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Abstract

Background: A frequent manifestation of asthma, exercise-induced bronchoconstriction (EIB), occurs in 30–50% of
asthmatics and is characterized by increased release of inflammatory eicosanoids. The objective of this study was to identify
genes differentially expressed in EIB and to understand the function of these genes in the biology of asthma.

Methodology/Principal Findings: Genome-wide expression profiling of airway leukocytes and epithelial cells obtained by
induced sputum was conducted in two groups of subjects with asthma with and without EIB (n = 7 per group), at baseline
and following exercise challenge. Based on the results of the gene expression study, additional comparisons were made
with a normal control group (n = 10). Localization studies were conducted on epithelial brushings and biopsies from an
additional group of asthmatics with EIB (n = 3). Genes related to epithelial repair and mast cell infiltration including b-
tryptase and carboxypeptidase A3 were upregulated by exercise challenge in the asthma group with EIB. A gene novel to
asthma pathogenesis, transglutaminase 2 (TGM2), was the most differentially expressed at baseline between the groups. In
vivo studies confirmed the increased expression of TGM2 in airway cells and airway lining fluid, and demonstrate that TGM2
is avidly expressed in the asthmatic airway epithelium. In vitro studies using recombinant human enzymes reveal that TGM2
augments the enzymatic activity of secreted phospholipase A2 (PLA2) group X (sPLA2-X), an enzyme recently implicated in
asthma pathogenesis.

Conclusions/Significance: This study found that TGM2, a mediator that is novel to asthma pathogenesis, is overexpressed
in asthmatic airways and functions to increase sPLA2-X enzymatic activity. Since PLA2 serves as the first rate-limiting step
leading to eicosanoid formation, these results suggest that TGM2 may be a key initiator of the airway inflammatory cascade
in asthma.

Citation: Hallstrand TS, Wurfel MM, Lai Y, Ni Z, Gelb MH, et al. (2010) Transglutaminase 2, a Novel Regulator of Eicosanoid Production in Asthma Revealed by
Genome-Wide Expression Profiling of Distinct Asthma Phenotypes. PLoS ONE 5(1): e8583. doi:10.1371/journal.pone.0008583

Editor: Rory Edward Morty, University of Giessen Lung Center, Germany

Received October 1, 2009; Accepted December 8, 2009; Published January 5, 2010

Copyright: � 2010 Hallstrand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Supported by National Institutes of Health grants R01HL089215, R01HL072370, R01HL036253, M01RR000037, and P30ES07033, an American Lung
Association Career Investigator Award CI-22138-N, and a Royalty Research Fund grant. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript. Microarray assays were performed at the Center for Array Technologies (CAT) at the University of
Washington. The CAT resources were partially funded under the following grants from the National Institutes of Health, National Center for Research Resources
1S10RR019423-01 and 1S10RR021108-01 and an initial grant from the M.J. Murdoch Charitable Trust.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tealh@u.washington.edu

Introduction

Although asthma is the most common chronic disease among

young adults, the molecular basis of asthma, especially related to

non-allergic stimuli remains poorly understood. A fundamental

barrier to understanding asthma is the heterogeneity of the

phenotype and characteristic pattern of inflammation in the lower

airways. One frequent manifestation of asthma is exercise-induced

bronchoconstriction (EIB), a syndrome in which a brief period of

exercise triggers airway narrowing lasting 30–90 min [1]. Cross-

sectional studies demonstrate that EIB occurs in a distinct group of

subjects with asthma, representing about 30–50% of all asthmatics

[2,3,4,5,6]. The severity of EIB is associated with other

manifestations of indirect airway hyperresponsiveness (AHR) to

hypertonic aerosols and adenosine [7].

We have previously demonstrated that there is a distinct pattern

of airway inflammation in asthmatics with EIB that is notable for

increased concentrations of inflammatory eicosanoids such as

cysteinyl leukotriene (CysLT)s and disrupted lower airway

epithelial cells in induced sputum [8]. Increased concentrations

of CysLTs have also been identified in exhaled breath condensate

of children with EIB [9]. We and others have shown that these

eicosanoids along with cellular products from mast cells and

eosinophils have a pivotal role in the pathogenesis of EIB, causing
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airway narrowing and mucin release [10,11]. Inhibitors of mast

cell activation and the effects of mast cell products such as

histamine and CysLTs reduced the severity of EIB [12,13]. A key

regulator of eicosanoid release, secreted phospholipase A2 group X

(sPLA2-X), was recently shown to be increased in the airways of

asthmatics, and further increased after exercise challenge [14].

Deletion of the sPLA2-X gene in a murine model of asthma

inhibits development of airway inflammation, AHR, and struc-

tural remodeling [15].

Based on the distinct phenotypic characteristics and immuno-

pathology of EIB, we hypothesized that there are distinct

molecular pathways transcriptionally active in the airways of

asthmatics with EIB. To address this hypothesis, we identified two

groups of asthmatics with AHR to methacholine that were

discordant for severity of EIB, and compared gene expression in

airway leukocytes and epithelial cells in induced sputum between

the groups at baseline and then on a separate day following

exercise challenge. To assure that the results were reproducible,

we enrolled the subjects into initial and replication cohorts to

identify genes with consistent differences in gene expression, and

used a second method to identify differences in gene expression

based on the false discovery rate. Based on differences in gene

expression, we confirmed that transglutaminase 2 (TGM2) was

over-expressed in airway cells by quantitative PCR (qPCR), and

that the TGM2 protein is elevated in the airway lining fluid of

asthmatics with EIB relative to the asthma group without EIB.

Additional studies compared the expression and protein levels

between asthmatics and non-asthmatic controls, and defined the

distribution of TGM2 in the asthmatic airway epithelium. In vitro

studies revealed that recombinant human TGM2 causes a

sustained increase in the enzyme activity of recombinant human

sPLA2-X identifying a previously unknown mechanism of asthma

in which the increase in TGM2 in the airways may function to

amplify airway inflammation through eicosanoid generation.

Some of the results of this study have been previously reported

in the form of abstracts [16,17].

Methods

Detailed methods are provided in the online supporting

information (Text S1).

Study Subjects
The University of Washington Institutional Review Board approved

the study protocols, and written informed consent was obtained from

all participants. Subjects 18–59 years of age were recruited who had a

physician diagnosis of asthma for $1 year, and used only an inhaled

b2-agonist for asthma treatment. In accordance with a priori definitions,

asthmatics with a methacholine PC20#4 mg/ml were identified with

$20% fall in FEV1 following exercise challenge (EIB+ group) and

asthmatic controls without EIB were identified with #5% fall in FEV1

following exercise challenge (EIB2 group). The first 3 subjects in each

group were enrolled into the initial cohort, and the subsequent subjects

were enrolled into the replication cohort.

Comparisons were also made to non-asthmatic subjects with

negative methacholine (PC20.8 mg/ml) and dry air exercise challenge

tests (,5% fall in FEV1 following exercise). Epithelial brushings and

endobronchial biopsies were obtained from an additional group

of subjects with asthma and EIB defined by a methacholine

PC20#4 mg/mL and $15% fall in FEV1 following exercise challenge.

Study Protocol
Study subjects had spirometry and exercise challenge testing on

one day, and a methacholine challenge on a separate day to

determine eligibility for the study. The Seattle Asthma Severity

and Control Questionnaire (SASCQ) assessed asthma control

[18]. Eligible participants had 2 induced sputums conducted at

baseline and one induced sputum 30 min after exercise challenge,

each 2–10 days apart. Spirometry, exercise, and methacholine

challenges were conducted in accordance with American Thoracic

Society (ATS) standards [19,20]. Induced sputum was conducted

with 3% hypertonic saline via an ultrasonic nebulizer (DeVilbiss,

Somerset, PA, USA) [1].

RNA Isolation and Microarray Hybridization
The lower airway portion of the induced sputum was selected

using a transfer pipette and dispersed in dithiothreitol 0.1% at

20uC. The cell pellet was immediately treated with caotropic lysis

buffer and total RNA extracted. Biotin-labeled cRNA was

prepared from 2–5 mg RNA from each sample, and after

purification and fragmentation, hybridized with the Affymetrix

human U133A array in the initial cohort and the U133 Plus 2

array in the replication cohort (Affymetrix, Santa Clara, CA). All

the microarray data are MIAME compliant and have been

deposited in GEO (Gene Expression Omnibus) under accession

number GSE13785.

Confirmation of Differentially Expressed Genes by
Quantitative PCR, Western Blots, and
Immunohistochemistry

Differences in RNA levels of selected differentially expressed

genes were validated with qPCR using Taqman probes.[21]

Western blots measured differences in the level of TGM2 in

induced sputum supernatant and in epithelial lysates. TGM2 was

localized in endobronchial tissue by the indirect immunoperox-

idase technique using a rabbit polyclonal anti-TGM2 antibody.

TGM2-mediated Activation of sPLA2 Function
The ability of TGM2 to increase the enzymatic activity of

sPLA2s in vitro was tested by monitoring the release of free fatty

acid from [3H]oleate-labeled E. coli membranes.[22] The

measurements of sPLA2 activity were conducted initially using

bovine pancreatic sPLA2 group 1B, and then recombinant human

sPLA2-X [23]. Studies were conducted with purified TGM2 from

guinea pig liver and then subsequently with rhTGM2. TGM2 was

pre-incubated at concentrations ranging from 0.1 to 5061023 U/

reaction with sPLA2s at 37uC for 15 min. Controls were

conducted using TGM2 at a concentration of 1061023 U/

reaction after the enzyme was heat denatured at 100uC for 10 min

and with the active site of the enzyme saturated with N-

carbobenzoxy-Gln-Gly.

Statistical Analysis
The analytical approach was based on murine studies that

compared asthma phenotype [24,25] and on a human study

comparing gene expression before and after allergen challenge

[26]. The raw array data were normalized with GC Robust

Multiarray Algorithm (GCRMA) [27]. Differential gene expres-

sion between the groups in the initial data set and the replication

data set was determined with the linear models for microarray

data (limma) package and P-values were calculated with a

modified t-test in conjunction with an empirical Bayes method

to moderate the standard errors of the estimated log-fold changes

[28]. Two approaches were used to determine genes with

differential expression between the groups, and between condi-

tions (baseline and post-exercise). Genes with the most reproduc-

ible differential expression were identified by selecting genes in the

Airway Gene Expression in EIB
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initial and replication data sets with Log2FC$1 and P#0.05, and

then assessing the combined statistical significance using the

Fisher’s combined P method [29]. A Bonferroni’s correction

assuming a correlation among genes of 0.6 was used to establish

the P value cutoff. Based on the expression of 22,000 genes, a p

value,0.05, a false discovery rate of 10%, and fold change of 2

(Log2 ratio of 1), with a standard deviation of 0.3, a sample size of

3 subjects per group gives 80% power in each the initial and

replication cohorts [30]. The second approach was to determine

the overall statistical significance of the combined data sets using

Fisher’s combined P method and the q-value to account for

multiple testing based on a specified false discovery rate (FDR)

[31]. Simple averaging combined the fold change values from each

of the two platforms.

Results

Comparison of Asthma Phenotypes
We identified 15 subjects with asthma based on a methacholine

PC20#4 mg/ml, and enrolled 7 subjects who had EIB ($20% fall

in FEV1 post-exercise), and 7 subjects who did not have EIB (#5%

fall in FEV1 post-exercise) (Table 1). One additional subject was

excluded due to an indeterminate response (.5% but ,20% fall

in FEV1 post-exercise) to exercise challenge. There were no

differences in baseline lung function, asthma control, or response

to the administration of a bronchodilator between the two groups.

The reduction in FEV1 following exercise challenge was much

greater in the EIB+ group as compared to the EIB2 group

(P,0.001, Figure 1A) by definition. The EIB+ group had a slightly

lower methacholine PC20 than the EIB2 group (P = 0.01),

resulting in a modest relationship between the maximum fall in

FEV1 after exercise challenge and the methacholine PC20

(r2 = 0.43, P = 0.01).

We isolated total RNA from leukocytes and epithelial cells in the

lower airway portion of induced sputum that was selected and

removed from salivary contamination.[32] The reproducibility of

cellular constituents from induced sputum was very high (Figure

S1 and Table S1). A comparison of induced sputum cellular

constituents revealed minimal differences in the concentrations of

leukocytes and epithelial cells between the groups (Figure S2 and

Tables S2, S3, S4, S5). One subject from each group had

insufficient RNA for the array analysis, but was included in the

qPCR analysis. RNA quality was verified by capillary gel

electrophoresis, and oligonucleotide microarrays were successfully

hybridized for all 24 samples (6 EIB+ and 6 EIB2, baseline and

post-exercise); however, one of the EIB2 post-exercise microarrays

was excluded because of an unacceptably high normalized

unscaled standard errors metric as well as failure to meet the

manufacturer’s quality control guidelines for housekeeping control

probe signals which failed the threshold test.

Differential Gene Expression Between Asthmatic
Phenotypes

Gene expression in airway cells was analyzed between the two

phenotypically distinct groups of asthmatics at baseline, and

between the groups after exercise challenge. We used two methods

to identify genes with the most reproducible differential expression

between the groups. In the first method, we identified genes that

were differentially expressed in the initial cohort (first 3 subjects in

each group) and in the replication cohort (last three subjects in

each group), and narrowed the list of genes to those with Log2

[fold change] (Log2FC)$1.0 and P#0.05 in both cohorts. The

genes identified by this method represent genes with reproducible

differential expression in both cohorts as demonstrated by the

strong association between the magnitude of differential expression

identified in each cohort (r2 = 0.40, P,0.0001, Figure 1B) and by

differences between the two groups demonstrated by a heatmap

showing the Log2FC relative to the average expression for each

gene in each individual of the two groups post-exercise (Figure 1C).

The combined statistical significance of these two sets was assessed,

and a conservative Bonferroni correction was applied to identify 1

gene with differential expression between the groups at baseline

and 19 genes with differential expression between the groups post-

exercise (Table 2). We also assessed differences between the groups

using the combined P value for the entire data set (Tables S6, S7).

Based on a false discovery rate (FDR) of 10%, 28 genes in the post-

exercise comparison were differentially expressed, including all 19

meeting the criteria for reproducible differential expression and 9

Table 1. Comparison of asthma phenotypes.*

Asthma

Characteristic EIB+ (n = 7) EIB2 (n = 7) P value

Age (yr)

Mean 27.7 32.7 0.33

Range 24–34 23–54

Gender (% Male) 28.6 14.3 0.50

Race

Caucasian 6 7

Hispanic 1 0

Baseline

FEV1 (%) 88.069.4 85.969.6 0.68

FVC (%) 103.4612.6 99.468.8 0.50

FEV1/FVC 0.7260.06 0.7360.11 0.84

FEF25–75 (%) 58.669.6 64.0613.0 0.39

Post Bronchodilator

D FEV1 (%) 7.163.5 8.965.7 0.51

D FVC (%) 20.461.8 20.061.72 0.69

D FEF25–75 (%) 22.867.1 20.167.1 0.49

Exercise-induced Bronchoconstriction

Maximum Decrease in FEV1 234.161.2 21.262.0 ,0.001

Area Under FEV1 Curve{ 2749.76288.4 95.7675.7 ,0.001

Direct Bronchial Hyperresponsiveness

PC20 Methacholine{ 0.2 (0.1–0.4) 1.0 (0.4–2.5) 0.01

Asthma Control¥

Nocturnal Symptoms 0.060.0 0.260.4 0.36

Daytime Symptoms 2.261.6 1.260.8 0.20

Activity Limitation 0.460.6 0.760.8 0.55

Asthma Exacerbations 1.061.4 0.761.2 0.68

Bronchodilator Use 1.662.1 1.362.0 0.83

SASCQ Summary Score 5.265.2 4.063.3 0.65

Asthma-free Days 19.269.7 24.264.6 0.29

Acute Asthma Visits 0.060.0 0.060.0 NS

Non-acute Asthma Visits 0.460.5 1.261.2 0.21

*Values reported are mean6standard deviation unless otherwise specified.
{Area under the FEV1 curve over the first 30 min after exercise (% change*min).
{Value represent the geometric mean (95% confidence interval). The P value is
for the log-transformed value.

¥Asthma control questions are from the Seattle Asthma Severity and Control
Questionnaire (SASCQ) on a 0–5 point scale.

doi:10.1371/journal.pone.0008583.t001
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additional genes including CLCA2, GPR56, PROM1, TMC5,

PFN2, IQCG, EFHC1, SERPINB2, and an expressed sequence

tag (AV720803). Differences in the expression of 10 of these genes

were confirmed by qPCR using samples from all individuals in

each group, demonstrating a high degree of reproducibility by

array or qPCR methods (Figure 1D).

Genes Expression Response to Exercise Challenge
Because the bronchoconstrictor response to exercise challenge

is a distinguishing feature of the EIB phenotype, the gene

expression response to exercise challenge was assessed. We

identified genes transcriptionally activated by exercise challenge

in the initial cohort and replication cohorts of EIB+ subjects, and

Figure 1. Comparison of lung function and gene expression between asthmatics with EIB and an asthmatic control group without
EIB. The severity of EIB was markedly greater in the EIB+ group (A). Genes that were increased in the EIB+ group relative to the EIB2 group post-
exercise were consistently differentially expressed in the initial and replication cohorts as shown by the strong association between differences in
gene expression in each cohort (B). A heatmap of these genes shows the Log2FC relative to the average expression for each gene in each individual
of the two groups post-exercise (C). The fold difference in gene expression between the groups post-exercise identified by the microarray platform
was similarly demonstrated by qPCR (D). Within the EIB+ group, genes that increased in response to exercise challenge were consistently increased in
the initial and replication cohorts (E). A heatmap of these genes shows the Log2FC relative to the average expression for each gene in each individual
of the EIB+ cohort (F). The fold increase in gene expression in response to exercise challenge by the microarray platform was similarly demonstrated
by qPCR with the exception of CLCA1 and KLK11 (G). To visualize the differences in the pattern of gene expression, differences in gene expression
between the groups at baseline are plotted against the change in gene expression with exercise challenge in the EIB+ group (H).
doi:10.1371/journal.pone.0008583.g001
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narrowed the list to genes with reproducible differential

expression in both cohorts as demonstrated by the strong

association of the differentially expressed genes in each cohort

(r2 = 0.54, P,0.0001, Figure 1E), and by differences between the

baseline and post-exercise conditions demonstrated by a heatmap

showing the Log2FC relative to the average expression for each

gene in each individual of the EIB+ cohort (Figure 1F). After

applying a Bonferroni correction, 9 genes had increased

expression and no genes had decreased expression following

exercise challenge in the EIB+ group (Table 3). We also assessed

changes in gene expression after exercise challenge using the

combined P value for the EIB+ phenotype (Table S8). Based on a

FDR of 10%, 8 genes had increased expression following exercise

challenge in the EIB+ group, including 3 additional genes

CLCA2, FCGBP, and CST1 not observed in our initial selection

algorithm. We confirmed exercise-induced increases in expres-

sion of 7 of these genes (TFF3, TPSAB, CPA3, KLK11,

TSPAN8, AGR2, and SLPI) by qPCR (Figure 1G). In the

EIB2 group, no gene met either criterion for change in

expression in response to exercise challenge.

We also evaluated in the change in gene expression in response

to challenge in the EIB+ group relative to the change in expression

in the EIB2 group (i.e. interaction effect, Table S9) and found that

7 genes TPSB2, CLCA1, FCGBP, CST1, TPSAB1, CPA3, and

Table 2. Genes with differential increased expression in the EIB+ group.

GenBank Log2FC P value Symbol Description

Baseline

BC003551 2.04 0.0002 TGM2 Transglutaminase 2

Post-exercise

NM_003226 4.80 0.0000 TFF3 Trefoil factor 3

AF127036 5.23 0.0000 CLCA1 Chloride channel, Ca2+-activated, member 1

NM_024164 3.50 0.0000 TPSB2 Tryptase b2

NM_001898 3.87 0.0000 CST1 Cystatin SN

NM_003890 2.85 0.0000 FCGBP Fc fragment of IgG-binding protein

NM_001870 4.70 0.0000 CPA3 Carboxypeptidase A3 (mast cell)

AF206667 3.94 0.0000 TPSAB1 Tryptase a/b1

NM_006853 2.12 0.0000 KLK11 Kallikrein-related peptidase 11

NM_004616 4.25 0.0000 TSPAN8 Tetraspanin 8

AF088867 4.69 0.0000 AGR2 Anterior gradient homolog 2

AI743792 2.06 0.0000 ST6GAL1 ST6 b-galactosamide a-2,6-sialyltransferase 1

NM_003064 3.03 0.0001 SLPI Secretory leukocyte peptidase inhibitor

AI521646 4.76 0.0002 MUC5AC Mucin 5AC, oligomeric mucus/gel-forming

NM_016140 3.02 0.0002 CGI-38 Brain-specific protein

NM_015180 1.73 0.0002 SYNE2 Spectrin repeat-containing, nuclear envelope 2

NM_015717 1.93 0.0003 CD207 CD207, langerin

NM_001828 5.34 0.0003 CLC Charcot-Leyden crystal protein

AK000168 4.03 0.0006 CD24 CD24

AF133425 3.97 0.0007 TSPAN1 Tetraspanin 1

doi:10.1371/journal.pone.0008583.t002

Table 3. Genes in EIB+ group with increased expression in response to exercise challenge.

GenBank Log2FC P value Symbol Description

NM_024164 3.69 0.0000 TPSB2 Tryptase b2

AF127036 4.46 0.0000 CLCA1 Chloride channel, Ca2+-activated, member 1

NM_003226 3.48 0.0000 TFF3 Trefoil factor 3 (intestinal)

NM_003294 3.63 0.0000 TPSAB1 Tryptase a/b1

NM_001870 4.46 0.0000 CPA3 Carboxypeptidase A3 (mast cell)

NM_006853 1.58 0.0002 KLK11 Kallikrein-related peptidase 11

NM_015717 1.90 0.0003 CD207 CD207 molecule, langerin

AI521646 4.31 0.0004 MUC5AC Mucin 5AC, oligomeric mucus/gel-forming

NM_004616 2.96 0.0007 TSPAN8 Tetraspanin 8

doi:10.1371/journal.pone.0008583.t003

Airway Gene Expression in EIB
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TFF3 demonstrated increased relative expression based on the

reproducibility criteria, and an additional gene CLCA2 based on

the FDR.

To visualize the differences in the pattern of gene expression,

differences in gene expression between the groups at baseline are

plotted against the change in gene expression with exercise

challenge in the EIB+ group (Figure 1H). Only transglutaminase 2

(TGM2) was differentially expressed at baseline, while other genes

including the mast cell proteases were not differentially expressed

at baseline, but had a marked increase following exercise

challenge. Other genes such as trefoil factor 3 (TFF3) had modest

increase in expression at baseline and further increase after

exercise challenge.

Confirmation of Differentially Expressed Genes in the
Airways

We focused on TGM2 because it was the only gene that was

differentially expressed between the groups at baseline. Because

the difference in TGM2 expression between the two asthma

groups was modest in magnitude, we also assessed the expression

of TGM2 by qPCR in a non-asthmatic control group demon-

strating that the expression of TGM2 was increased in both

asthma groups relative to the non-asthmatic group, and that it was

further increased in asthmatics with the EIB+ phenotype

(Figure 2A). The 85 kDa TGM2 protein was essentially undetect-

able from the non-asthmatic group, but measurable in most of the

asthmatic samples, and increased in the EIB+ asthmatic group

Figure 2. Comparison of TGM2 levels in the airways and in vitro function of TGM2 in the activation of secreted PLA2 activity. The
gene expression of TGM2 by qPCR in airway cells was increased in both asthma groups relative to non-asthmatic controls, and the expression was
higher in the EIB+ group (A). TGM2 was not detected in induced sputum supernatant from non-asthmatic controls, but was elevated in asthmatics,
especially in the EIB+ group (B). The bands from one of two Western blots used to quantify the levels of TGM2 in induced sputum supernatant are
shown in the panel, with lanes 1–5 representing EIB+ asthmatics, lanes 6–10 representing EIB2 asthmatics, and lanes 11–15 normal controls (C). A
Western blot of epithelial brushings from asthmatics demonstrates higher levels in the epithelium from asthmatics relative to non-asthmatic controls
(D). In the blot, the first lane is recombinant human TGM2 (rhTGM2), lanes 3 and 4 are epithelial lysates from 2 different EIB+ asthmatics, and lanes 5
and 6 are epithelial lysates from 2 different normal controls. Asthmatic epithelial cells from an EIB+ asthmatic in primary culture shown in lanes 8 and
9 also strongly express TGM2. Immunostaining for TGM2 in airway biopsies from an EIB+ asthmatic demonstrates immunostaining in the airway
epithelium for TGM2 (406, scale bar is 50 mm) (E). Pre-incubation of recombinant human sPLA2-X with purified TGM2 from guinea pig liver (F) or with
recombinant human TGM2 (G) causes an increase in the PLA2 activity of the sPLA2-X enzyme. Denaturing the TGM2 with heat (boiled) or inhibiting
the activity of the enzyme by saturating the enzyme with N-carbobenzoxy-Gln-Gly (Inh) demonstrate that the in vitro findings are due to the
enzymatic activity of TGM2.
doi:10.1371/journal.pone.0008583.g002

Airway Gene Expression in EIB
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(Figures 2B–C). The oligonucleotide probe and qPCR primer

measure a portion of the gene that is common to both the full-

length gene and the recently described splice variant [33]. In

epithelial brushings from asthmatics with EIB, the level of TGM2

was increased relative to non-asthmatic controls, and the level of

TGM2 was markedly increased in airway epithelial cells in

primary culture from an EIB+ asthmatic individual (Figure 2D).

Immunohistochemistry of airway biopsies taken from conducting

airways of 3 EIB+ asthmatic individuals demonstrated strong

immunostaining for TGM2 in the epithelial layer (Figure 2E and

Figure S3)

Effects of Transglutaminase 2 on Native and
Recombinant sPLA2 Activity

The ability of TGM2 to increase the enzymatic activity of

sPLA2-X in vitro was tested by monitoring the release of free fatty

acid from [3H]oleate-labeled E. coli membranes [22]. Recombi-

nant human sPLA2-X was generated in E. coli, purified and

refolded to the active enzyme [23]. The initial experiments were

conducted with purified TGM2 from guinea pig liver, and then

subsequently with recombinant human TGM2. Pre-incubation of

sPLA2-X at 37uC for 15 min with guinea pig TGM2 caused a

concentration dependent increase in the enzyme activity of sPLA2-

X (Figure 2F). Similarly, the human recombinant TGM2 caused a

concentration-dependent increase in sPLA2-X activity (Figure 2G).

To further demonstrate that the increase in sPLA2-X was due to

the enzymatic activity of the TGM2, we found that heat

denaturing the TGM2 enzyme prior to the experiment, or

saturating the active site of the enzyme with N-carbobenzoxy-Gln-

Gly inhibited the activation of sPLA2-X (Figures 2F–G).

Discussion

Relatively little is known about the immunological basis of

indirect AHR, an aspect of asthma that is manifested by the

presence of airway narrowing triggered by exercise, hypertonic

aerosols, cold air and adenosine [7]. In a recent large longitudinal

study of children, cold-air AHR was one of the strongest predictors

of persistent asthma in adulthood [34]. In the present study, we

enrolled subjects with a rigorous diagnosis of asthma, and

identified subjects with and without EIB, a syndrome character-

ized by an abnormal airway epithelium and increased concentra-

tions of inflammatory eicosanoids in the airways [8]. Through

analysis of airway gene expression before and after exercise

challenge in these distinct groups, we found that genes related to

epithelial repair and mast cell infiltration are increased in

asthmatics with EIB, and that TGM2 is the most differentially

expressed between the groups at baseline. We confirmed that the

TGM2 protein is increased in airway cells and airway lining fluid

in the EIB positive group, and that both asthma groups have

increased levels relative to a non-asthmatic control group. We also

found that the TGM2 protein is avidly expressed in the epithelium

of the EIB positive asthmatics. Further, TGM2 causes a sustained

increase in sPLA2-X activity, identifying a novel mechanism by

which increased expression of TGM2 may serve to amplify airway

inflammation in asthma.

The present study adds to an accumulating body of evidence

from gene-array studies that genes such as CLCA1 [35,36],

SerpineB2 [26,36,37], MUC5AC [35,37], AGR2 [35], CPA3

[36,37], and tryptase [36,37] are overexpressed in asthma, and

suggests that these genes are more transcriptionally active in the

EIB phenotype. A further advance in the present study was the

evaluation of gene expression in response to exercise challenge that

induces acute asthma in susceptible subjects demonstrating that

several of the genes are transcriptionally activated during acute

asthma. We chose an early time point following challenge in this

study to minimize secondary transcriptional activation in response

to the release of mediators in the airways. Several common gene

expression programs emerge with increased expression in the EIB

phenotype notable for genes related to epithelial repair and

differentiation including TFF3, TGM2, TSPN8, TSPN1, SLPI,

and CD24, as well as regulation of epithelial lining fluid and mucin

production including CLCA1, MUC5AC, and AGR2. In

addition, proteases including the mast cells proteases TPSB2 and

CPA3 as well as KLK11 and protease inhibitors such CST1 and

SLPI are notably increased in the EIB positive group. These

findings provide new insights into the pathogenesis of acute

asthma, and suggest that genes related to epithelial repair are more

active in asthma, and are particularly active in the EIB phenotype.

Increased transcription of mast cell proteases tryptase and

CPA3 in the EIB+ group following exercise challenge adds

additional evidence that mast cell activation plays an important

role in the pathophysiology of EIB. We have previously

demonstrated mast cell activation following exercise challenge in

EIB as evidenced by release of mast cell-specific mediators

histamine and tryptase [1]. A notable finding in the present study

is that CPA3, a secretory granule metalloexopeptidase that is

predominantly expressed in mast cells of the MCTC type was

increased along with tryptase. Mast cells are functionally divided

into MCT and MCTC types based on the composition of their

secretory granules that contain tryptase in both types of cells, but

with the addition of chymase, carboxypeptidase A3, and cathepsin

G in the MCTC type. Increased expression of both tryptase and

CPA3 was also recently noted in the airway epithelium in asthma

[36], suggesting that the expression of these proteases are

increased in asthma, and further increased in patients with EIB.

We found that TGM2 gene expression and secreted protein are

increased in the airways of subjects with asthma, and further

increased in the EIB+ phenotype. Although TGM2 has been

implicated in a number of inflammatory diseases, and has been

shown to be upregulated by retinoic acid in transformed airway

epithelial cells [38], it has not been previously implicated in asthma.

The TGM2 gene is located on chromosome 20q11.2-12 near a

cluster of genes related to epithelial barrier function in close proximity

to a region linked to both atopic dermatitis and asthma [39]. Two of

the other differentially expressed genes in the present study, SLPI and

CST1, are also located in this region of chromosome 20. TGM2 is a

calcium-dependent enzyme that modifies protein structure through

the transfer of an acyl group from glutamine to lysine or free amines

resulting in a new inter- or intra-molecular amidic cross-link that may

directly alter the enzyme activity of sPLA2 [40]. In studying the

function of TGM2 in asthma, we demonstrated that TGM2

enzymatically modifies sPLA2-X leading to a substantial increase in

the PLA2 activity of the enzyme. This finding has strong implications

for the pathophysiology of asthma since PLA2 catalyzes the first rate-

limiting step leading to eicosanoids such as CysLTs that play an

important role in asthma. Our prior research has found that EIB+

asthmatics have increased levels of CysLTs and CysLT/PGE2 ratio

relative to asthmatics without EIB [8] and elevated levels of

15SHETE relative to non-asthmatic controls [14]. Although there

are 9 functional human sPLA2s [41], we focused on the functional

alteration of sPLA2-X because we have recently found that sPLA2-X

is increased in the airways of asthmatics, and may be involved in

eicosanoid generation in the airways post-exercise challenge [14].

Further, deletion of the sPLA2-X gene in a murine model of asthma

markedly inhibits the development of airway inflammation, AHR,

Th2 cytokine production, and structural remodeling [15]. In prior

investigations, TMG2 from guinea pig liver has been shown to
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increase the PLA2 activity of bovine pancreatic PLA2, and dual

inhibitors of TGM2 and sPLA2 reduced ocular inflammation in a

rabbit model of allergen-induced conjunctivitis [40]. In addition to

regulating the release of free arachidonate, sPLA2s are also involved

in the generation of lysophospholipids and the degradation of

surfactant phospholipids implicated in asthma pathogenesis [41]. In

addition to effects on eicosanoid metabolism TGM2 also activates the

transcription factor NFkB that is broadly implicated in the generation

of pro-inflammatory cytokines in asthma and other inflammatory

diseases, and induces iNOS via NFkB [42].

In summary, we have identified novel mediators of asthma using

genome-wide expression profiling in phenotypically distinct groups

of asthmatics. We found that processes related to epithelial repair

and mast cell infiltration were increased in the asthma group that

had EIB. Functional analyses demonstrated TGM2 causes a

sustained increase in sPLA2-X activity. Because PLA2 is an

enzyme that catalyses the first rate-limiting step leading to

eicosanoids, and specifically sPLA2-X has recently been identified

as a potential mediator of AHR in a murine model of asthma and

in human subjects with asthma, these findings may reveal a novel

mechanism that functionally serves to amplify airway inflamma-

tion through the generation of inflammatory eicosanoids known to

be increased in the EIB phenotype.
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Text S1

Found at: doi:10.1371/journal.pone.0008583.s001 (0.12 MB
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Figure S1 Bland-Altman plots for the reproducibility of the

concentration of leukocytes and epithelial cells in induced sputum.

The plots represent the concentration of lower airway cells (A),

and percentage of eosinophils (B), lymphocytes (C), macrophages

(D), neutrophils (E), and columnar epithelial cells (F) in induced

sputum. The Bland-Altman plot summarizes the difference in the

measure between two visits versus the average value of the

measure for the two visits for each subject. Each plot shows the

overall average difference (solid line)62 standard deviations

(dashed line). These results demonstrate that the induced sputum

cell counts are reproducible because the individual points on the

Bland-Altman plot are randomly scattered around the overall

average difference, and most points fall within 2 standard

deviations of the overall average difference.

Found at: doi:10.1371/journal.pone.0008583.s002 (0.36 MB TIF)

Figure S2 Comparison of the concentrations of inflammatory

and epithelial cells in induced sputum before and after exercise

challenge. The baseline and post-exercise induced sputum tests

were conducted on average 6.5 days apart. There were no

significant changes in the concentrations of eosinophils (Eos),

lymphocytes (Lymph), macrophages (Mac), and neutrophils

(PMN) in induced sputum in EIB+ asthmatics (A) or a group of

EIB- asthmatic controls (B). The concentration of epithelial cells

(Epi) increased significantly in the EIB+ group, and a similar trend

occurred in the EIB- control group.

Found at: doi:10.1371/journal.pone.0008583.s003 (0.58 MB TIF)

Figure S3 Immunostaining for TGM2 in biopsies of the airway

epithelium of EIB+ asthmatics. Immunostaining for TGM2 is

strong in the airway epithelium and surrounding matrix of

endobronchial biopsy from an EIB+ asthmatic (A). Non-specific

immunostaining was not observed using an isotype control

antibody (B).

Found at: doi:10.1371/journal.pone.0008583.s004 (3.20 MB TIF)
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sputum on 2 separate visits
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Table S3 Post-exercise Differences in Selected Induced Spu-

tum*

Found at: doi:10.1371/journal.pone.0008583.s007 (0.05 MB
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Table S4 Regression analysis of differences in selected induced

sputum at baseline*

Found at: doi:10.1371/journal.pone.0008583.s008 (0.04 MB
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Table S5 Regression analysis of differences in selected induced

sputum post-exercise*

Found at: doi:10.1371/journal.pone.0008583.s009 (0.04 MB

DOC)

Table S6 Genes with increased expression in EIB+ group

relative to EIB- group at baseline (Log2FC.1, P,0.05)
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Table S7 Genes with differential expression in EIB+ group

relative to EIB- group post exercise (Log2FC.1, P,0.05)

Found at: doi:10.1371/journal.pone.0008583.s011 (0.13 MB
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Table S8 Genes with change in expression after exercise

challenge in the EIB+ group (Log2FC.1, P,0.05)
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Table S9 Genes with changes in expression after exercise

challenge (post-exercise minus baseline) in the EIB+ group relative

to EIB- group (Log2FC.1, P,0.05)
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DOC)

Author Contributions

Conceived and designed the experiments: TH MMW MLA WRHJ.

Performed the experiments: TH MMW YL ZN WA. Analyzed the data:

TH RPB. Contributed reagents/materials/analysis tools: MHG WA.

Wrote the paper: TH MMW MHG WA MLA WRHJ.

References

1. Hallstrand TS, Moody MW, Wurfel MM, Schwartz LB, Henderson WR Jr, et

al. (2005) Inflammatory basis of exercise-induced bronchoconstriction.
Am J Respir Crit Care Med 172: 679–686.

2. Cabral AL, Conceicao GM, Fonseca-Guedes CH, Martins MA (1999) Exercise-

induced bronchospasm in children: effects of asthma severity. Am J Respir Crit
Care Med 159: 1819–1823.

3. Hallstrand TS, Curtis JR, Koepsell TD, Martin DP, Schoene RB, et al. (2002)

Effectiveness of screening examinations to detect unrecognized exercise-induced

bronchoconstriction. J Pediatr 141: 343–348.

4. Henriksen AH, Tveit KH, Holmen TL, Sue-Chu M, Bjermer L (2002) A study

of the association between exercise-induced wheeze and exercise versus
methacholine-induced bronchoconstriction in adolescents. Pediatr Allergy

Immunol 13: 203–208.

5. Vianna EO, Boaventura LC, Terra-Filho J, Nakama GY, Martinez JA, et al.
(2002) Morning-to-evening variation in exercise-induced bronchospasm.

J Allergy Clin Immunol 110: 236–240.

6. Holzer K, Anderson SD, Douglass J (2002) Exercise in elite summer athletes:

Challenges for diagnosis. J Allergy Clin Immunol 110: 374–380.

Airway Gene Expression in EIB

PLoS ONE | www.plosone.org 8 January 2010 | Volume 5 | Issue 1 | e8583



7. Joos GF, O’Connor B, Anderson SD, Chung F, Cockcroft DW, et al. (2003)

Indirect airway challenges. Eur Respir J 21: 1050–1068.

8. Hallstrand TS, Moody MW, Aitken ML, Henderson WR Jr (2005) Airway

immunopathology of asthma with exercise-induced bronchoconstriction.

J Allergy Clin Immunol 116: 586–593.

9. Carraro S, Corradi M, Zanconato S, Alinovi R, Pasquale MF, et al. (2005)

Exhaled breath condensate cysteinyl leukotrienes are increased in children with

exercise-induced bronchoconstriction. J Allergy Clin Immunol 115: 764–770.

10. Hallstrand TS, Debley JS, Farin FM, Henderson WR Jr (2007) Role of

MUC5AC in the pathogenesis of exercise-induced bronchoconstriction. J Allergy

Clin Immunol 119: 1092–1098.

11. Mickleborough TD, Lindley MR, Ray S (2005) Dietary salt, airway

inflammation, and diffusion capacity in exercise-induced asthma. Med Sci

Sports Exerc 37: 904–914.

12. Anderson SD, Brannan JD (2002) Exercise-induced asthma: is there still a case

for histamine? J Allergy Clin Immunol 109: 771–773.

13. Anderson SD, Daviskas E (2000) The mechanism of exercise-induced asthma is.

J Allergy Clin Immunol 106: 453–459.

14. Hallstrand TS, Chi EY, Singer AG, Gelb MH, Henderson WR Jr (2007)

Secreted phospholipase A2 group X overexpression in asthma and bronchial

hyperresponsiveness. Am J Respir Crit Care Med 176: 1072–1078.

15. Henderson WR Jr, Chi EY, Bollinger JG, Tien YT, Ye X, et al. (2007)

Importance of group X-secreted phospholipase A2 in allergen-induced airway

inflammation and remodeling in a mouse asthma model. J Exp Med 204:

865–877.

16. Hallstrand TS, Wurfel MM, Lai Y, Beyer RP, Aitken ML, et al. (2009) Genome-

wide expression profiling in phenotypically distinct groups of asthmatics

identifies overexpression of epithelial and mast cell genes in exercise-induced

bronchoconstriction (Aspen Lung Conference Abstract). Proc Am Thorac Soc 6:

325–326.

17. Hallstrand TS, Wurfel MM, Moody MM, Henderson WR Jr, Aitken ML (2004)

Identification of differentially expressed genes in human airways contributing to

exercise-induced bronchoconstriction (Abstract). Am J Respir Crit Care Med

167: A16.

18. Hallstrand TS, Martin DP, Hummel JP, Williams BL, Logerfo JP (2009) Initial

Test of the Seattle Asthma Severity and Control Questionnaire (SASCQ): A

Multidimensional Assessment of Asthma Severity and Control. Ann Allergy

Asthma Immunol in press.

19. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, et al. (2005)

Standardisation of spirometry. Eur Respir J 26: 319–338.

20. Crapo RO, Casaburi R, Coates AL, Enright PL, Hankinson JL, et al. (2000)

Guidelines for methacholine and exercise challenge testing-1999. Am J Respir

Crit Care Med 161: 309–329.

21. Wurfel MM, Park WY, Radella F, Ruzinski J, Sandstrom A, et al. (2005)

Identification of high and low responders to lipopolysaccharide in normal

subjects: an unbiased approach to identify modulators of innate immunity.

J Immunol 175: 2570–2578.

22. Touaibia M, Djimde A, Cao F, Boilard E, Bezzine S, et al. (2007) Inhibition of

secreted phospholipase A2. 4-glycerol derivatives of 4,5-dihydro-3-(4-tetradecy-

loxybenzyl)-1,2,4-4H-oxadiazol-5-one with broad activities. J Med Chem 50:

1618–1626.

23. Degousee N, Ghomashchi F, Stefanski E, Singer A, Smart BP, et al. (2002)

Groups IV, V, and X phospholipases A2s in human neutrophils: role in

eicosanoid production and gram-negative bacterial phospholipid hydrolysis.

J Biol Chem 277: 5061–5073.

24. Karp CL, Grupe A, Schadt E, Ewart SL, Keane-Moore M, et al. (2000)

Identification of complement factor 5 as a susceptibility locus for experimental
allergic asthma. Nat Immunol 1: 221–226.

25. Zimmermann N, King NE, Laporte J, Yang M, Mishra A, et al. (2003)

Dissection of experimental asthma with DNA microarray analysis identifies
arginase in asthma pathogenesis. J Clin Invest 111: 1863–1874.

26. Lilly CM, Tateno H, Oguma T, Israel E, Sonna LA (2005) Effects of allergen
challenge on airway epithelial cell gene expression. Am J Respir Crit Care Med

171: 579–586.

27. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004)
Bioconductor: open software development for computational biology and

bioinformatics. Genome Biol 5: R80.
28. Smyth GK (2004) Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:
Article3.

29. Hess A, Iyer H (2007) Fisher’s combined p-value for detecting differentially

expressed genes using Affymetrix expression arrays. BMC Genomics 8: 96.
30. (2009) http://bioinformatics.mdanderson.org/MicroarraySampleSize/

MicroarraySampleSize.aspx.
31. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays

applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:

5116–5121.
32. Efthimiadis A, Spanevello A, Hamid Q, Kelly MM, Linden M, et al. (2002)

Methods of sputum processing for cell counts, immunocytochemistry and in situ
hybridisation. Eur Respir J Suppl 37: 19s–23s.

33. Antonyak MA, Jansen JM, Miller AM, Ly TK, Endo M, et al. (2006) Two
isoforms of tissue transglutaminase mediate opposing cellular fates. Proc Natl

Acad Sci U S A 103: 18609–18614.

34. Stern DA, Morgan WJ, Halonen M, Wright AL, Martinez FD (2008) Wheezing
and bronchial hyper-responsiveness in early childhood as predictors of newly

diagnosed asthma in early adulthood: a longitudinal birth-cohort study. Lancet
372: 1058–1064.

35. Kuperman DA, Lewis CC, Woodruff PG, Rodriguez MW, Yang YH, et al.

(2005) Dissecting asthma using focused transgenic modeling and functional
genomics. J Allergy Clin Immunol 116: 305–311.

36. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, et al. (2007)
Genome-wide profiling identifies epithelial cell genes associated with asthma and

with treatment response to corticosteroids. Proc Natl Acad Sci U S A 104:
15858–15863.

37. Laprise C, Sladek R, Ponton A, Bernier MC, Hudson TJ, et al. (2004)

Functional classes of bronchial mucosa genes that are differentially expressed in
asthma. BMC Genomics 5: 21.

38. Ma Y, Koza-Taylor PH, DiMattia DA, Hames L, Fu H, et al. (2003) Microarray
analysis uncovers retinoid targets in human bronchial epithelial cells. Oncogene

22: 4924–4932.

39. Cookson W (2004) The immunogenetics of asthma and eczema: a new focus on
the epithelium. Nat Rev Immunol 4: 978–988.

40. Sohn J, Kim TI, Yoon YH, Kim JY, Kim SY (2003) Novel transglutaminase
inhibitors reverse the inflammation of allergic conjunctivitis. J Clin Invest 111:

121–128.
41. Triggiani M, Granata F, Giannattasio G, Marone G (2005) Secretory

phospholipases A2 in inflammatory and allergic diseases: not just enzymes.

J Allergy Clin Immunol 116: 1000–1006.
42. Lee J, Kim YS, Choi DH, Bang MS, Han TR, et al. (2004) Transglutaminase 2

induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia.
J Biol Chem 279: 53725–53735.

Airway Gene Expression in EIB

PLoS ONE | www.plosone.org 9 January 2010 | Volume 5 | Issue 1 | e8583


