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Abstract

Background: We have previously identified genome-wide DNA methylation changes in a cell line model of breast cancer
metastasis. These complex epigenetic changes that we observed, along with concurrent karyotype analyses, have led us to
hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy) are superimposed over
promoter-specific methylation events that are responsible for gene-specific expression changes observed in breast cancer
metastasis.

Methodology/Principal Findings: We undertook simultaneous high-resolution, whole-genome analyses of MDA-MB-
468GFP and MDA-MB-468GFP-LN human breast cancer cell lines (an isogenic, paired lymphatic metastasis cell line model)
using Affymetrix gene expression (U133), promoter (1.0R), and SNP/CNV (SNP 6.0) microarray platforms to correlate data
from gene expression, epigenetic (DNA methylation), and combination copy number variant/single nucleotide
polymorphism microarrays. Using Partek Software and Ingenuity Pathway Analysis we integrated datasets from these
three platforms and detected multiple hypomethylation and hypermethylation events. Many of these epigenetic alterations
correlated with gene expression changes. In addition, gene dosage events correlated with the karyotypic differences
observed between the cell lines and were reflected in specific promoter methylation patterns. Gene subsets were identified
that correlated hyper (and hypo) methylation with the loss (or gain) of gene expression and in parallel, with gene dosage
losses and gains, respectively. Individual gene targets from these subsets were also validated for their methylation,
expression and copy number status, and susceptible gene pathways were identified that may indicate how selective
advantage drives the processes of tumourigenesis and metastasis.

Conclusions/Significance: Our approach allows more precisely profiling of functionally relevant epigenetic signatures that
are associated with cancer progression and metastasis.
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Introduction

A variety of whole-genome approaches have been used to

identify the molecular profiles that contribute to and reflect cancer

progression. To date, the scope of such whole genome profiling

efforts has encompassed classical karyotypic analyses that identify

chromosomal rearrangements [1], as well as gene expression

profile [2] and epigenetic studies (including by our group; [3,4])

that provide snap-shot signatures of gene expression and

chromatin modification patterns, respectively. In the context of

breast cancer, whole genome approaches have identified prog-

nostic gene sets that predict a short interval to distant metastases

(i.e. a poor prognosis signature; [5,6,7]) and described gene profiles

that mediate metastasis to a secondary site [8,9,10]. However, few

reports have identified epigenetic signatures of breast cancer,

particularly in the context of epigenetic mechanisms of tumour-

igenesis that could be applied in cancer management. Such

applications could provide diagnostic tests, prognostic factors and

predictors of treatment response that would complement standard

gene-expression based assays [11]. Furthermore, the integration of

data sets from multiple whole genome platforms is complicated by

the interrelated nature of the genetic and epigenetic signatures that

characterize individual cells in both their normal or tumourigenic

states [12]. For example, gene expression can be regulated at
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multiple levels that include epigenetic modulation by DNA

methylation or through histone modifications that modify

chromatin accessibility. In addition, recent reports show that gene

copy number adds a further level of complexity in understanding

the molecular context of health and disease states. This is because

variations in gene dosage can complicate the interpretation of

microarray data and may also differentially contribute to the

developmental or tumour phenotype [13]. In only a few reports

have such whole genome profiling efforts been integrated [14,15],

allowing a multi-dimensional characterization of biological systems

[16]. In perhaps the most thorough report to date, integrative

analysis of global cancer-related changes in DNA methylation,

genomic imbalance, and gene expression provided evidence of the

cumulative roles of epigenetic and genetic mechanisms in

deregulation of gene expression networks in osteosarcoma [17],

providing evidence for the combined contributions of genetic,

epigenetic and chromosomal (cytogenetic) alterations to tumour

progression.

Previously, we described the first use of a human gene promoter

tiling microarray platform to identify genome-wide DNA meth-

ylation patterns in a human breast cancer cell line model of

metastasis [4]. Gene networks and pathways were identified in

MDA-MB-468GFP (468GFP) and MDA-MB-468LN (468LN)

cells and selected target genes associated with epithelial–mesen-

chymal transition (EMT) were validated with respect to DNA

methylation effects on gene expression. Although we found that

many hypermethylation and hypomethylation events were inter-

spersed across the genome, we also observed an apparent

clustering of methylation events within identifiable chromosomal

regions. For example, enriched regions of hypermethylation events

were identified on chromosomes 6p, 7p, 11p/q, 18p and 19p/q,

and similar clustering of hypomethylated events (on 1p, 3q, 7q and

20q) was also found [3,4]. Analyses were subsequently undertaken

that identified complex chromosomal rearrangements, including

deletions, translocations and ploidy differences between these cell

lines [1]. We also observed that a number of these chromosomal

rearrangements included regions to which we had assigned

clustered methylation signatures in our promoter methylation

profiling study. Thus, these complementary data sets generated by

our two studies have led us to hypothesize that complex genomic

alterations in cancer cells (deletions, translocations and ploidy) are

superimposed over promoter-specific methylation events respon-

sible for gene-specific expression changes in breast cancer

metastasis.

Here we tested this hypothesis using whole-genome platforms to

cross reference gene expression, epigenetic and copy number data,

in this human model of breast cancer metastasis [18]. Briefly, we

undertook simultaneous high-resolution, whole-genome analyses

using Affymetrix gene expression (U133) promoter (1.0R) and

Copy Number Variation/Single Nucleotide Polymorphism (SNP

6.0) microarray platforms to correlate gene expression, epigenetic

(DNA methylation), and gene copy number information. We

observed widespread hypomethylation and hypermethylation

differences within this cell line pair, many of which (,650)

correlate with gene expression changes. In addition, gene dosage

events correlated with the profound karyotypic differences

between the cell lines and were reflected in the methylation

patterns that we observed. We used Partek Software analyses to

integrate the three microarray platforms and to identify subsets of

genes with methylation/expression patterns that were either

dependent (or independent) of gene copy number. These included

the SFN, TMEM16A, WNT5A, DLC1 and HOXD13 genes, the

expression of which were validated by Quantitative Real Time

PCR (qRT-PCR). Our integrated report thus provides an

algorithm to logically assess prospective gene targets that are

epigenetically regulated and those that are altered by copy number

(but are not epigenetically modified) thus allowing us to refine the

epigenetic signatures of breast cancer.

Materials and Methods

Cell Culture and Genomic DNA (gDNA)/Total RNA
Extraction

MDA-MB-468GFP (468GFP) and MDA-MB-468GFP-LN

(468LN) human breast cancer cell lines were isolated and

characterised as described previously [18]. For gene expression

studies, cells were grown from frozen stocks in aMEM medium

(Invitrogen) Supplemented with 10% FCS (Wisent Inc.) for 4

passages, without the use of antibiotics. At the fifth passage, each

cell line was split into parallel flasks (three each for expression and

promoter analysis, and two for Copy Number Variation/Single

Nucleotide Polymorphism (CNV/SNP) analysis, and grown to

approximately 70% confluence. In some experiments, 468LN cells

were cultured (with antibiotics) for 72 hours in the presence of

10 mM 5-aza-29-deoxycytidine (5-azaC), with or without an

additional 16 hour exposure to the histone deacetylase inhibitor

Trichostatin A (TSA; 50 nM). A fourth treatment group with 5-

azaC for 88 hours was also added. For gene expression

microarrays, total RNA from each biological replicate was isolated

using Trizol (Invitrogen) as per the manufacturer’s instructions.

For CNV/SNP arrays, genomic DNA (gDNA) was isolated from

each flask separately using the GenElute Genomic DNA Miniprep

kit (Sigma-Aldrich, St. Louis, MO, USA), as per the manufactur-

er’s instructions. All microarray hybridizations, staining, washing,

scanning, and data analyses were carried out at the London

Regional Genomics Centre [47]. A complete list of PCR primers

used in this study is presented in Table S1.

Gene Expression Microarrays
Total RNA from each biological replicate was isolated using

Trizol (Invitrogen) as per the manufacturer’s instructions. 10

micrograms of RNA was used to produce Biotin-labeled cRNA,

which was hybridized to Affymetrix HGU133_Plus_2 arrays.

Array washing, scanning and probe quantification were carried

out as per the manufacturer’s instructions using GCOS software

[48], except that the target intensity was set to 150. For each array,

GCOS output was imported as. CEL files into Partek Genomic

Suite software (Agilent), and data were normalized using the RMA

(Robust Multichip Averaging) algorithm. ANOVA with nominal

alpha value set to 0.05 was then used to determine those probe sets

significantly different between the 468GFP and 468LN cell lines,

followed by a Benjamini and Hochberg Multiple testing correction

to reduce the false positive rate. These results were then separated

by significant increasers or decreasers, and used in cross platform

analysis.

Human Promoter Microarrays
Analysis of hyper- and hypomethylated promoters in 468GFP vs

468LN was carried out using Affymetrix Human Promoter 1.0R

arrays as described previously [4]. The annotations for the

HGU133_Plus_2 array were used to determine which probe sets

were associated with regions appearing to be significantly hyper-

or hypomethylated in 468LN vs 468GFP cells, and these probe set

IDs were used in cross platform analyses.

CNV/SNP Microarray Analysis
To detect copy number variations in the 468LN vs the 468GFP

cell lines, 4 mg of the same genomic DNA used in promoter
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PLoS ONE | www.plosone.org 2 January 2010 | Volume 5 | Issue 1 | e8665



analysis was labelled, fragmented, and hybridized to Affymetrix

SNP 6.0 arrays. This array contains probes used in SNP analysis,

as well as probes specific for CNV detection. CEL files produced

by GCOS software for each array were then imported into Partek

Genomic Suite and analyzed using the Copy Number Analysis

workflow. All. CEL files were background corrected using RMA as

above, and results were corrected for probe GC content and

fragment length. 468LN cells were compared directly to 468GFP

cells. Significantly different regions were determined using the

Hidden Markov Model algorithm of the Partek Genomic Suite set

to detect copy number (CN) states of 0.1, 1, 3, 4, 5 (a CN state of 2

was ignored), with the minimum number of probe sets contained

in a region for it to be considered set to 3. Only regions of CNV

showing up in two of two replicates were reported, and both SNP

and CNV probes were used in the analysis. Regions identified

were annotated with gene symbols by importing the annotation file

from the UCSC genome browser (build hg18). Affymetrix Probe

IDs from the HGU133_ Plus_2 array for the genes in all regions

appearing either increased or decreased in copy number in the

468LN/468GFP direct comparison were obtained by submitting

the gene symbols to Affymetrix through the Netaffx tool [49];

(http://www.affymetrix.com/analysis/index.affx). Alternatively,

468GFP or 468LN samples were compared to samples taken

from normal females. As a normal reference population, we used a

subset of 60 Yoruba (YRI; Ibidan, Nigeria) females of the 270

samples from the International HapMap project, which were run

on the SNP 6.0 array (data available at Affymetrix). The

microarray data discussed in this publication have been deposited

in the National Center for Biotechnology Information’s Gene

Expression Omnibus (GEO) under accession GSE15619, along

with detailed protocol notes.

Cross Platform Venn Analysis
Probe set IDs from each of the three Microarray platforms were

imported as separate lists into Genespring 7.3 GX (Agilent), and

compared using the Venn Analysis tool. Probe sets appearing

hypomethylated, increased in expression, and increased in copy

number were compared in one analysis, and probe sets appearing

hypermethylated, decreased in expression, and decreased in copy

number in another. Lists of overlapping probe sets were then

generated, and filtered in EXCEL to determine the number of

unique genes represented. Proportionate Venn diagrams were

then created based on these data sets.

Bisulfite Genomic Sequencing
Hyper- or hypomethylation of regions predicted from the array

analysis were confirmed using a variation of the bisulfite

conversion method [19]. Genomic DNA (gDNA; 2 mg) was

bisulfite treated using the Epitect DNA bisulfite treatment kit

(Qiagen) as per the manufacturer’s instructions. Primers specific to

the converted gDNA were designed using the MethPrimer

software [20] with the default parameters, except that amplicons

were designed to be between 200 and 500 base pairs. For each cell

line, 60 ng of each converted gDNA was subjected to PCR in 1X

buffer, 200 uM dNTPs, 2.0–2.5 mM MgCl2, 400 nM forward

and reverse primers (Sigma-Genosys), and 1 Unit Taq Polymerase

(Invitrogen). The cycling conditions used were 1 cycle of 94uC for

5 minutes, followed by 5 cycles of 94uC for 1 minute, 55uC for 2

minutes, and 72uC for 2.5 minutes. This was followed by 35 cycles

of 94uC for 1 minute, 55uC for 1 minute, and 72uC for 1.5

minutes. PCR products were visualized using agarose gel

electrophoresis/ethidium bromide staining, and PCR products

purified using the Qiaquick PCR purification kit. For each CpG

island to be tested, 25 ng of purified PCR products from each cell

line were then ligated into the T-vector PCR2.1 (Invitrogen)

overnight at 14uC as per the manufacturer’s instructions. Plasmids

thus generated were transformed into TOP10 competent bacteria

using the heat shock method and transformed bacteria were

spread onto LB-Agar plates containing 100 mg/mL ampicillin, and

50 mL of 10 mg/mL 5-bromo-4-chloro-3-indolyl-beta-D-galacto-

pyranoside (X-gal). Plates were incubated overnight at 37uC, and

white colonies were picked and ‘‘patched’’ onto fresh LB-Agar

plates. Potential clones were directly screened by PCR using gene

specific primers, and clones showing the expected band size were

inoculated into 2 mL of TB containing 100 mg/mL ampicillin and

grown overnight at 37uC. Plasmid DNA was isolated using the

Genelute Plasmid Miniprep kit (Sigma), and sequenced using the

T7 promoter primer. Clone sequences thus obtained were

compared to the expected sequence using the ClustalW alignment

algorithm [21].

Quantitative Real Time PCR (qRT-PCR)
qRT-PCR was used to confirm the effect of promoter

methylation on gene expression. For each cell line, RNA used

for expression microarray analysis was also used to synthesize

cDNA with Superscript II (Invitrogen), as per the manufacturer’s

instructions. Real-time primers were then designed for each gene

using Primerquest Software (Integrated DNA Technologies, [50])

with 18S chosen as the reference gene. Reactions (in triplicate for

each biological replicate) used RT2 qPCR Mastermix (SABios-

ciences, Frederick, MD, USA), 200 nM forward and reverse

primers, 200 uM dNTPs, and 1 uL cDNA diluted 1:5 or 1:10,

using the Rotorgene RG-3000 thermocycler (Corbett Research,

Kirkland, PQ, Canada). Standard curves were generated for each

gene, using cDNA derived from a serial 3 fold dilution of cDNA

derived from one of the biological replicates. cDNA from 468GFP

cells was used for the standard curves, where the gene was

expected to be increased in its expression in this line relative to

468LN; otherwise cDNA from the 468LN cell line was used. For

each biological replicate, relative amounts of each gene were

determined by comparison to the standard curve. The ‘‘unknown’’

samples were then normalized to 18S, and the expression level in

the parental 468GFP cell line was set to 1. Results are presented as

fold change relative to control. A similar method was used to

examine the change in expression of SFN, TMEM16A and

WNT5A in 468LN cells after treatment with 5-azaC, with or

without TSA, except that GAPDH was used as the internal control

gene.

qRT-PCR was also used to confirm copy number. Exonprimer

software [51] was used to design primers that amplify across an

exon for each gene of interest. The human mispriming library was

used to decrease the probability of cross hybridization of primers.

Standard curves for each primer set were generated using serial 5

fold dilutions of normal human female DNA (Novagen), starting at

30 ng/mL. qRT-PCR was carried out as above, except that 15 ng

per reaction of the same genomic DNA used in the promoter array

analysis was used. For each biological replicate, relative amounts

of each gene were determined by comparison to the standard

curve. The ‘‘unknown’’ samples were then normalized to b-globin,

and the copy number in the parental 468GFP cell line was set to 1.

Results are presented as fold change relative to control 6 SEM. P-

values were calculated by first log (base10) transforming the

individual normalized ratios, and the normal distribution of each

group (468GFP or 468LN) was checked using the Kolmogorov-

Smirnov test. Equality of Variances was checked and confirmed

using Levene’s test, and p-values for copy number change in

468LN relative to 468GFP was calculated using the students t-test.

Epigenetics and Metastasis
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Statistical Analyses were performed using SigmaStat software

(Systat Software, Point Richmond, CA, USA).

Ingenuity Pathway Analysis (IPA)
Gene networks and canonical pathways representing key

genes were identified using the curated Ingenuity Pathways

Analysis (IPA) database as previously described [4]. Briefly, the

data set containing gene identifiers and corresponding fold

changes was uploaded into the web-delivered application and

each gene identifier was mapped to its corresponding gene

object in the Ingenuity Pathways Knowledge Base (IPKB). The

functional analysis identified the biological functions and/or

diseases that were most significant to the data sets. Fisher’s exact

test was performed to calculate a p value determining the

probability that each biological function and/or disease assigned

to the data set was due to chance alone. The data set was mined

for significant pathways with the IPA library of canonical

pathways and networks were generated by using IPA as

graphical representations of the molecular relationships between

genes and gene products. The intensity of genes (node) colour in

the networks indicates the degree of downregulation (green) or

upregulation (red) of gene expression. Nodes are displayed using

various shapes that represent the functional class of gene

products.

Results

Copy Number Analyses Reveal Chromosomal Gains and
Losses in These Breast Cancer Cell Lines

We undertook high-resolution whole genome profiling using

several Affymetrix microarray platforms to cross reference gene

dosage, expression and DNA methylation changes in an isogenic,

paired cell lines based on the human MDA-MB-468 breast

adenocarcinoma cell line [18,22,23]. The cell lines used in the

present study include the GFP-transfected parental, poorly

metastatic MDA-MB-468GFP (468GFP) cell line and a progeny

MDA-MB-468GFP-LN (468LN) cell line variant that is highly

tumourigenic and that also maintains a propensity to metastasize

in a mouse xenograft models. Previously, we had used classical

karyotype analyses to identify complex chromosomal rearrange-

ments that were both shared and unique to each of the two cell

lines [1]. Although karyotyping identifies genetically distinct cell

clones within a cancer cell population, it is difficult to cross

reference karyotype data with data from other whole genome

platforms. Therefore, the Affymetrix genome-wide SNP array 6.0

platform was used to provide copy number estimates across the

genomes of the 468GFP and 468LN cells. (All copy number

microarray data are presented in Tables S2 and S3.) There are

more than 1.8 million markers on a single 6.0 array, with half of

these being non-polymorphic probes selected for their linear

response to copy number and genomic position [24]. Two arrays

were probed with duplicate DNA samples from the 468GFP and

the 468LN cell lines, with the resultant data imported into and

analyzed with the Partek Genomic Suite (Figure 1). When data

were mapped to individual chromosomes, we were able to identify

approximately 96 large regions of chromosome copy number

differences between the 468LN and the 468GFP cells, spanning

from 10–100 megabases (Figure 2). A number of these

chromosomal changes appeared to reflect the common aberrations

we had previously reported by karyotype analysis [1].

These regional changes in chromosome copy number were

particularly obvious when heat maps generated from 468GFP and

468LN DNAs were compared to a normal reference female

Yoruba (YRI) population (Ibadan, Nigeria; [25]) from the

International HapMap Project (Figure 3). This particular

comparator population was chosen because the MDA-MB-468

cell line was originally isolated from the pleural effusion of a 51-

year-old African-American female patient with metastatic adeno-

carcinoma of the breast [22]. As shown in Figure 3, comparisons

of probe heat maps from these three genomes (468GFP, 468LN

and YRI) showed complex differences among all three genomes.

The 468LN genome possessed regions that appeared unchanged

from the control population but also displayed regions that differed

between 468GFP and 468LN cells. In comparing the 468LN vs

468GFP genomes (Table 1), the median copy number increase

was 3.84N (range 2.11 – 47.50), with a median size of an amplified

region being 666 kb (range 8 bp–36 Mb), while the median copy

number decrease was 1.23N (range 0.07 – 1.92), with a median

size of deleted region of 292 kb (range 6 bp–31 Mb). Copy

number (averaged across the chromosomal regions; hence the

fractional values) and fragment size data specific to each

chromosome are also provided in Table 1. Specific examples of

these regional changes in copy number can also be observed in the

representative context of chromosome 6, by comparing the data

across the three genomes (Figure 4). Genome comparisons

between 468LN vs 468GFP revealed five defined regions on

chromosome 6, ranging from 19.4 to 31.9 Mb, that varied

between 1N and 3N in copy number. Comparisons between the

cell lines and the control population showed additional variations

in these patterns. For example, the 468GFP/YRI comparison

showed an apparent proximal 6q (q12–q24) aneuploidy (3N) along

with an apparent loss of one copy of 6q24-qter. A different profile

was seen with the 468LN/YRI comparison of chromosome 6,

where we observed increased ploidy (up to 5N) that was limited to

the 6q centromeric region. Comparing these data with karyotype

analysis from our previous paper showed that the 468LN line

possesses a population of cells having chromosome 6 variants,

including a common der(6;7)(q13;q22) translocation [1]. Thus, the

468LN vs 468GFP copy number profiles generated by our

analyses represent the cumulative set of chromosomal losses and

gains amassed during the evolution of these cell lines, with these

changes reflecting the retention, the loss and/or the gain of specific

cell clones within the cell line population.

Multi-Array Analyses Define Gene Subsets Related by
Expression, Methylation and Copy Number

We next assessed the functional significance of these complex

rearrangements and copy number changes in the context of gene

expression and epigenetic (DNA methylation) profiles. Gene

expression and promoter methylation patterns were determined

using Affymetrix HGU133_Plus_2 arrays and Human Promoter

1.0R arrays respectively, and two approaches were taken to cross-

reference these data sets. (Expression microarray data are

presented in Tables S4 and S5; methylation microarray data

are published in [4].) First, we used Partek Genomic Suite to

directly align these three data sets in the context of each

chromosome. Using chromosome 6 again as an example

(Figure 5), we compared the 468LN and 468GFP profiles and

observed direct correlations between the regional blocks related to

copy number (Figure 4) and apparent ‘blocks’ of DNA

methylation along the chromosome. Interestingly, we observed

that a relative loss in copy number correlated with a gain in

hypermethylation, while increases in copy number correlated

with losses in DNA methylation (see 6q in Figure 5). Expression

data for individual genes on the whole do not appear to

consistently correlate with these apparent regional changes in

copy number and DNA methylation. Similar multi-array
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alignment data specific for all other chromosomes are provided in

Figure S1.

Our second approach involved importing probe set IDs from

each of the three microarray platforms and comparing these sets

using the Genespring Venn Analysis tool. Figure 6 shows cross-

referenced probe sets that were hypermethylated, decreased in

expression, and decreased in copy number (Figure 6A) as well as

probe sets that were hypomethylated, increased in expression and

with a gain in copy number (Figure 6B). While platform-specific

gene sets ranged from 1400 to 5700 genes, these Venn diagram

analyses allowed us to identify specific gene subsets (38 to 228

genes; regions 1,2,3,4 in Figure 6) with specific relationships

between expression, methylation status and copy number. As

shown in Figure 6A, region (1) defined 177 genes with a

functional relationship between hypermethylation and decreased

expression that is independent of copy number, while region (2)

defined 228 genes with a functional relationship between

hypermethylation and decreased expression that is dependent

of copy number. Similar gene sets identified in relation to gene

expression and hypomethylation (regions 3,4) are shown in

Figure 6b. (Complete gene lists for regions 1–4 are presented in

Tables S6–S9.)

Ingenuity Pathways Analysis (IPA) of Differentially
Methylated/Expressed/Copy Number Variant Gene
Targets

Annotated gene lists were created with the 405 significantly

hypermethylated (P,0.05; Tables S6, S7) and 246 hypomethy-

lated (P,0.05; Tables S8, S9) gene targets identified within the

four intersected regions that are shown in Figure 6. We used IPA

to investigate the biological relevance of the observed genome-

wide methylation changes by categorizing our data set into

biological functions and/or diseases (Figure 7A). These broad

categories each involved genes having roles in cell death, cell

signalling, cellular movement, cancer and other functional

categories. We also searched the gene lists and identified a

number of significant canonical pathways from the IPA library,

including pathways involved in B cell receptor, p53 and 14-3-3

signalling pathways (Figure 7B). Network analysis was also

performed to provide a graphical representation of gene having

known biological relationships. The top five networks were related

to the EGFR, TGFb1, NFkb, ERK and the Mapk genes, with

each network involving 30–40 hypermethylation/downregulation

and hypomethylation/upregulation events (Figure 8; A,C). We

Figure 1. Experimental design for gene expression, promoter methylation and copy number analysis, and data integration.
Individual microarrays in replicates (red, light blue or gray boxes for expression, promoter methylation, or copy number variation analysis
respectively) were imported into Partek Genomics Suite (PGS) software and background corrected using the RMA algorithm. Genes significantly
altered in expression, promoter methylation, or in copy number were then compared using Venn analysis in PGS, and further validated. GFP: MDA-
MB-468GFP cells; LN: MDA-MB-468GFP-LN cells; RMA: Robust Multichip Averaging.
doi:10.1371/journal.pone.0008665.g001
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also performed network analyses on the two intersecting regions (1

and 3) that displayed genes that were independent of copy number

(Figure 8; B,D) and compared these results with the ‘complete’

networks derived from genes in all four regions. The level of

expression of a number of genes in these networks (e.g the EGFR

and Mapk networks; Figure 8, arrows), were predicted to be

dependent on copy number as shown by the green (downregulat-

ed) and red (upregulated) shading of these gene icons in the

networks.

Confirmation of DNA Methylation, Expression and Copy
Number Status

We undertook sodium bisulfite analysis (Figure 9) to confirm the

DNA methylation status at several gene loci putatively identified as

being differentially methylated. Three of these genes (SFN,

TMEM16A and WNT5A) showed dramatic hypermethylation

in the 468LN cells (up to 92% CpG methylation), in contrast with

,1% CpG methylation of the same promoter regions in the

468GFP cells, confirming the promoter microarray in silico

analyses. In contrast, DLC1 and HOXD13 were markedly

hypomethylated in the 468LN cells, in comparison with the

468GFP cells (,1% versus 38–73% methylation). Subsequent

qRT-PCR experiments (Figure 10A) showed that expression of the

hypermethylated SFN, TMEM16A and WNT5A genes was

decreased in 468LN cells, whereas the hypomethylated DLC1

and HOXD13 genes were significantly increased relative to the

468GFP cells. VANGL1 expression did not change. In addition,

we have previously shown that EGFR was significantly hyper-

methylated in 468LN cells (47% vs ,1%) [1].

Copy number status for these genes as determined by SNP6.0

arrays was confirmed by qRT-PCR, using normal human

genomic DNA as an external standard. After normalization to

the internal standard (b-globin), a student’s t-test was used to

compare the copy number of each gene in 468LN cells vs that in

468GFP cells. The results are summarized in Figure 10B. These

experiments showed that as predicted, copy number of SFN,

WNT5A and TMEM16A in 468LN cells (subregion 1; Figure 6)

did not significantly differ from that in 468GFP (p-value 0.33,

0.65, and 0.57, respectively). Similar results regarding similar copy

number were confirmed for DLC1 and HOXD13 (subregion 3,

Figure 6; p value = 0.66 and 0.57, respectively). TCF12 increased

in copy number (2.8 fold; p,0.03). In contrast, EGFR (subregion

2, Figure 6) copy number was significantly decreased in LN vs

GFP cells (p = 0.001).

Reversal of DNA Methylation Status
Finally, we asked whether the altered methylation patterns seen

in the 468LN cells could be reversed through the use of ‘epigenetic

drugs’ that can restore the normal epigenetic patterns (and

expression patterns) of these genes. 468LN cells were cultured for

72 hours in the presence of 10 mM 5-aza-29-deoxycytidine (5-

azaC) followed by an additional 16h exposure to the histone

deacetylase inhibitor Trichostatin A (TSA; 50 nM). We observed

phenotypic changes in the treated 468LN cells in that they

changed from a mesenchymal to a more epithelial phenotype that

Figure 2. Mapping of genomic DNA copy number variation to individual chromosomes. The thicker vertical bar in the centre of each scan
represent the normal diploid number, and the points represent smoothed averages of the probes on the array. Points falling to the right (or left) of
the bar indicate regions of copy number gain (or loss, respectively) in 468LN vs 468GFP cells.
doi:10.1371/journal.pone.0008665.g002

Epigenetics and Metastasis

PLoS ONE | www.plosone.org 6 January 2010 | Volume 5 | Issue 1 | e8665



Figure 3. Chromosomal mapping of regions of copy number alteration. Regions appearing increased in copy number are shown in red, and
those decreasing in copy number in blue. A: 468GFP samples vs reference Yoruba population (YRI), B: 468LN samples vs YRI reference population and
C: 468LN vs 468GFP.
doi:10.1371/journal.pone.0008665.g003
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was more similar to the parental 468GFP cell line ([18],

Figure 11A–C). Furthermore, expression analysis using RT-PCR

showed that 5-azaC in both the presence (or absence) of TSA

could re-initiate expression of the stratifin (SFN) gene, which we

had shown was down regulated epigenetically in the 468LN cells

(Figures 9, 10A). As well, TMEM16A expression was re-initiated

after exposure to 5-azaC+TSA while WNT5A trended toward re-

expression relative to control cells. These results confirm that

DNA methylation changes identified from multi-array technology

may be used to identify genes that are potential targets for

epigenetic therapy.

Discussion

Whole genome scanning technologies are providing new

opportunities to identify gene profiles related to breast cancer

progression. While a number of studies have generated genetic

signatures of metastasis risk [7,26], recurrence and clinical

outcome [5,27] and have identified candidates for targeted

therapy [9,10,28], the epigenetic profiles in normal or cancer

cells and in tumours are less well characterized [4,29]. Such

epigenetic signatures encompass the heritable modifications that

do not change the DNA sequence but rather provide ‘extra’ layers

of control that regulate chromatin organization and gene

expression [30,31]. As well, new targeted epigenetic therapies

can potentially be developed to identify and correct epigenetic

alterations and restore normal gene expression patterns that are

dependent on their epigenetic (i.e. DNA methylation) signature

[32,33].

The advent of these various whole genome platforms allows new

opportunities to cross-reference these vast data sets to better

understand tumour progression. Several groups have addressed

allelic imbalance in tumourigenesis and undertaken comparative

studies to integrate copy number analysis with gene expression

patterns in the context of breast [34], lymphoma [35] and

glioblastoma [36,37]. Only a few reports have integrated global

cancer-related changes in DNA methylation, genomic imbalance

and gene expression, most notably in the context of osteosarcoma

[17] and in the development of the SIGMA cancer genome

database [38].

In this present report we address the relationship between

multiple genomic parameters associated with breast cancer

metastasis and progression, by hypothesizing that the complex

chromosomal alterations in cancer cells may complicate the

interpretation of the promoter-specific methylation events respon-

sible for gene-specific expression changes. Our multi-platform

microarray approach simultaneously cross-referenced data sets

related to gene copy number, epigenetic (DNA methylation) and

gene expression patterns in a paired set of MDA-MB-468 breast

adenocarcinoma-derived cell lines that provided a model for

tumour progression. While other reports have combined various

platforms to integrate analysis of high-resolution microarray

Table 1. Association of significantly altered chromosomal regions with copy number variations.

Copy Number Increase Copy number decrease

region size (bases) CNV (LN vs GFP) region size (bases) CNV (LN vs GFP)

Chromosome Median range Median range Median range Median range

1 581135 1567–9179039 5.8 4.1–14.3 448766 178–4767825 1.4 0.1–1.4

2 19747 651–1754927 4.7 2.7–10.7 852822 142214–1328049 1.4 1.0–1.5

3 1714572 537–28619174 4.7 2.9–19.2 127 NA 0.7 NA

4 8158 366–870275 7.7 2.8–20.1 5060 115–54438 0.5 0.1–1.8

5 341544 382–12325442 3.8 3.2–45.9 820233 522–3962771 1.4 0.1–1.5

6 1345260 3648–4638195 2.9 2.4–3.3 3448507 582–31365262 1.2 0.3–1.4

7 1204223 357–10771567 3.8 2.1–47.5 120894 1198–13880419 0.5 0.1–1.8

8 523419 8–36364716 3.5 2.1–43.6 93012 927–416995 1.4 0.2–1.7

9 263469 41754–1489090 3.6 2.4–13.1 128738 6–20341142 1.0 0.2–1.4

10 1276318 565–18668517 3.5 3.0–6.5 179326 202–4999305 1.4 0.1–1.5

11 318665 4142–4710428 3.2 2.4–13.4 28250 13–15453067 0.7 0.2–1.5

12 257993 5211–4882198 3.6 3.3–19.4 15679 33–191249 0.5 0.1–0.9

13 24321 492–2742074 9.9 4.1–14.6 75230 362–18599472 1.1 0.2–1.3

14 158006 945–14212298 3.1 2.9–29.6 14272 210–3791211 0.3 0.1–1.2

15 1169715 382–20624312 3.8 3.1–39.1 139 NA 0.3 NA

16 433423 35–14073681 5.0 2.7–20.0 2976128 16026–15420894 1.2 0.6–1.3

17 496178 335–7515169 4.1 2.8–22.3 692738 820–11936223 1.2 0.2–1.3

18 7296 1105–47923 8.1 5.6–21.9 5199602 255–15390865 1.3 0.9–1.4

19 9639422 NA 3.2 NA 704502 4741–3695496 1.4 0.2–1.5

20 515523 1816–20739653 3.7 3.3–5.3 148965 40585–514274 1.3 1.0–1.9

21 201578 NA 3.3 NA 59842 11145–4587497 0.5 0.3–1.1

22 421267 6473–7039940 3.7 3.1–16.8 214143 7038–943379 1.3 1.1–1.5

X 1766175 413–14118291 4.0 3.0–9.9 123480 253–5781886 1.4 0.1–1.9

doi:10.1371/journal.pone.0008665.t001
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Figure 4. Chromosomal mapping of copy number variations detected in Human SNP 6.0 arrays. As a reference population, we used a
subset (60 Yoruba females; YRI) of the 270 samples from the International HapMap Project [52] run on the Affymetrix Human SNP 6.0 array [48]. Copy
numbers were normalized to 2 for ease of comparison. Chromosomal locations of regions of significant copy number alteration are shown: 468GFP vs
the Yoruba reference population, 468LN vs Yoruba, and 468LN vs 468GFP.
doi:10.1371/journal.pone.0008665.g004

Figure 5. Representative multi-array alignment of data from the SNP/copy number variation (top), gene expression (middle) and
promoter methylation (bottom) are shown for chromosome 6. In the upper panel 1 indicates relative copy number for 468GFP:468LN. For
the U133 array data, plus represents significantly upregulated genes, and minus represents downregulated genes. For the promoter array data, plus
represents significant regions of hypermethylation, and minus represents hypomethylated regions. Also, the promoter array data is presented on a
log2 scale, while for expression data, the height of the bars representing individual genes is proportional to the expression fold change. Similar multi-
array data specific for all other chromosomes are provided in Figure S1.
doi:10.1371/journal.pone.0008665.g005
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Figure 6. Proportional Venn analysis of significantly changed gene regions as determined by multiarray analyses. A: Venn analysis of
genes predicted to be hypermethylated, decreased in expression, and showing a loss in copy number; specific regions of functional overlap are
indicated (1 or 2). B: Venn analysis of genes predicted to be hypomethylated, increased in expression, and showing a gain in copy number; specific
regions of functional overlap are indicated (3 or 4). The diameter of each circle is proportional to the number of genes identified by that specific array
analysis.
doi:10.1371/journal.pone.0008665.g006
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profiles [17,38], we used platforms that share the common

Affymetrix technology base. This permitted a robustness of design

and economy that allowed standardized bioinformatic assessment

and cross-referencing of the data sets, using a single software

bioinformatics package (Partek Genomic Suite) to import, analyze

and cross-reference raw data from the various microarray

platforms.

Our initial copy number analyses revealed complex chromo-

somal rearrangements with approximately 96 large regions of

chromosome copy number differences in the 468LN versus the

468GFP cells, ranging up to 100 megabases (Figure 2). While some

of these chromosomal changes appeared to reflect the common

aberrations we previously reported by karyotype analysis [1],

direct comparisons cannot easily be made, since karyotype

analyses are described as the frequency of chromosomal changes

on a cell to cell basis, while microarray data are generated from

the mixture of DNAs from the multiple cell clones that populate

the cell line. Hence, validation of individual gene targets is

essential to confirm their functional relevance to the cancer cell

phenotype. Since normal cells were not available from the original

host patient from whom the cell lines were derived, we performed

in silico comparisons with a reference population generated by the

International HapMap project (Figure 4). These analyses identi-

fied additional differences between the cell lines and the normal

population and allowed us to better relate the significance of these

chromosomal changes to variable DNA methylation patterns, as

described below.

The multi-array comparisons that were undertaken involved the

complementary approaches of direct alignment of the data sets in

the context of each chromosome (Figure 5A and Figure S1), as well

as comparison of the data sets using the Genespring Venn Analysis

tool (Figure 6). It was immediately apparent from our chromo-

some-based analyses that there were direct correlations between

regional blocks related to copy number and apparent ‘blocks’ of

DNA methylation along each of the chromosomes. Many of the

relative losses in copy number correlated with an apparent gain in

hypermethylation, while increases in copy number tended to

correlate with losses in DNA methylation, again in the 468LN cells

compared to the parental 468GFP line. These data are supportive

of previous reports describing lower levels of DNA methylation in

tumours relative to control DNA [39], with this loss of methylation

mainly due to hypomethylation of repetitive DNA sequences and

demethylation of coding regions and introns [40]. Furthermore,

levels of genomic DNA hypomethylation increase as the cancer

progresses from a benign proliferation of cells to an invasive cancer

[41], which may explain some of the regional methylation

differences we observe in the 468LN cells. Comparisons between

cell line DNAs and the normal reference DNA provide further

interpretation of the ‘additive’ nature of these copy number

changes and their relationship to DNA methylation. As shown in

Figure 7. Ingenuity Pathway analyses. A: Top functional categories and B: canonical pathways from our data set based on significance.
doi:10.1371/journal.pone.0008665.g007
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Figure 12, the additive copy number differences we observed can

be considered relative to specific changes in each of the cell lines

relative to normal cells and points to the progressive nature of

these genomic changes (Normal.468GFP.468LN), some of

which contribute to gene expression losses and gains mediated

through aberrant DNA methylation events (for example, the loss

of a 7p isochromosome present in 468GFP cells and absent in the

derived 478LN cells [1].

Figure 8. Network analysis was performed to provide a graphical representation of genes having known biological relationships.
The EGFR and Mapk networks presented are shown in duplicate, with (A and C), displaying genes comprising the four insecting subregions shown in
Figure 6 (regions 1,2,3 and 4) and (B and D) displaying genes comprising the two intersecting subregions (regions 1 and 3) that have a methylation/
expression status that is independent of copy number. Green icons indicate downregulated genes and red indicates upregulated genes. The arrows
indicate selected genes that have a variable methylation status that is dependent on copy number status.
doi:10.1371/journal.pone.0008665.g008
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In addition to the chromosome-based analyses, Venn Analysis

(Figure 6) provided the next level of analysis to sort and prioritize

functionally relevant genes in this model system. Our integrative

approach allowed us to refine the epigenetic signature that

encompassed 2792 hyper- and 1478 hypomethylated events down

to ,650 variably-methylated gene promoter regions. Ingenuity

Pathway Analysis further categorized our data set into functional

categories and networks (Figure 7) from which high priority gene

targets could be validated for their DNA methylation, expression

and copy number status. The methylation and expression status of

five of these targets is shown in Figures 9 and 10A, confirming the

prediction of hypermethylation (and decreased expression) of SFN,

TMEM16A and WNT5A and the hypomethylation (and

increased expression) of DLC1 and HOXD13 in the 468LN cells.

Furthermore, we used qRT-PCR to confirm that these correla-

tions between the methylation and gene expression status of these

genes was independent of copy number, as predicted by the

assignment of these genes to Venn subregions 1 (SFN,

TMEM16A, WNT5A) and 3 (DLC1, HOXD13) as shown in

Figure 6.

Finally, we addressed the utility of microarray technologies to

identify potential targets for epigenetic-based therapies to restore

normal gene expression patterns. The stratifin gene (SFN), which

has a hypermethylated promoter and displays minimal expression

in the 468LN cells, was chosen as the target gene for these

experiments using the demethylating agent 5-azaC and the histone

deacetylase inhibitor TSA [42]. Stratifin (14-3-3s) is a member of

the 14-3-3 gene family that regulates numerous cell pathways

relevant to breast and prostate cancer including cell cycle arrest,

signal transduction, apoptosis and proliferation [43,44,45]. We

identified stratifin in our experiments through its relationship with

genes focussed in the ras/Mapk pathway identified by Ingenuity

Pathway Analysis (Figure 8), and we subsequently confirmed its

hypermethylated status and loss of expression in 468LN cells

(Figure 9, 10A). We observed phenotypic changes in the 5-azaC/

TSA treated 468LN cells in that they changed from a

mesenchymal to a more epithelial phenotype that was more

similar to the parental 468GFP cell line (Figure 11A–C).

Furthermore, expression analysis using RT-PCR showed that 5-

azaC, in both the presence and absence of TSA, could re-initiate

expression of SFN while TMEM16a was re-expressed significantly

only after the exposure to both drugs. Our data suggest that

epigenetic changes cross-referenced with other multi-array whole

genome technologies can identify genes as potential targets for

epigenetic therapy in the context of multiple genomic character-

istics (gene copy number, DNA methylation and expression), and

would likely provide more accurate prognostic and predictive

assessment than assessing single genes, or single platforms alone

[46], particularly when these changes are cross-referenced with

patient tumour material.

Our multi-platform approach refines the epigenetic signatures in

breast cancer metastasis in the context of gene-specific functional

changes in gene expression and copy number. As well, we show that

this approach that cross-references multiple whole-genome data

sets, also can isolate and identify targets that are altered by copy

number (but are not epigenetically modified) and more precisely

map functionally important epigenetic signatures associated with

cancer progression. Our approach provides enhanced opportuni-

ties, particularly in the context of patient tumour material, to

identify therapeutic targets for breast cancer treatment that are

epigenetically regulated by alterations in DNA methylation.

Supporting Information

Figure S1 Multi-platform integrative analysis of copy number,

expression, and promoter array data.

Found at: doi:10.1371/journal.pone.0008665.s001 (2.06 MB

PDF)

Figure 9. Sodium bisulfite sequencing, gene expression and copy number. Sodium bisulfite sequencing of representative genes detected
with aberrant methylation with (or without) a concomitant change in copy number. Each square represents a CpG (open square: unmethylated;
closed square: methylated). Each row of squares one cloned PCR sequence across the gene promoter (5–20 clones were sequenced per gene).
Percentages indicate degree of methylation at each gene locus.
doi:10.1371/journal.pone.0008665.g009
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Table S1 PCR Primer List.

Found at: doi:10.1371/journal.pone.0008665.s002 (0.03 MB

PDF)

Table S2 Regions showing an increase in copy number, (468LN

relative to 468GFP). Included are associated genes contained

within the regions.

Found at: doi:10.1371/journal.pone.0008665.s003 (0.07 MB

PDF)

Table S3 Regions showing a decrease in copy number, (468LN

relative to 468GFP). Included are associated genes contained

within the regions.

Found at: doi:10.1371/journal.pone.0008665.s004 (0.05 MB

PDF)

Table S4 Genes significantly increased in expression, 468LN vs

468GFP. Expression microarray (HGU133 Plus_2) data were

prefiltered to remove genes changing less than 2 fold, and an

Figure 10. Expression and copy number analyses. A: Quantitative real time RT-PCR expression data for each of these genes, including EGFR.
Scale of the y-axis is log10 of the fold change. B: Determination of copy number by quantitative real time PCR (qRT-PCR). Primers spanning an exon of
the gene of interest were designed using ExonPrimer software, and qRT-PCR performed using 15 ng genomic DNA from 3 biological replicates each
of LN and GFP DNA as template. Shown is the LN/GFP ratio, 6 standard error of the mean (SEM). Data were normalized to b-globin as a reference
gene. A p-value ,0.05 indicates that mean normalized LN copy numbers in LN triplicates were significantly different from those in GFP.
doi:10.1371/journal.pone.0008665.g010
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ANOVA was run to determine significant (p,0.05) changers. A

multiple testing correction using the algorithm of Benjamini and

Hochberg was used to reduce the false discovery rate.

Found at: doi:10.1371/journal.pone.0008665.s005 (0.46 MB

PDF)

Table S5 Genes significantly decreased in expression, 468LN

vs 468GFP. Expression microarray (HGU133 Plus_2) data were

prefiltered to remove genes changing less than 2 fold, and an

ANOVA was run to determine significant (p,0.05) changers. A

multiple testing correction using the algorithm of Benjamini

and Hochberg was used to reduce the false discovery

rate.

Found at: doi:10.1371/journal.pone.0008665.s006 (0.51 MB

PDF)

Table S6 Genes Hypermethylated AND Decreased in expres-

sion, no change in copy number (Venn region 1).

Found at: doi:10.1371/journal.pone.0008665.s007 (0.05 MB

PDF)

Table S7 Genes Hypermethylated AND Decreased in expres-

sion, loss in copy number (Venn region 2).

Found at: doi:10.1371/journal.pone.0008665.s008 (0.07 MB

PDF)

Table S8 Genes Hypomethylated AND Increased in expression,

no change in copy number (Venn region 3).

Found at: doi:10.1371/journal.pone.0008665.s009 (0.06 MB

PDF)

Table S9 Genes Hypomethylated AND Increased in expression,

gain in copy number (Venn region 4).

Found at: doi:10.1371/journal.pone.0008665.s010 (0.07 MB

PDF)
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Figure 11. Exposure to 5-aza-2-deoxycytidine and Trichostatin A. A–C: 468LN cells were cultured for 7 days in A: the absence or B: the
presence of 5-aza-2-deoxycytidine followed by C: an additional 16 h exposure to the histone deacetylase inhibitor Trichostatin A (TSA). D: Induction
of epigenetically down-regulated genes. 468LN cells were cultured in the absence (Control) or presence of 5-aza-2-deoxycytidine (5AZA) for 72 hours
(5AZA 72 hr), 88 hours (5AZA 88 hr), or for 72 hours followed by the addition of Trichostatin A (TSA) for 16 hours (5AZA+TSA). Total RNA was
extracted and qRT-PCR performed as described in the text. Significant group differences were determined using ANOVA followed by the Student-
Newman-Keuls multiple comparison procedure. a: significantly different (p,0.05) vs Control. b: significantly different vs 5AZA 72 hr. c: significantly
different (p,0.05) vs 5AZA 88 hr.
doi:10.1371/journal.pone.0008665.g011
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