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Abstract

Background: Tissue inhibitor of metalloproteinases-1 (TIMP-1) displays pleiotropic activities, both dependent and
independent of its inhibitory activity on matrix metalloproteinases (MMPs). In the central nervous system (CNS), TIMP-1 is
strongly upregulated in reactive astrocytes and cortical neurons following excitotoxic/inflammatory stimuli, but no
information exists on its effects on growth and morphology of cortical neurons.

Principal Findings: We found that 24 h incubation with recombinant TIMP-1 induced a 35% reduction in neurite length and
significantly increased growth cones size and the number of F-actin rich microprocesses. TIMP-1 mediated reduction in
neurite length affected both dendrites and axons after 48 h treatment. The effects on neurite length and morphology were
not elicited by a mutated form of TIMP-1 inactive against MMP-1, -2 and -3, and still inhibitory for MMP-9, but were
mimicked by a broad spectrum MMP inhibitor. MMP-9 was poorly expressed in developing cortical neurons, unlike MMP-2
which was present in growth cones and whose selective inhibition caused neurite length reductions similar to those
induced by TIMP-1. Moreover, TIMP-1 mediated changes in cytoskeleton reorganisation were not accompanied by
modifications in the expression levels of actin, bIII-tubulin, or microtubule assembly regulatory protein MAP2c. Transfection-
mediated overexpression of TIMP-1 dramatically reduced neuritic arbour extension in the absence of detectable levels of
released extracellular TIMP-1.

Conclusions: Altogether, TIMP-1 emerges as a modulator of neuronal outgrowth and morphology in a paracrine and
autrocrine manner through the inhibition, at least in part, of MMP-2 and not MMP-9. These findings may help us understand
the role of the MMP/TIMP system in post-lesion pre-scarring conditions.
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Introduction

TIMP-1 is the founding member of the MMP inhibitor family

encompassing four proteins with pleiotropic actions (TIMP-1-4).

In addition to inhibitory activity on proteinases hosted in the N-

terminal domain of the molecule, the TIMPs display MMP-

independent activities that regulate the behaviour of a wide range

of cell types [1]. The poorly known interactions with non

metalloproteinases involving the C-terminal domain of TIMPs

may contribute to their pleiotropic effects [2]. In the CNS, TIMP-

1 was first characterised as a candidate plasticity gene induced by

seizures and by stimuli leading to long term potentiation (LTP) [3],

a form of synaptic plasticity considered as a cellular substrate of

learning and memory. In developmental/physiological conditions,

TIMP-1 expression is very low and basically restricted to the

hippocampus and the cerebellum during the first postnatal weeks,

at a time of intense dendro-axonic remodelling [4,5]. In clear

contrast with physiological conditions, in the pathological brain

TIMP-1 expression is dramatically induced in a neuronal activity-

dependent manner in cortical and hippocampal neurons resistant

to excitotoxicity [4]. Despite prominent neuronal expression,

inflammation-driven TIMP-1 production by reactive astrocytes

prevails as the main source of the inhibitor in the pre-scarring

zones of lesion following seizures [4], cerebral ischemia [6],

experimental autoimmune encephalomyelitis [7], intracranial

injury [8], and viral infection [9]. Accordingly, TIMP-1 is
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upregulated in models of scarring non-regenerating optic nerve

transection and downregulated in nonscarring regenerating

conditions [10]. In vitro, proinflammatory cytokines such as

TNF-a or IL-1 upregulate TIMP-1 expression in astrocytes

[11,12] which stimulates astrocyte proliferation [13].

The upregulation of TIMP-1 in the pathological nervous

system is generally concomitant with the upregulation of some

of its main targets, MMP-9 and MMP-2 [14,15] and pinpoints

the importance of controled proteolytic balance in the

physiopathological outcome. In support of this idea, we have

recently demonstrated that, unlike wild type (WT) mice,

TIMP-1 deficient mice do not exhibit MMP-2 and MMP-9

upregulation after excitotoxic seizures, and this correlates with

the absence of mossy fibre sprouting in the hippocampus of

mutant mice [16]. The idea that these MMPs contribute to

neurite outgrowth in the CNS finds support in previous studies

implicating MMP-9 in neurite extension of cerebellar neurons

[17] and in recent data indicating that MMP-3 and MMP-2

specifically promote axonal [18] and dendritic [19] growth in

cortical neurons, respectively. Moreover, MMP-2 has been

found to stimulate neurite outgrowth of dorsal root ganglia

(DRG) neurons in the peripheral nervous system [20].

Although these data suggest the involvement of TIMP-1 in

post-lesion structural changes of cortical and hippocampal

neurons [21,22], we still lack direct evidence that TIMP-1,

whether it is produced by neurons or by surrounding glial cells,

influences such changes. A way of addressing this question is to

investigate the impact of physiopathological concentrations of

TIMP-1 in neuronal morphology. We have combined a

systematic morphometric analysis of cultured cortical neurons

with the use of pseudophosphinic synthetic MMP inhibitors

[16,23], mouse recombinant full length TIMP-1, and recom-

binant WT and mutated inactive forms of the TIMP-1 N-

terminal domain [24] previously used to demonstrate the

determinant role of the N-terminal domain in the inhibition of

apoptosis in non neural cells [25]. Overall, TIMP-1 emerges as

a modulator of neuronal outgrowth and morphology through

paracrine and autrocrine actions and involves, at least in part

the inhibition of MMP-2 but not MMP-9. These findings may

be important to understand the role of the MMP/TIMP

system in post-lesion pre-scarring conditions.

Materials and Methods

Neuronal Cultures and Treatments
Primary cultures of cortical neurons were prepared from CD1

mice embryos according to the guidelines of the Ethics Committee

of the Medical Faculty of Marseilles and conform to National and

European regulations (EU directive Nu 86/609). Pregnant females

were deeply anesthetised with halothane (Nicholas Piramal

Limited, London, UK) and their placenta with embryos at

E17–18 were quickly removed and placed into cold HBSS

containing 0.5% glucose (both from Invitrogen, Carlsbad, CA,

USA). Usually, 4 embryos were used for each preparation. They

were decapitated and the cerebral cortices dissected, pooled and

enzymatically dissociated for 10 min at 37uC in HBSS containing

0.1% trypsine and 10 mg/ml DNase I (Sigma-Aldrich, Saint Louis,

MO, USA). The reaction was stopped by replacing the trypsin

medium with HBSS containing 10% foetal calf serum (Invitrogen).

Further mechanical dissociation was carried out in HBSS

containing 5 mg/ml of DNase by trituration through a Pasteur

pipette. After centrifugation at 1250 rpm during 5 min at room

temperature, the pelleted cells were resuspended in the plating

medium containing MEM, 0.6% glucose, 1 mM sodium pyruvate,

5 U/ml penicillin/streptomycin and 10% foetal calf serum (all

from Invitrogen). The cells were plated at a seeding density of 1.5

105 cells per well onto 12 mm diameter glass coverslips precoated

with 1 mg/ml poly-D-lysine (Sigma-Aldrich) in borate buffer

pH 8.5, and were grown at 37uC in a humidified chamber

containing 5% C02. After 90 min the plating medium was

aspirated and replaced by a serum free defined medium consisting

in Neurobasal, with 2% B27 supplement, 5 U/ml penicillin/

streptomycin, 2.5 mM glutamine (all from Invitrogen) and 25 mM

glutamate (Sigma-Aldrich). The following MMP inhibitors were

added to cultures in serum free media: mouse recombinant TIMP-

1 (mrTIMP-1, R&D System, Minneapolis, MN, USA) in (50 mM

Tris, 10 mM CaCl2, 150 mM NaCl, 0.05% Brij-35, pH 7.5)

(TCNB); human recombinant truncated N-terminal form of

TIMP-1 (NT1) with similar Ki values (0.2–0.4 nM) for MMP-1,

MMP-2, MMP-3 and MMP-9 and 146 nM for MT1-MMP; and

mutated inactive forms of TIMP-1 (DNT1), in which the

substitution of threonin in position 2 by glycine increases the Ki

value for MMP-1, MMP-2, MMP-3 and MT1-MMP by at least

two to three orders of magnitude [24]. DNT1 preserves a good

inhibitory activity for MMP-9 and exhibits a .2500-fold higher

affinity for MMP-9 relative to MMP-2 [26]; MMP selective

pseudophosphinic RXPO3R inhibitor that does not inhibit

adamalysins [23], with Ki for MMP-2, MMP-9 and MT1-MMP

of 55, 41 and 91 nM, respectively [27]; selective MMP-2 inhibitor

(MMP-2 inhibitor III, Calbiochem, La Jolla, CA, USA), which

exhibits good selectivity for MMP-2 (Ki 12 nM) when compared

with MMP-9 and MMP-3 (Ki 200 and 4500 nM, respectively).

Synthetic inhibitors were dissolved in DMSO 0.04% final

concentration. Controls were exposed to the same concentration

of DMSO.

Primary Astrocyte Cultures
Astrocytes were obtained from 2 days old CD1 mice brains as

described previously [28]. After removal of the meninges, the

brains were dissociated into a single-cell suspension by trypsinisa-

tion and mechanical disruption. The cells were seeded on onto

12 mm diameter glass coverslips and grown at 37uC in a 5% CO2

humidified atmosphere in Dulbecco’s modified Eagle medium

(DMEM) containing 10% foetal calf serum, 2 mM L-glutamine,

penicillin (100 U/ml), and streptomycin (100 mg/ml) (all from

Invitrogen). The medium was replaced every 3 days for 2 weeks

until reaching cell confluence and then replaced by a serum free

medium containing DMEM, L-glutamine, penicillin, and strepto-

mycin for 24 h.

Culture of Neuroblastoma Cells
Mouse neuroblastoma cells (N2a, also known as Neuro 2a,

ATCC, CCL-131TM) were grown at 37uC in a humidified

atmosphere containing 5% CO2 in DMEM supplemented with

10% foetal bovine serum. Cells were grown to semi-confluence for

24 h before transfection (see below).

Reverse Transcription-Polymerase Chain Reaction (RT-
PCR)

Total RNA was isolated after lysis of cultured neurons, N2a cells

or astrocytes. Following OD assessment and gel analysis, 500 ng

total RNA was reverse transcribed. Traces of genomic DNA were

eliminated by a DNase I treatment for 15 min at 37uC. cDNAs

were used for amplification of TIMP-1, MMP-2, MMP-9, b-actin

and GAPDH, with the following cycling profile: 40 sec at 94uC,

40 sec at 58uC, 40 sec at 72uC for 28 to 35 cycles. The PCR

products were analysed in 2% ethidium bromide stained agarose

TIMP-1 and Neuron Morphology

PLoS ONE | www.plosone.org 2 December 2009 | Volume 4 | Issue 12 | e8289



gels. The forward (F) and reverse (R) primer sequences for the

different PCR products and their size in base pairs (bp) were as

follows:

Timp-1 F: GGCATCCTCTTGTTGCTATCACT,

Timp-1 R: CTTATGACCAGGTCCGAGTTGC (101 bp);

MMP-2 F: AGCGTGAAGTTTGGAAGCATC

MMP-2 R: GCTGGTTAACTACAGAGGAGGACAG (146

bp);

MMP-9 F: GACGACGACGAGTTGTGGTCGCT,

MMP-9 R: CGTCTGTGGTGCAGGCCGAATAG (130 bp);

MT1 F: AGAGCCAGGGTATCCCAAGT,

MT1 R: AACGCTGGCAGTAAAGCAGT (250 bp);

GAPDH F: TTGTCAAGCTCATTTCCTGGTATG,

GAPDH R: GGATAGGGCCTCTCTTGCTCA (143 bp);

b- Actin F: GGGACCTGACAGACTACCTCATG,

b-actin R: GAGGATGCGGCAGTGGC (161 bp).

Immunocytochemistry and Cytoskeleton Labelling
Cortical neurons or astrocytes were rinsed in phosphate buffer

saline (PBS) and fixed in 4% paraformaldehyde (PFA) for 10 min.

For immunocytochemistry, cells were pre-incubated with 0.1%

triton X-100, 3% bovine serum albumin (BSA, Sigma-Aldrich)

and 5% normal goat serum (NGS) (Jackson ImmunoResearch,

West Grove, PA, USA) for 60 min, followed by 90 min incubation

at room temperature with the following primary antibodies: mouse

anti-bIII-tubulin, (1/500, Sigma-Aldrich), rabbit anti-Glial Fibril-

lary Acidic Protein (GFAP) (1/400, Dako, Glostrup, Denmark),

mouse anti-phosphorylated Tau-1 (1/200, Sigma-Aldrich), chick-

en anti-MAP2 (1/10000, Abcam, Cambridge, UK) goat anti-

MMP-9 (1/100, R&D Systems) or goat anti-MMP-9 (1/100,

Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit anti-

MMP-2 (1/200, Chemicon, Temecula, CA, USA), mouse anti-

Green Fluorescent Protein (GFP) (1/500, Roche Diagnostics,

Mannheim, Germany), and rabbit anti-ser3 p-cofilin (1/100,

Santa Cruz Biotecnology). Goat anti-TIMP-1 (1/100, R&D

Systems) was incubated overnight at 4uC. The antibodies were

diluted in PBS containing 0.1% triton X-100, 3% BSA, and 5%

NGS. The cells were then rinsed in PBS, incubated for 1 h with

Alexa FluorH 488–594, antibodies (1/600–800, Molecular Probes,

Eugene, OR, USA) or with biotinylated anti-goat antibody (1/

400, Jackson Immunoresearch) followed by 1 h additional

incubation with Alexa FluorH 488 streptavidin (1/400, Molecular

Probes) to reveal MMP-9 immunostaining, and 0.5 mg/ml of

nuclear marker Hoechst #33258 (Molecular Probes). For double

labelling experiments, the anti-bIII-tubulin and anti-GFAP

antibodies or the anti-Tau-1 and anti-MAP2 antibodies were

incubated together and the secondary antibodies used as indicated

above. For F-actin and nuclear labelling, cells were incubated after

immunocytochemistry with Texas Red-X phalloidin (Molecular

Probes), 0.5 mg/ml Hoechst #33258 in 0.1% triton, 3% BSA and

5% NGS for 1 h at room temperature, rinsed in PBS, and

mounted in fluorescence mounting medium (Dako). Cells were

observed under a Nikon E800 upright microscope equipped with

epifluorescence and TRITC, FITC and DAPI filters, and images

were analysed using an Orca-ER CCD camera (Hamamatsu

Photonics, Massy, France) and the LUCIA image analysis software

(Laboratory Imaging, Prague, Czech Republic).

Morphological Analyses
In each experiment, fluorescence microphotographs of at least 5

randomly selected fields per well and 3 wells per experimental

condition were taken, and the following parameters were analysed:

the total number of cells was determined on the basis of nuclear

Hoechst staining and ratios of bIII-tubulin or GFAP positive cells

determined from combined immunocytochemistry of neuronal or

glial markers. The neuronal processes and growth cones of all bIII-

tubulin positive cells were manually drawn using a computer

mouse. The mean length of the neuritic arbour was obtained by

dividing the total length of neurites in a field by the number of cells

immunoreactive for bIII-tubulin. At 48 h post-seeding, the same

procedure was used to determine the length of dendrites and axons

by measuring MAP2 and Tau-1 immunoreactive neurites,

respectively. The number of neurites per neuron was used as an

indication of branching and network complexity. A neurite

segment was defined as the distance between branching points

or the distance between the branching point and the tip of the

neurite. The mean number of neurite segments per neuron was

calculated from the number of segments per microscopic field

divided by the number of bIII-tubulin positive cells. The relative

frequency of neurites of a given length was classified by intervals of

10 mm. The number of growth cones per bIII-tubulin positive cell,

their shape, area and perimeter were analysed after fluorescence

labelling with Texas Red-X phalloidin. To test whether the shape

of growth cones was related to their dynamics, the index of

circularity or ‘‘f circle’’ (4 pi x area/perimeter crofton2) was

calculated. This parameter describes the degree to which a shape

differs from a circle and it varies from 0 to 1 (a perfect circle = 1).

We analysed around 900 neurons per experiment.

Gel Zymography
Gel zymography was performed as previously described [6].

Culture supernatants were collected and protein concentrations

normalised using the Lowry method (Bio-Rad, Hercules, CA,

USA). Equal amounts of protein were subjected to 8.5% SDS-

PAGE (Bio-Rad) containing porcine gelatin at 4.5 mg/ml (Sigma-

Aldrich) in non-denaturing, non-reducing conditions and using a

MiniBlot system (Bio-Rad). Gels were washed twice for 30 min in

2.5% Triton X-100 to remove SDS, and incubated for 48 h in

50 mM Tris pH 7.5, 10 mM CaCl2, at 37uC. Gels were then

stained with 0.1% Coomassie blue G-250 (Bio-Rad) for 3 h in

30% ethanol and destained with a solution containing 5% acetic

acid until clear bands of gelatinolysis appeared on a dark

background. Gels were digitised and optical densities assessed

with the Bio 1D software (Vilber Lourmat, Marne-la-Vallée,

France). Some zymogram gels were incubated with 1 mM 1,10-0-

phenanthrolin, a broad spectrum inhibitor of metalloproteinases.

Human recombinant active MMP-2 (hrMMP-2) (100–200 pg,

Chemicon) was used as a positive and normalising control.

Reverse Gel Zymography
Reverse gel zymography was performed according to the

method previously reported [29,30]. Culture supernatants and

lysates were collected and protein concentrations were normalised

as mentioned above. Equal amounts of protein were subjected to

8.5% SDS-PAGE containing 2.25 mg/ml porcine gelatin and

160 ng/ml of human recombinant active MMP-9 (Chemicon).

Samples were loaded in Laemmli buffer and run at constant

amperage (40 mA). The gels were incubated on a rotary shaker for

3 h in 2.5% Triton X-100. The Triton X-100 solution was

replaced with MMP activating buffer (50 mM Tris-HCl, pH 7.5,

10 mM CaCl2) at 37uC for 48 h. Gels were then processed for

analysis as described above.

Isolation of Intracellular, Cytoskeletal and Membrane
Fractions

Subcellular fractioning was performed on cortical neurons using

the ProteoExtract subcellular proteome extraction kit (Calbio-
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chem) according to the manufacturer’s instructions. Proteins were

extracted with different buffers from major subcellular compart-

ments and on the basis of the difference in protein solubility. The

first cytosolic fraction was obtained by incubating the cells with an

extraction manufacturer’s buffer at 4uC for 10 min. A second

fraction contained the cell membrane and organelles, and

centrifugation of this fraction allowed separation of membrane

(supernatant) and cytoskeletal (pellet) fractions. Equal volumes of

each fraction samples were resolved by SDS-PAGE, and gel

zymography was performed as described above.

Extraction of Gelatinases and Western Blot
Culture supernatants from cortical neurons were collected 24 h

after seeding. For gelatinase extraction, supernatants were

concentrated using centrifugal filter devices (Amicon Ultra,

Millipore, Billerica, MA, USA) at 7500 x g during 15 min at

4uC, and were incubated in the presence of 60 ml of gelatin-

sepharose 4B (Amersham Biosciences, Buckinghamshire, UK)

overnight. Gelatin-sepharose 4B was eluted with working buffer

(50 mM Tris-HCl, pH 7.6, 150 mM NaCl, 5 mM CaCl2, 0.005%

Brij-35) and 10% DMSO at room temperature. Protein

concentrations were determined using the Lowry method. Equal

amounts of protein in Laemmli buffer containing 10% b-

mercaptoethanol were boiled and separated by 8% SDS-PAGE.

mrTIMP-1 was loaded as positive control. Proteins were

transferred onto nitrocellulose membranes (Amersham Bioscienc-

es) in transfer buffer (25 mM Tris, 192 mM glycine, 20% ethanol).

Membranes were incubated overnight in blocking buffer at room

temperature and then probed with rabbit anti-MMP-2 (1/500,

Chemicon); goat anti-TIMP-1 (1/100, R&D Systems); mouse anti-

GFP (1/500, Roche Diagnostics); mouse anti-MAP2 (1/500),

mouse anti-bIII-tubulin (1/500) and mouse anti-b-actin (1/3000),

all three from Sigma-Aldrich; and rabbit anti-ser3 p-cofilin (1/500,

Santa Cruz Biotecnology). All antibodies were diluted in blocking

buffer (Roche Diagnostics). After incubation with primary

antibodies, membranes were incubated with a peroxidase

conjugated secondary antibody (Jackson Immunoresearch). Final-

ly, proteins were detected using a chemiluminescence kit (Roche

Diagnostics) and films were digitised and analysed using the Bio

1D software.

TIMP-1-GFP Construct and Transfections
Full length mouse TIMP-1 coding regions were amplified by

PCR from mouse brain cDNA produced as described above, using

the following primers containing unique restriction sites in their 39

end:

TIMP-1/GFP-F: ATATATGAATTCTAAATGATGGCCC-

CCTTTGCATCTCTG (EcoR1),

TIMP-1/GFP-R: ATATATGGATCCCGGGCCCCAAGG-

GATCTCCAAGT (BamH1).

The TIMP-1 PCR product was cloned in frame with GFP in

the EGFP (N1) vector (Clontech, Mountain View, CA, USA)

digested with the same enzymes beforehand and the plasmid

construct was fully sequenced on both strands.

Primary cortical neurons were seeded as indicated above. After

18–20 h in culture, the plating medium was aspirated and cells

were transfected using 1 mg of plasmid DNA encoding GFP or the

TIMP-1/GFP construct mixed with 5 ml of lipofectamine

(Invitrogen) and 1 ml of combimag beads (Magnetofection Kit

OZ Biosciences, Marseilles, France), according to the manufac-

turer’s protocol. The mix was incubated for 30 min on a magnetic

plate (OZ Bioscience) at 37uC and then replaced by pre-warmed

serum-free defined medium for 48 h until fixing in 4% PFA. N2a

cells were transfected using jetPEI (Qbiogene, Carlsbad CA, USA)

in Opti-MEM medium as recommended by the manufacturer.

Briefly, 1 mg of plasmid DNA encoding GFP or the TIMP-1/GFP

construct was mixed with 100 ml of NaCl 150 mM, 2 ml of jetPEI

and applied to 50000 cells plated on 12 mm diameter glass

coverslips 24 h after seeding. The supernatants of these cells were

collected 48 h after and used to assess the extent of TIMP-1/GFP

inhibition on MMPs. The transfection efficacy was .30%.

Fluorigenic Assay on mrTIMP-1 Inhibitory Activity
The inhibitory activity of mrTIMP-1 on active hrMMP-2 was

evaluated using a fluorimeter (DTX 800 Multimode Detectors,

Beckman Coulter, Fullerton, CA, USA). The cleavage of

gelatinase-specific quenched fluorescence substrate Mcmat

(0.5 mg) (Calbiochem), was measured as arbitrary fluorescence

units, using 325 nm excitation and 400 nm emission filters at 37uC
for 1 h. Twenty ng of active hrMMP-2 was used and the inhibitory

activity of 100 ng of mrTIMP-1 tested for 1 h. The control

contained 50 mM Tris/HCl, 10 mM CaCl2, 100 mM NaCl,

pH 6,8 (TCN buffer) and substrate, but no proteinase. A second

control was used to discard a possible inhibitory effect of the TNC

buffer in which mrTIMP-1 was diluted.

Statistical Analysis
Data were analysed using the analysis of the variance

(ANOVA), followed by either post-hoc Student-t, Tukey’s or

Dunnett’s test. Statistical significance was achieved at p#0.05.

Results

TIMP-1 Content in Cortical Neurons
Semi-quantitative RT-PCR was performed on mRNAs encod-

ing TIMP-1, MMP-2, MMP-9, MT1-MMP, GAPDH (Fig. 1A), b-

actin (not shown) and 18S RNA (not shown), the latter 3 being

used to standardise the experiments. PCR products were analysed

after 30 (not shown), 33 (not shown) and 35 cycles (Fig. 1A). While

TIMP-1, MMP-2, MT1-MMP and GAPDH PCR products were

already detected at 30 cycles, the MMP-9 PCR product was barely

detected even after 35 PCR cycles in cortical neurons cultured in

vitro for 24 h. At 39 cycles the MMP-9 PCR products was clearly

visible, but additional non specific products of weak intensity

appeared as well (not shown). The efficiency of the selected PCR

primers for MMP-9 was established by amplification of the

appropriate PCR product in N2a neuroblastoma cells (Fig. 1A)

and astrocytes (not shown). We thus conclude that in cortical

neurons cultured for 24 h MMP-9 mRNA is expressed at

significantly lower levels than the mRNAs encoding the other

proteins of interest in this study. Although TIMP-1 mRNA was

detected using RT-PCR approaches (Fig. 1A), the protein was

undetectable by western blot in the supernatants of our cultures

24 h after seeding (Fig. 1B) and immunolabelling was just slightly

above background levels in a few neurons (Fig. 1C). These data are

in agreement with previous reports showing low levels of TIMP-1

in physiological conditions [4,5]. In contrast with the low amounts

of TIMP-1 found in cortical neurons, the supernatant of control or

LPS-treated cortical astrocytes accumulated in 24 h between 10

and 100 ng/ml (,0.3–3 nM) of TIMP-1, as demonstrated by

western blot (not shown). Astrocytes also displayed intense

immunolabelling for TIMP-1 (not shown). Similar concentrations

of TIMP-1 have been reported in the cerebrospinal fluid of

patients suffering from various neurodegenerative disorders [31].

Together, these data determined the mrTIMP-1 working

concentrations in the present study and suggested that the low

levels of endogenous TIMP-1 would not interfere with exoge-

nously added mrTIMP-1. The latter was still easily detected by

TIMP-1 and Neuron Morphology
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western blot in the supernatants 0, 24 and 72 h after exposure,

indicating a good stability of the recombinant protein in culture

media conditioned by neurons (Fig. 1B). The MMP inhibitory

effect of mrTIMP-1 was confirmed by the inhibition of MMP-2

dependent cleavage of a fluorigenic substrate, as assessed by

spectrofluorescence (Fig. S1). Overall, the present experimental

model tentatively recreates the inflammatory/post-lesion situation

where most TIMP-1 is released into the neuronal microenviron-

ment by reactive astrocytes that express high levels of TIMP-1

compared to control, as previously reported [4,7].

Effects of mrTIMP-1 on Cell Culture Composition and
Viability

Twenty four hours after seeding, untreated cultures were

composed of 88.6% of bIII-tubulin positive cells with processes

(considered as differentiated neurons), 6.4% of bIII-tubulin

positive cells without neurite extensions (non-differentiated

neurons), 2.97% of GFAP positive cells and 2.03% of unidentified

cells negative for both neuronal and astrocytic markers (see

Table 1). Moreover, only a few neurons exhibited an incipient

axonal differentiation as assessed by double immunostaining with

anti-Tau-1 and anti-MAP2 antibodies, an axonal and a dendritic

specific marker, respectively. Virtually all neurons exhibited a

colocalised distribution of Tau-1 and MAP2 (Fig. S2) and only

11% of them displayed a slightly higher intensity of labelling for

Tau-1 in one of their neurites, which coexisted with conspicuous

MAP2 labelling. This clearly indicated a poor degree of axo-

dendritic differentiation at this stage in serum free pure neuronal

cultures, unlike cultures based on methods such as Banker’s, where

co-cultured astrocytes provide neurons with the necessary trophic

support for early axo-dendritic differentiation [32,33]. In contrast

with 24 h cultures, many neurons displayed a discrete distribution

of MAP2 and Tau-1 immunostaining at 48 and 72 h post-seeding

(Fig. 2D and Fig. S2, respectively), suggesting axo-dendritic

differentiation. Therefore, unbiased statistical evaluation of

mrTIMP-1 effects on the length of dendrites and axons was

possible at 48 h when the density of axo-dendritic circuitry

allowed for individual tracing of neurite extensions (Fig. 2D).

The number of cells in control cultures, counted as Hoechst

positive nuclei, remained constant across 10 independent exper-

Figure 1. Expression of TIMP-1 and MMPs in primary cortical neurons. A. Semi-quantitative RT-PCR followed by separation of the PCR
products in ethidium bromide stained gels showing expression by cortical neurons 24 h after seeding and by N2a neuroblastoma cells of mRNAs
encoding endogenous TIMP-1, MMP-2, MMP-9 and MT1-MMP after 35 cycles of PCR. Note that in cortical neurons, MMP-9 mRNA is barely detected as
compared with N2a cells and with the other neuronal mRNAs which were already detected at 30 cycles of PCR. GAPDH (30 cycles) was used as a
standard; 100 bp molecular weight ladder (M). B. Western blot showing TIMP-1 immunoreactivity after equal protein loading from supernatants of
cortical neurons at different times after adding 2.5 nM of mrTIMP-1, or from control untreated cultures at the same time points, 0, 24 and 72 h. Note
that endogenous TIMP-1 is not detected in untreated cultures, whereas mrTIMP-1 is easily detected in the supernatants of these cultures even after
72 h, indicating high stability of the protein. C. Fluorescent microphotographs of cortical neurons showing bIII-tubulin (green) and TIMP-1 (red)
immunostaining co-labelled with the nuclear marker Hoechst (blue) 24 h after seeding. Note low levels of endogenous TIMP-1, slightly above
background levels (Blank) only in the soma of some cells. Scale bar 20 mm. Figures are representative of at least 3 independent experiments.
doi:10.1371/journal.pone.0008289.g001

Table 1. Effects of mrTIMP-1 on the content of cortical
cultures 24 h after seeding.

mrTIMP-1 (nM) 0 0.4 1 2.5

# Hoechst positive cells 6064.8 6366.7 6465.8 6263.3

% astrocytes 2.960.2 n.a. 6.260.4* 3.560.4

% differentiated neurons 8960.7 8562.2 8661.2 8761.1

% non differentiated neurons 6.460.7 8.562.2 7.161.2 6.760,9

mrTIMP-1 induced no changes in the number of viable cells or in the number of
differentiated or non differentiated neurons. However, it augmented the
number of GFAP positive cells. Values represent the means 6 SEM of 4–8
independent experiments * p,0.01, ANOVA followed by Dunnett’s test.
doi:10.1371/journal.pone.0008289.t001
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iments (59.764.8 cells per microscopic field of 87 mm2). This

number of viable cells was not affected by 24 h exposure to

mrTIMP-1 at any concentration studied and the treatment did not

induce any sign of cytotoxicity such as chromatin compaction or

neurite breakage, and did not alter the ratio of differentiated and

non-differentiated bIII-tubulin positive cells (Table 1).

Twenty four hours following exposure to 1 nM mrTIMP-1, the

number of astrocytes doubled (Table 1) as compared with

untreated control cultures. Although these experiments were not

set up to study the effects of TIMP-1 on astrocytes, which

represent a very low percentage of cells, the present results are in

keeping with previous observations in primary cultures of cortical

astrocytes, where TIMP-1 increased [3H] thymidine uptake by

200% [13].

Effects of mrTIMP-1 on Neurite Length in Cortical
Neurons

Previous work in our laboratory suggested the implication of

TIMP-1 in the control of axonal remodelling in vivo [16] and

prompted us to investigate more specifically the effects of

mrTIMP-1 on cultured neurons. Twenty four hours of exposure

to mrTIMP-1 was considered as a minimum time for TIMP-1 to

act in neurons after pathological driven upregulation. The length

of neurites, measured in bIII-tubulin labelled cells, was signifi-

Figure 2. Effects of mrTIMP-1 on neurite outgrowth of cortical neurons 24 and 48 h after seeding. A. Fluorescent microphotographs of
cortical neurons showing bIII-tubulin staining 24 h after seeding. Note that the length of neurites decreases after exposure to mrTIMP-1 (1 nM in the
example). B. Quantification of these reductions after 24 h exposure to several concentrations of mrTIMP-1. C. Quantification by intervals of length,
indicating that mrTIMP-1 induces an important increase in the proportion of small neurites (between 0 and 10 mm), whereas longer neurites are
significantly more frequent in the control cultures. D. Fluorescent microphotographs of cortical neurons showing immunostaining for Tau-1 (green)
and MAP2 (red), and Hoechst labelling (blue) 48 h after seeding. The graph represents the length of axons (a), dendrites (d) and the total neuritic
arbour (a+d). Note that 48 h of treatment with mrTIMP-1 significantly reduced the size of both axons and dendrites. Values represent the means 6
SEM of 3–8 independent experiments. *p,0.05, **p,0.01, ANOVA followed by Dunnett’s (graph B) and Student-t (graphs C and D) tests. Scale bars
20 mm.
doi:10.1371/journal.pone.0008289.g002
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cantly reduced between 25 and 30% after mrTIMP-1 exposure

(Fig. 2A and B). In addition, as illustrated in figure 2C for the

1 nM concentration, the majority of the smallest neurites [0;

10 mm] were observed in cultures treated with mrTIMP-1. This

proportion was similar between control and mrTIMP-1-treated

cultures in the next length interval [10; 20 mm] and was inverted

in the [20; 30 mm] interval and thereafter, with control cultures

displaying a higher number of the longer neurites. In addition, the

longest neurites were systematically found in control cultures. The

effects of mrTIMP-1 on the distribution of length frequencies were

similar regardless of the concentration studied: 0.4 nM (n = 4),

1 nM (n = 4), 2.5 nM (n = 8). The inhibitory effects of mrTIMP-1

on neurite outgrowth were still present after 48 h treatment and

affected equally both dendrites and axons (Fig. 2D)

Effects of mrTIMP-1 on Actin Cytoskeleton and Growth
Cone Morphology

To assess changes in the morphology of growth cones and other

actin rich structures, we stained F-actin using Texas Red-X

phalloidin. Microscopic observation revealed that cultures exposed

to mrTIMP-1 for 24 h exhibited a less organised actin network

and an increased number of actin rich filopodia along the neurite

shaft (Fig. 3A). Indeed, the number of these protrusions nearly

doubled as compared to control cultures (Fig. 3B). Moreover, the

area of leading growth cones augmented almost 2-fold (Fig. 3C)

after exposure to mrTIMP-1. No significant changes were

observed in the index of circularity (not shown).

mrTIMP-1 Did Not Alter the Levels of Cytoskeletal
Proteins

We next sought to examine whether morphological changes

would be supported by changes in the levels of cytoskeletal

proteins such as b-actin, b-III-tubulin, or MAP2c, a regulator of

microtubule assembly. Using western blot approaches, no changes

were observed in their expression levels after 24 h treatment,

suggesting that mrTIMP-1 effects on cortical neuron morphology

rather result from redistribution of cytoskeletal components

(Fig. 3D). In order to further ascertain a possible link between

TIMP-1 effects and a signalling cascade in relation with actin

polymerisation and depolymerisation, we sought for changes in the

phosphorylation of cofilin, an actin binding protein that

depolymerises actin and looses this capacity upon phosphoryla-

tion. Using an anti-ser 3 p-cofilin antibody, previously reported to

allow for detection of subtle changes in cofilin phosphorylation

[34], we could not detect significant modifications in the levels of

phosphocofilin after mrTIMP-1 treatment either by western blot

(Fig. 3E) or by immunofluorescence (results not shown).

Effects of Wild Type and Mutated Inactive Forms of
Truncated N-Terminal TIMP-1 on Cortical Neurons

Both the N-terminal and C-terminal domains of TIMP-1

influence its biological functions. The N-terminal domain

interacts with the active site of the target MMP and carries the

MMP inhibitory activity, whereas the C-terminal domain

conveys the binding to pro-MMP-9 and protein-protein

interactions that confer to TIMP-1 functions independent of

MMP inhibition [2]. In order to distinguish between these two

possibilities, we investigated the effects on cortical neuronal

cultures of wild type (NT1) and mutated (DNT1) truncated N-

terminal forms of TIMP-1 after 24 h exposure. The NT1 form

of the protein preserves the MMP inhibitory activity of full

length TIMP-1 against MMP-1, MMP-2, MMP-3 and MMP-9

and a relatively poor inhibitory activity against MT1-MMP.

These inhibitory capacities are completely abrogated in the

DNT1 mutated form with the exception of MMP-9 inhibition

which is selectively preserved [35,26]. In the presence of

2.5 nM NT1, neurite length was significantly reduced by 32%,

whereas the DNT1 mutated form did not induce significant

changes with respect to the control group (Fig. 4A). These

observations clearly indicate that TIMP-1 effects on the

morphology of cortical neurons are predominantly mediated

by the inhibition of MMP activity.

Effects of Broad Spectrum Specific MMP Inhibitor
In order to confirm that the MMP inhibitory properties of the

N-terminal domain of TIMP-1 modulate neuronal morphology,

we next asked whether broad spectrum MMP inhibitors would

mimic TIMP-1 effects. We used RXPO3R (2 mM), a pseudopho-

sphinic MMP inhibitor which does not inhibit the closely related

ADAM family of metalloproteinases [23,16]. Like the full length

mrTIMP-1 and its NT1 variant, 24 h of exposure to RXPO3R

significantly reduced the length of neurites and increased the area

of growth cones (Fig. 4B and C), without affecting cell viability or

the proportion of differentiated neurons (not shown). The

convergence of the effects induced by TIMP-1, NT1 and

RXPO3R on the morphology of cortical neurons further supports

the idea that TIMP-1 effects are mainly mediated by its inhibitory

activity on MMPs.

Effects of a TIMP-1/GFP Fusion Protein Expressed in
Cortical Neurons

The data above demonstrate that exogenous mrTIMP-1

affects neuron morphology and hence recreate a paracrine

action of TIMP-1 when released, for instance, by reactive

surrounding glia in different pathological settings. However,

inflammation driven expression of TIMP-1 by glia is normally

preceded by the induction of TIMP-1 expression in cortical

and hippocampal neurons resistant to degeneration [4,6].

Therefore, we next asked whether TIMP-1 also elicits

autocrine effects on neuron outgrowth. To address this

question, we generated a plasmid construct encoding a mouse

TIMP-1/GFP fusion protein that retains the inhibitory activity

of TIMP-1 on MMPs, as demonstrated by reverse zymography

on supernatants from N2a transfected cells (Fig. 5A). Forty

eight hours after transfection the transgene was homogeneous-

ly distributed in all cell compartments of both bIII-tubulin

positive (Fig. 5B) and negative cells (not shown). The first

represented 2.02% of total cells in the culture, whereas bIII-

tubulin negative cells (presumably astrocytes) accounted for

0.5%. These percentages reached 2.06% and 16.6% when the

number of TIMP-1/GFP transfected cells was respectively

referred to the number of neuronal or non-neuronal cells,

clearly indicating a higher transfection rate for the latter.

Western blot (Fig. S3) using anti-GFP antibody did not reveal a

detectable presence of TIMP-1/GFP in the supernatants of

transfected cultures. In these conditions, as illustrated in

figures 5C and 5D, TIMP-1/GFP overexpression strongly

reduced neurite length (48.3%) and the number of neurites

(51.8%). We also attempted to evaluate the effects of TIMP-1/

GFP overexpression on actin cytoskeleton, but after nearly

70 h in culture transfected cells were not longer individualised

and their extensions and growth cones were intermingled with

surrounding neurons (Fig. S4). The few transfected and

isolated neurons found in each experiment (only 3–4 per well

for each experimental group) were not sufficient to reveal

significant changes on the size of growth cones after TIMP-1/

GFP overexpression.
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Figure 3. Effects of mrTIMP-1 on the morphology of cortical neurons and expression of cytoskeletal proteins. A. Fluorescent
microphotographs of cultured cortical neurons labelled with Texas Red-X phalloidin, showing increases in the size of growth cones (arrowheads) and
the number of F-actin rich filopodia (arrows) after 24 h of mrTIMP-1 treatment (1 nM) as compared with control cultures. B and C. Quantification of
these changes showing significant increases in the number of filopodia/mm of neurite (B), and the area of growth cones (C) after mrTIMP-1
treatment. D. Western blot from lysates of cortical neurons treated with 1 nM mrTIMP-1 for 24 h showing no differences between control (C) and
mrTIMP-1 treated (T) cultures for different cytoskeleton proteins (MAP2c, b-actin and bIII-tubulin). E. Western blot and quantification of phospho-
cofilin levels from lysates of cortical neurons (3 independent experiments). No changes were observed after treatment with 1 nM mrTIMP-1 for 24 h.
b-actin was used as a control of equal protein loading. Images in A, B and D are representative of results obtained in 4 independent experiments.
Values in B and C represent the means 6 SEM of 4 independent experiments. *p,0.05, ** p,0.01, Student-t-test (B); Dunnett’s test (C). Scale
bar 20 mm.
doi:10.1371/journal.pone.0008289.g003
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Expression of Potential TIMP-1 Targets, MMP-2 and MMP-
9, and Effects of MMP-2 Selective Inhibition

Since RXPO3R and TIMP-1 are very poor inhibitors of

ADAMs and MT-MMPs, respectively, it is plausible that their

effects on neuron growth and morphology result from the

inhibition of secreted MMPs synthesised by cortical neurons.

Gelatinases MMP-2 and MMP-9 are potential targets for TIMP-1.

The MMP-2 mRNA was clearly more abundant than MMP-9

mRNA and this ratio was preserved at the protein level. Indeed,

MMP-2 gelatinolytic activity (,70 kDa) was consistently displayed

in the supernatant, cytosolic and membrane fractions of cultured

neurons. MMP-9 gelatinolytic activity (,100 kDa) was relatively

faint in the supernatant and occasionally detected in the cytosol.

Both proteinases were detected in the membrane fraction, which

displayed a more conspicuous band of lower molecular weight, as

compared with the supernatant and cytosolic fractions (Fig. 6A).

Considering that MMP-9 has a 5-fold higher gelatinolytic capacity

than MMP-2, we found that the latter was between 6-fold and 24-

fold more abundant than MMP-9 in the tested fractions (Fig. 6B).

The expression of MMP-2 by cortical neurons was further

confirmed by western blot (Fig. 6C) and immunocytochemistry

(Fig. 6D). The levels of MMP-9 were not sufficient to be

unequivocally detected with two different antibodies by western

blot or immunocytochemistry in any of the experiments we

performed (not shown). In contrast, MMP-2 immunolabelling

appeared to be punctate in the cell body and neurites and often

conspicuous in the growth cone (Fig. 6D). MMP-2 immunoreac-

tivity was mainly observed in the central domain of the growth

cone and generally excluded from the more motile peripheral

domain rich in F-actin (Fig. 6D). Provided that MMP-2 was

constitutively expressed by cortical neurons and in particular in

areas that are essential for neurite outgrowth, we tested whether

the latter was affected by selective inhibition of MMP-2. The

range of concentrations of MMP-2i used was calculated to provide

a level of MMP-2 inhibition comparable with that provided by

TIMP-1 on the basis of their Ki. As illustrated in figure 7, the

selective MMP-2i reduced neurite length after 24 h of exposure in

a dose-dependent manner with a significant inhibitory effect (25%)

detected at 100 nM, and a maximum effect (35%) at 1000 nM.

The same concentrations of MMP-2i did not induce any changes

in the surface of growth cones or in the number of actin rich

protrusions (not shown).

Discussion

The present work provides evidence that TIMP-1 modulates the

morphology of neurons in a paracrine and autocrine manner. The

paracrine actions of TIMP-1 appear to be mediated by its N-

terminal domain which carries the inhibitory activity on MMPs,

most likely on MMP-2. This proteinase, constitutively expressed

by cortical neurons, is present in the cell soma, the neurites and the

central domain of growth cones. Its inhibition by a selective MMP-

2 inhibitor causes neurite length reductions comparable with those

induced by TIMP-1, the latter equally affecting both dendrites and

axons. The autocrine action of overexpressed TIMP-1/GFP

causes an even more important reduction in neurite length and

branching. Altogether, TIMP-1 emerges as a factor that modulates

the size and number of actin rich structures (growth cones and

microprocesses) and neurite outgrowth by inducing a reorganisa-

tion of the actin and tubulin cytoskeleton. Our findings may be of

functional relevance mainly in post-lesion pre-scarring zones of the

CNS where TIMP-1 is released at high levels by reactive

astrocytes and by hyperactive neurons.

Figure 4. Inhibition of neurite outgrowth by the N-terminal
domain of TIMP-1. A. Plot representing the average length of
neurites per neuron after 24 h treatment with 2.5 nM of mrTIMP-1, the
wild type form of the N-terminal domain of TIMP-1 (N-TIMP-1) or the
mutated inactive form of the latter (DN-TIMP-1). B and C. Plots
representing the effects of RXPO3R (2 mM) on the length of neurites (B)
and the area of the growth cone (C). The values represent the means 6
SEM of at least 3 independent experiments. *p,0.05, ANOVA followed
by Tukey’s (A) or Student-t (B and C) test.
doi:10.1371/journal.pone.0008289.g004
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TIMP-1 Affects the Morphology of Neurites, Growth
Cones and F-Actin Rich Microprocesses

High expression of TIMP-1 in reactive astrocytes compared

with much lower neuronal levels has been documented by

different groups including ours [4]. In the present study only 3%

of cells were identified as astrocytes by GFAP labelling, suggesting

a minor contribution of these glial cells to TIMP-1 and MMP

content. Although RT-PCR revealed the presence of TIMP-1

mRNA in cortical neurons, the protein was undetectable by

western blot, in clear contrast with easily detected TIMP-1 (0.3–

3 nM) in the supernatant of quiescent and LPS-stimulated

astrocytes found in the present study (not shown) or in the

cerebrospinal fluid of patients with neurodegenerative disorders

[31]. The pathological concentrations of TIMP-1 in body fluids

are within the range of those used in the present study that

induced changes in the growth and morphology of neurons. The

reduction of neurite length was concomitant with the increase in

the number of small bIII-positive neurites (under 10 mm) and actin

rich protrusions. These are highly dynamic structures that expand

and retract constantly and it is possible that TIMP-1 stabilises

them through an increase in their adhesion to extracellular

substrates. An alternative, but non exclusive hypothesis is that

TIMP-1 could act as a repellent cue for growth cones,

subsequently leading to the emergence of lateral protrusions.

Similar effects have been previously reported for repellent cues

that inhibit growth cone motility of retinal ganglion cells [36],

suggesting that secondary neurites emerging from the protrusions

might compensate the sensory deficit of the leading growth cone.

Although an increase in the size of growth cones is most commonly

associated with expanding neurites, the 2-fold increase of the

growth cone size observed upon TIMP-1 application is on the

contrary concomitant with the reduction of neurite outgrowth. No

clear explanation exists for such phenomenon, but it has been

suggested that changes in microtubule dynamics may slow down

neuritic outgrowth and facilitate the accumulation of material

within the growth cone [37]. The question remains open as to

whether TIMP-1 induces a transient collapse of growth cones in a

way reminiscent of classical collapsing-like factors (ie, ephrin,

semaphorins, etc). Investigating the kinetics of TIMP-1 action

should provide further insight into the activation of signalling

pathways preceding significant morphological changes. In this

context, failure to detect changes in cofilin phosphorylation at

24 h after seeding does not preclude that such changes may

actually occur at earlier time points.

TIMP-1 Induced Changes in Neuronal Morphology Are
Mediated by Its N-Terminal Domain

The finding that RXPO3R, a specific inhibitor of MMPs,

essentially mimicked the effects of TIMP-1 provides indirect

evidence that TIMP-1 targeting of MMPs is a causal event. Recent

reports have suggested the implication of ADAMs in axon

outgrowth and guiding in DRG and retinal ganglion cells [38].

The effects of the RXPO3R, which does not inhibit ADAMs [23],

argues against a significant implication of these metalloproteinases

Figure 5. Effects of TIMP-1/GFP fusion protein on the morphology and neurite development of cortical neurons. A. Reverse gel
zymography from supernatants of N2a cells transfected with TIMP-1/GFP fusion protein demonstrating that TIMP-1/GFP retains inhibitory activity on
MMP proteolytic activity. Note that the band of inhibited MMP-9 activity corresponds to the size of TIMP-1 (33 kDa) + GFP (28 kDa). B. Examples of
cortical neurons transfected with GFP or TIMP-1/GFP and immunostained with an anti-GFP antibody 48 h after transfection. White fluorescence
photomicrographs were converted to black negative images to improve the details on the neuritic arbour. Note that TIMP-1 overexpression in these
neurons strongly reduces the complexity of their arborisation. Scale bar 20 mm. C and D. Quantification of the changes induced by TIMP-1/GFP
overexpression compared to GFP alone. The values represent the means 6 SEM of 4 independent experiments. *p,0.05, Student-t-test.
doi:10.1371/journal.pone.0008289.g005
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as mediators of TIMP-1 effects on cortical neurons. A similar

contingency would apply to MT-MMPs provided the poor

inhibitory effect of TIMP-1 on the members of this MMP

subfamily.

The most compelling evidence for a MMP inhibition-dependent

action of TIMP-1 comes from data demonstrating that the

truncated wild type N-terminal form of TIMP-1 reduces neurite

outgrowth, whereas the inactive mutated form does not. Our data

confirm in live cortical neurons previous studies showing that the

truncated TIMP-1 retains metalloproteinase inhibitory activity in a

cell-free system [39]. Altogether, these findings pinpoint the

functional prevalence of the primary amino-acid sequence in the

inhibitory properties of the N-terminal domain over post transla-

tional modifications such as glycosylation, not present in the

truncated form produced by bacteria. From the above it follows that

the C-terminal domain of TIMP-1 may be irrelevant in the

molecular processes leading to the inhibition of neurite outgrowth.

TIMP-1 Effects on Neurite Outgrowth of Cortical Neurons
Appear Mediated in Part by the Inhibition of MMP-2

MMP-9 has been reported to contribute to axonal elonga-

tion in cerebellar neurons [17] but two findings in our study

suggest that this proteinase does not play a critical role in

neurite extension of cortical neurons; first, MMP-9 levels are

Figure 6. Expression of MMP-2 and MMP-9 in cortical neurons 24 h after seeding. A. Gelatin zymograms of MMP-2 and MMP-9 from
supernatant of cortical neurons, cytosol and membrane fractions. Human active recombinant MMP-2 (hrMMP-2) was used as a positive control
(200 pg). The zymogram shows much higher expression of MMP-2 (,70 kDa) than MMP-9 (,100 kDa) in the supernatant, higher expression of MMP-
2 in the cytosol where MMP-9 is barely detectable, and rather similar intensity of gelatinolytic bands for both gelatinases in the membrane fraction. B.
Quantification of the MMP-2/MMP-9 ratio from zymograms, where active recombinant MMP-2 was used as normalising control. Values represent the
means 6 SEM of 3 independent experiments. Note that the quantification takes into consideration a 5-fold higher gelatinolytic activity of MMP-9
than MMP-2. C. Western blot demonstrating MMP-2 immunoreactivity in the supernatants of cortical neurons after enrichment and precipitation of
the samples with gelatin beads. Active human recombinant MMP-2 (5 ng) was used as a positive control. Images are representative of 3 independent
experiments. D. Fluorescence microphotographs showing immunolabelling of MMP-2 (green) and phalloidin F-actin labelling (red) in cortical neurons
24 h after seeding. Hoechst #33258 stained the nuclei (blue). Note that MMP-2 is distributed in the cell body and neurites. In the growth cones,
MMP-2 is mainly located to the central domain (insets with high power magnifications in the lower row) and virtually excluded from F-actin rich areas,
notably the peripheral domain. Scale bars are 20 mm for entire neurons and 10 mm for close up of growth cones.
doi:10.1371/journal.pone.0008289.g006
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very low as compared with MMP-2, and second, the N-

terminal mutated form of TIMP-1 that selectively preserves

MMP-9 inhibition had no effect on neurite outgrowth.

Therefore, it is reasonable to conclude that the inhibitory

effects of TIMP-1 on neurite outgrowth are not mediated by

the inhibition of MMP-9. Instead, several lines of evidence

point to MMP-2 as the most plausible target of TIMP-1 in

cortical neurons. Indeed, unlike MMP-9, MMP-2 was consti-

tutively expressed and particularly concentrated in the central

domain of the growth cone, known to be enriched in

microtubules [40,41]. The exclusion of MMP-2 from areas

rich in F-actin (ie, filopodia) suggests a possible functional

connection of MMP-2 with the microtubular system, known to

act as the principal structural component of neurite extension

and retraction. In support of this hypothesis, we have recently

shown that in neuronal cells, MMP-2-containing vesicles are

transported along microtubules, in close interaction with the

kinesin molecular motors [30]. The possibility that the effects

of TIMP-1 result from the inhibition of MMP-2 finds further

support in the observation that a synthetic selective MMP-2

inhibitor also reduces neurite length. Our findings, whether

referred to the 24 or 48 h time-point reinforce recent data

suggesting the involvement of MMP-2 in dendrite outgrowth of

cortical neurons [19]. The same authors previously suggested

that MMP-3 rather contributes to axonal growth [18]. In this

context, we cannot exclude that the effects of mrTIMP-1 on

axons, observed at 48 h, involve the inhibition of MMP-3.

The absence of MMP-2 from growth cone areas enriched in F-

actin (ie, peripheral domain of the growth cone) is in line with the

failure of selective MMP-2i to affect the size of growth cones or the

number of actin rich microfilaments. These data suggest that

TIMP-1 effects on actin rich structures involve the inhibition of

another MMP likely to be inhibited by the broad spectrum MMP

inhibitor RXPO3, which did increase the surface of growth cones.

Altogether, these observations support a role for at least a TIMP-

1/MMP-2 interaction in the control of neurite outgrowth in

cortical neurons. This is in keeping with the role previously

attributed to MMP-2 in the motility of DRG [20] and

hippocampal [16] neurons, and astrocytes [42]. Our data also

open the way to the investigation of TIMP-1 interactions that

specifically support changes in the dynamics of the actin

cytoskeleton.

Overexpression of TIMP-1 in Cortical Neurons Reduces
Neurite Outgrowth in an Autocrine Way

The important reduction of the neuritic arbour caused by

transfected TIMP-1/GFP compared to GFP alone confirms that

TIMP-1 interferes with normal outgrowth of cortical neurons

regardless of its locus of synthesis. It is noteworthy that

overexpression of TIMP-1/GFP causes a stronger reduction in

neurite outgrowth than exogenous mrTIMP-1. These exacerbated

effects may result from higher local concentrations of TIMP-1/

GFP in and around the transfected neurons that inhibit MMP-2

more efficiently, but may also reflect the effects of the interactions

of TIMP-1/GFP with other intracellular and pericellular targets

that would be less available for the exogenously applied mrTIMP-

1. Little is known about the interactions of TIMP-1 with non-

metalloproteinase proteins. Recently, it has been suggested that in

epithelial cells TIMP-1 interacts with the surface protein CD63

and modulates the tetraspanin/integrin b1 signaling complex [43].

Such interactions have not yet been reported for TIMP-1 in

neurons, but the closely related TIMP-2 has been found to interact

with a3b1 integrin in cultured cortical neurons and to promote

neurite outgrowth and differentiation of PC12 cells through cell-

cycle arrest [44]. Moreover, TIMP-3 promotes neuronal apoptosis

by blocking the shedding of the tumour necrosis factor (TNF)

superfamily of death receptors/ligands by MMP-3 [45,46].

Overall, it appears that the different TIMPs have clearly distinct

or even opposite effects in the nervous system, thus influencing cell

survival and neurite outgrowth balance in developmental and/or

post-lesion processes. Although the present study is focused on the

effects of TIMP-1 on cultured primary neurons, our data may

provide with clues to understand the functional consequences of

TIMP-1 production in post-lesion or inflammatory pre-scarring

zones of the CNS, but also to investigate the implication of TIMP-

1 in learning processes [16,47] and LTP [48] on the basis of its

ability to shape neuronal and synaptic morphology. These

challenging questions will deserve further attention in the future

to ascertain the role of TIMP-1, and more generally of the MMP/

TIMP system, in the CNS at the crossroads of physiology and

pathology.

Supporting Information

Figure S1 Inhibitory effect of mrTIMP on hrMMP-2 proteolytic

activity. Fluorescence generated by cleavage of the fluorescein

quenched substrate (Mcmat, 0.5 mg) is expressed as arbitrary

fluorescence units (AFU). Mcmat cleavage by human recombinant

MMP-2 (hr MMP-2, 20 ng) was inhibited by mouse recombinant

TIMP-1 (mrTIMP-1, 100 ng) diluted in TCNB (Tris, CaCl2,

NaCl, Brij-35 0.05%), reaching values equivalent to those

representing the control (buffer and Mcmat, without proteinase).

Note that the TCNB has no inhibitory effect on hrMMP-2

proteolytic activity.

Found at: doi:10.1371/journal.pone.0008289.s001 (0.46 MB TIF)

Figure S2 Absence of axo-dendritic differentiation in cortical

neurons 24 h after seeding. Fluorescent microphotographs show-

ing immunolabelling for Tau-1 (green) and MAP2 (red) specific

markers of axons and dendrites, respectively. Hoechst #33258

stained the nuclei (blue). At 24 h post-seeding, tau expression is

low and essentially colocalised with MAP2, indicating no axonal

differentiation at this stage. To the contrary, at 72 h post-seeding,

specific labelling is shown for MAP2 in dendrites (arrowheads) and

Tau-1 in axons (arrows). Scale bar 20 mm.

Figure 7. Selective MMP-2 inhibition reduces neurite length.
Plot representing the average length of neurites per neuron after 24 h
treatment with a selective MMP-2 inhibitor. The reduction of neurite
length is dose-dependent. The values represent the means 6 SEM of 4
independent experiments. *p,0.05, Dunnett’s test.
doi:10.1371/journal.pone.0008289.g007
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Found at: doi:10.1371/journal.pone.0008289.s002 (1.73 MB TIF)

Figure S3 TIMP-1/GFP is not detected in the supernatant of

transfected cortical neurons. Western blot from supernatants (S)

and lysates (L) of N2a cells and neurons 24 or 48 h after

transfection with TIMP-1/GFP constructs. The transgene is

detected in N2a cells, where transfection rates are over 30%,

whereas it is not detected in transfected neuronal cultures that

yielded much lower transfection rates. Note that the molecular

weight of the secreted transgene corresponds to the size of the

fusion protein ,60 kDa, while the lysates exhibit also a truncated

form of the protein at ,43 kDa. The western blot is representative

of 3 independent experiments.

Found at: doi:10.1371/journal.pone.0008289.s003 (0.33 MB TIF)

Figure S4 TIMP-1/GFP transfection and actin cytoskeleton

labelling. Fluorescent microphtographs showing anti-GFP immu-

nostaining (green) and F-actin phallodin labelling (red). Hoechst

#33258 stained the nuclei (blue). Note that transfected neurons

appear well integrated in the neuronal circuitry and most neurites

and growth cones are intermingled with neuritic extensions from

non-transfected neurons. Scale bars 20 mm.

Found at: doi:10.1371/journal.pone.0008289.s004 (3.81 MB TIF)
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