squares regression
(dashed line) differs significantly from the 1:1 line of the null (dotted
line), but the standardized-major-axis regression (solid line) shows no
significant departure. Part B shows a less ambiguous case: ‘‘deep-sea’’
species are those never observed above 400m, and ‘‘shallow-water’’
species those never observed below 200m; body sizes are within-genus
means, taking equal numbers of deep- and shallow-water species in
each genus.
doi:10.1371/journal.pone.0008776.g001
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to ask whether the patterns observed might be solely due to an

effect of abyssal habitation. Accordingly, analyses were repeated

excluding all species whose observed depth ranges were either

wholly or partly greater than 3000m. Table 2 contains two

examples where the effect was observed with the complete data set

(Table 1), and shows that the exclusion of abyssal species has little

effect. Furthermore, the same applies when species from the

shallower bathypelagic zone (depths 1000–3000m) were also

excluded (Table 2). The island rule pattern of convergence in

body size is therefore observed even for species living wholly in the

mesopelagic or ‘‘twilight’’ zone of 200–1000m.

Discussion

This study has confirmed the important findings of McClain

et al. [12] that the marine gastropods of the Western Atlantic show

a pattern of body size evolution that is analogous to the island rule,

with colonists of the deep-sea benthos tending to converge in size

in a graded trend (see also [16]). No evidence was found of

phylogenetic heterogeneity in the strength of the observed effect,

as results for the Neogastropoda alone were indistinguishable from

those for the remaining taxa. In contrast, the strength of the effect

did increase systematically with range depth, with deeper-sea

species showing a stronger tendency to converge in size.

Nevertheless, the effect is still apparent in species inhabiting the

mesopelagic zone (200–1000m), and so cannot be attributed to

unique features of abyssal ecology.

Since the pattern was first identified [1–3] the island rule has

been explained in a large number of ways [1–11]. A powerful

method of distinguishing between the competing explanations is to

test for the presence of analogous patterns in systems that share

some, but not all of the ecological characteristics of island habitats

[4,12,34]. For example, one putative contributor to the vertebrate

pattern is ‘‘immigrant selection’’, that is, between-lineage differ-

ences in the probability of reaching isolated islands, as opposed to

differences in survival after colonisation [4,35,36]. The coloniza-

tion of the deep-sea benthos differs clearly and qualitatively from

the colonization of islands, and so if it is assumed that the similar

Figure 2. Comparison of effect size across depths and
taxonomic groups. The body sizes of deep-sea gastropods are
plotted against those of their shallow-water congeners. ‘‘Shallow-
water’’ species were never observed below 200m, and ‘‘deep-sea’’
species never observed above depths of A: 200m, B: 400m and C: 600m.
Separate standardized-major-axis regression lines are shown for the
Neogastropoda (black points) and all other groups (grey points). The
dotted line is the 1:1 expected under the null. Genera with fewer than
two deep and two shallow species were excluded.
doi:10.1371/journal.pone.0008776.g002

Table 2. Gastropod body size evolution above the abyssal or
bathypelagic zones.

A B

Excluded
species S n b p n b p

min.
depth.3000m

43 108 0.863 0.026* 54 0.842 0.005**

max.
depth.3000m

92 108 0.868 0.029* 54 0.845 0.005**

min.
depth.1000m

140 104 0.886 0.066 49 0.848 0.008*

max.
depth.1000m

281 99 0.895 0.098 47 0.859 0.014*

Regressions of deep-sea onto shallow-water body sizes, when abyssal or
bathypelagic species were excluded. Deep-sea species were defined as those
never observed above 400m (part A) or 200m (part B), and shallow-water
species as those never observed below 200m in both cases. Part B excludes
genera with fewer than two deep and two shallow species. S: the number of
species excluded from the analysis; n: sample size; b: regression slope;
p: permutation p-value.
*p,0.05.
**p,0.005.
doi:10.1371/journal.pone.0008776.t002
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patterns of body size evolution reflect a similarity of underlying

cause [12], this argues against immigrant selection as a key

determinant of the graded trend that is observed in both cases.

Similarly, predator release is a particularly plausible explanation

of the vertebrate island rule [1,4,6,11]; this is partly because it can

naturally account for both dwarfism and gigantism (by assuming

that large and small body sizes evolve as alternative strategies for

predator avoidance), and partly because predator release is so

clearly implicated in other unusual characteristics of island

endemics (such as tameness) [37,38]. But there is little evidence

that reduced predation characterises the deep-sea [12,14], and

indeed there is direct evidence of substantial predation acting on

deep-sea gastropods [12,39–41]. The gastropod results therefore

argue against the predator release hypothesis as a general

explanation of the island rule [12].

So what ecological factor is common to both systems? McClain

et al. [12] argue that reduced resource availability characterises

both islands and the deep-sea benthos, and that theories invoking

resource limitation [1,3,4,6,9,11,12,37,42] are therefore the most

plausible explanation of the common pattern. While compelling,

this argument is not conclusive. First, as recognised by McClain et

al. [12] the two environments are characterised by resource

limitation of quite different kinds: reduced resources per unit area

in the deep-sea (albeit with some probable exceptions such as

hydrothermal vents) [12,15,42], and a reduced amount of total

resources on small islands, but not necessarily reduced productivity

per unit area (again, with exceptions such as very young volcanic

islands). Second, theories that invoke limitation in the total amount

of resources (and that therefore apply to islands) are often clade

selectionist, i.e., they assume that we will tend to observe

individuals of the size that minimises the extinction risk of their

population [9,37,43]. Explanations of this kind need to be

employed with great care [44], and to explain the island rule, it

must be demonstrated that individual selection tends towards the

same outcome, or that differential extinction has indeed played an

important role. Furthermore, it is not clear that total resource

availability is limiting in some well-studied cases [7,45].

We are therefore still far from understanding the causes of the

patterns observed – and particularly the roles of inter- and intra-

specific competition [3,4,11,12]. A detailed clarification of where

the pattern does and does not hold will be an important step

toward achieving this goal [4,12,19,20].

Supporting Information

Table S1 Supplementary Data Table

Found at: doi:10.1371/journal.pone.0008776.s001 (0.29 MB

TXT)
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