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Abstract

Background: Angiogenesis is considered an important factor in the pathogenesis of Rheumatoid Arthritis (RA) where it has
been proposed as a therapeutic target. In other settings, active angiogenesis is characterized by pathologic, immature
vessels that lack periendothelial cells. We searched for the presence of immature vessels in RA synovium and analyzed the
dynamics of synovial vasculature along the course of the disease, particularly after therapeutic response to TNF antagonists.

Methodology/Principal Findings: Synovial arthroscopic biopsies from RA, osteoarthritis (OA) and normal controls were
analyzed by double labeling of endothelium and pericytes/smooth muscle mural cells to identify and quantify mature/
immature blood vessels. To analyze clinicopathological correlations, a cross-sectional study on 82 synovial biopsies from RA
patients with variable disease duration and severity was performed. A longitudinal analysis was performed in 25 patients
with active disease rebiopsied after anti-TNF-a therapy. We found that most RA synovial tissues contained a significant
fraction of immature blood vessels lacking periendothelial coverage, whereas they were rare in OA, and inexistent in normal
synovial tissues. Immature vessels were observed from the earliest phases of the disease but their presence or density was
significantly increased in patients with longer disease duration, higher activity and severity, and stronger inflammatory cell
infiltration. In patients that responded to anti-TNF-a therapy, immature vessels were selectively depleted. The mature
vasculature was similarly expanded in early or late disease and unchanged by therapy.

Conclusion/Significance: RA synovium contains a significant fraction of neoangiogenic, immature blood vessels.
Progression of the disease increases the presence and density of immature but not mature vessels and only immature
vessels are depleted in response to anti-TNFa therapy. The different dynamics of the mature and immature vascular
fractions has important implications for the development of anti-angiogenic interventions in RA.
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Introduction

Increased synovial vascularity and biomarkers of angiogenesis

have been described in different chronic arthritic diseases [1–6].

Multiple inflammatory mediators such as cytokines, chemokines

and growth factors produced in excess in the synovial environment

can directly or indirectly mediate inflammatory angiogenesis

[5–7]. One of the key mediators of the inflammatory angiogenic

response is vascular endothelial growth factor (VEGF). VEGF can

be induced by hypoxia and cytokines in synovial macrophages and

fibroblasts [5–9]. Local and systemic levels of VEGF have been

found increased in rheumatoid arthritis (RA) and correlate with

active and severe disease [8–12]. In the collagen induced arthritis

murine model, different VEGF antagonists have consistently

shown remarkable therapeutic effects, pointing to angiogenesis as

a valid therapeutic target [13–15]. However, detailed morpholog-

ical studies of the changes in vascularity or vascular structure in

arthritic tissues after therapy are lacking in this model. VEGF is

also an important regulator of vascular permeability and

participates in myeloid cell migration and function [16–18].

Therefore, its antagonists might also improve arthritis by down-

regulating these processes, also highly relevant to the pathogenesis

of arthritis

VEGF mediated pathological angiogenesis has been extensively

analyzed in cancer, where VEGF antagonists have reached clinical

use and benefit patients with advanced malignancies [19]. Cancer

angiogenesis is characterized by morphologically abnormal,

immature, dilated and leaky vessels, which decrease effective

tumour perfusion and contribute to tumour development by

multiple mechanisms [20,21]. These VEGF induced immature

vessels lack proper periendothelial coverage by pericytes or smooth

muscle cells (SMC). VEGF mediates endothelial proliferation

while inhibiting pericyte and SMC development, a process instead

dependent on platelet derived growth factor (PDGF) signalling

[22,23]. Selective depletion of immature vessels has been

demonstrated after VEGF targeting in animal models of cancer,
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whereas mature vessels are relatively stable and resistant to VEGF

antagonists [20–24]. VEGF inhibition retards tumour progression

by complex effects in vascular functions, including improved

effective tumour perfusion and changes in inflammatory cell and

fluid influx [22–25].

Similar to tumours, in RA synovium, a severely hypoxic

environment is maintained despite active angiogenesis and

enhanced vascularity, suggesting abnormal function of the

neoangiogenic vessels [26,27]. However, the presence of immature

synovial vessels or their potential contribution to the disease

process has not been investigated. Improvement of the disease in

response to anti-TNF therapy is paralleled by a dramatic

reduction in local or systemic VEGF and other angiogenesis

markers [10–12,28,29]. Imaging techniques suggest that increased

vascularity and oedema are reduced by effective therapy [30–32].

Persistent vascular activity correlates with further damage to bone

and cartilage tissues even in patients on clinical remission.

Therefore, analyzing changes in vascular structure and density

after the indirect VEGF down regulation that occurs in response to

anti-TNF-a therapy might be informative on the potential role of

neoangiogenic vessels in the pathogenesis of RA.

We have specifically analyzed the pericyte/endothelial structure

of RA synovial vessels and whether changes in vascular density or

maturity correlate with clinicopathological progression of the

disease. Furthermore, we longitudinally analyzed potential chang-

es in the vascular structure in response to effective therapy in a

series of patients treated with TNF-a antagonists for active disease.

Methods

Ethics Statement
All patients signed a written informed consent. The present

study was approved by the institutional ethical committees of both

participating centers (Ethical Committee of the Hospital Clinic of

Figure 1. Detection of immature or mature blood vessels in RA synovial tissues. Double immunoflurescent labeling of endothelium (CD31,
red fluorescence) and pericytes/smooth muscle cells (aSMA, green fluorescence) in normal and RA synovial tissue is shown. Original magnification
6400. Right panels show the same area as in middle panels with higher magnification. Mature CD31+ vessels covered by aSMA+ periendothelial cells
are marked by arrows, and immature CD31+ vessels lacking aSMA+ mural cells by arrow heads.
doi:10.1371/journal.pone.0008131.g001

Table 1. Mature and Immature Vessels in RA, OA or Normal Synovial Tissues.

RA n = 82 OA n = 14 Normal n = 4 p-value*

CD31+/aSMA+ Vessels/mm2 294695 74628 94644 ,0.0001

CD31+/aSMA– Vessels/mm2 26627 0.661.2 060 ,0.0001

Total Vessels/mm2 319698 74.5628 94644 ,0.0001

Proportion of tissues with CD31+/aSMA– vessels (%) 66/82(80%) 3/14(21%) 0/4(0%) ,0.0001

CD31+/aSMA+: Mature vessels; CD31+/aSMA–: Immature vessels; Total vessels represents the sum of both mature and immature vessels.
(*) RA versus OA.
doi:10.1371/journal.pone.0008131.t001
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Barcelona, Barcelona, and Clinical Research Ethics Committee of

the Hospital 12 de Octubre, Madrid, Spain).

Patients and Synovial Biopsies
Arthroscopic synovial tissue biopsies were obtained from the

knee of 82 patients fulfilling the American Rheumatism Associ-

ation revised criteria for RA. All patients had active disease

characterized by inflammation of at least one knee joint. Patients

characteristics at biopsy, including age, sex, disease duration, 28-

joint Disease Activity Score (DAS28), C-reactive protein and

erythrocyte sedimentation rate (ESR), presence of IgM rheuma-

toid factor (RF) (positive$30 IU/ml) or anti-citrullinated protein

antibodies (ACPA) as determined by second-generation enzyme-

linked immunosorbent assay (positive$50 IU/ml, Immunoscan,

Stockholm, Sweden), and the presence of erosions were recorded.

A subgroup of 25 patients that started an anti-TNF-a therapy

(etanercept, adalimumab or infliximab) at first biopsy due to active

disease refractory to previous DMARD therapy (mean DAS28

score 6.061.4), underwent a second biopsy after 1062 months of

anti-TNF-a therapy. All these patients also received DMARD

therapy with methotrexate (7.5–20 mg/week) and 60% low dose

prednisone (#5 mg/day). Arthroscopic biopsies were obtained for

research purposes as previously described (33). The rate of side

effects of arthroscopy was very low and restricted to delayed

wound healing of one of the portals of entry in one patient (,1%).

After arthroscopy, lavage and steroid injection were performed

and usually followed by rapid improvement of arthritic pain.

Control synovial tissues from 14 osteoarthritic (OA) synovial

tissues were obtained by synovectomy at prostetic join replacement

surgery. In addition, normal (non-inflammatory) synovial tissues

were obtained from 4 individuals lacking previous joint disease at

elective arthroscopic surgery for minor traumatic lesions. Lack of

inflammatory infiltration in these tissues was confirmed by

histological examination.

Immunofluorescent Labelling of Synovial Vessels
Tissues were deparafinized, rehydrated and microwave heated

in pH 9 EDTA for antigen retrieval. Double immunofluorescent

labeling of endothelium and periendothelial pericytes/smooth

muscle cells was performed by sequential incubation with anti-

CD31 (JC70A clone, Dako, Carpinteria, CA, USA) and anti-a-

smooth muscle actin (aSMA) (1A4 clone, Sigma Aldrich Quı́mica,

Madrid, Spain) monoclonal antibodies, and isotype specific Alexa

488 and Alexa 594 labeled secondary antibodies (Molecular

Probes, Invitrogen, Eugene, OR). Sections were counterstained

with 49,6-diamidino-2-phenylindole (DAPI). Immunoperoxidase

staining of T-cells, B-cells, macrophages and PNAd+ high-

endothelial venules (HEV) was performed and quantified as

previously described [33]. Lymphoid neogenesis was defined by

the presence of grade 2–3 T/B cell aggregates containing HEV as

described [33].

For lymphatic vessels, immunoperoxidase labeling was per-

formed with anti-podoplanin mAb (D2/40 clone, Dako) and

avidin-biotin immunoperoxidase secondary reagents (Vector

Laboratories, Burlingame, CA, USA), and developed by diami-

nobenzidine chromogen. Double lymphatic and CD31 labeling

was performed by simultaneous podoplanin immunoperoxidase

and CD31 immunofluorescent detection as indicated above.

The whole area of each tissue was photographed and digitalized

using a Spot RT CCD camera and Spot 4.0.4 software (Diagnostic

Instruments, Sterling Heights, Michigan) on a Zeiss Axioplan-2

fluorescence microscope (Zeiss, Jena, Germany). The number of

blood vessels per area was determined by two independent

observers blind to the origin and characteristics of each biopsy.

Interobserver correlation coefficient for CD31+/aSMA- number

of vessels was r = 0.75 (p,0.0001, Spearman’s test). The

proportion of labeled/unlabeled synovial tissue area was also

analyzed in digitalized images using ImageJ software (http://rsb.

info.nih.gov/ij).

Statistical Analyses
For cross-sectional analyses, quantitative variables were com-

pared by Mann Whitney U test or ANOVA (Kruskall Wallys test)

Figure 2. Double labeling of lymphatic and CD31-positive
vessels in RA synovial tissues. Lymphatic vessels were detected by
immunoperoxidase (brown immunostaining) detection of podoplanin
and double immunofluorescent labeling (red fluorescence) of CD31.
The same field was photographed by light or fluorescent microscopy to
show the position of CD31+ (arrowheads) and podoplanin+ vessels
(arrows). Light microscopy image was inverted and merged with CD31
fluorescent image of the same field to show the relative position of
podoplanin (blue) and CD31 (red) labeling.
doi:10.1371/journal.pone.0008131.g002
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where appropriate. Correlation between different numerical

variables was analyzed by Spearman’s test. Changes in quantita-

tive variables before and after anti-TNF therapy were tested with

Wilcoxon’s signed rank test for paired data. Bonferroni correction

was applied for the correction of multiple testing.

Results

Vascularity and Immature aSMA-Negative Blood Vessels
in RA Synovial Tissues

By double labelling of endothelium (CD31) and pericyte/

smooth muscle cells (aSMA) immature, CD31-positive vessels

lacking aSMA-positive periendothelial cells, and mature CD31-

positive vessels covered by aSMA-positive mural cells were

identified in RA synovial tissues (Figure 1). Most RA tissues

(66/82) contained a variable number of immature CD31+/aSMA-

vessels, whereas they were only present in a small proportion of

OA tissues at a significantly lower density, and were not identified

in normal synovial tissues (Table 1). RA immature vessels were

predominantly small size vessels, preferentially located in sublining

areas containing abundant inflammatory infiltrates. Complete or

partial concordance in the presence of immature vessels in

different areas of the same joint was 30% and 53% respectively,

whereas in 17% of the cases, only one area contained immature

vessels.

The fractional CD31-positive and aSMA-positive areas and the

total number of mature vessels per area were also significantly

increased in RA tissues compared to OA and normal tissues

(Table 1). Although both determinations are not equivalent, since

labelled area depends on number and size of vessels, statistically

significant correlation was confirmed between manually acquired

quantitative data on CD31- or aSMA-positive vessels per area and

the fractional CD31- or aSMA-positive area evaluated by digital

image analysis (r = 0.35, p = 0,001 and r = 0.31, p = 0.002

respectively).

Weak CD31 labelling has occasionally been found in lymphatic

vessels of different tissues [34]. Although erythrocytes could be

observed in some immature vessels lumen by light phase contrast

microscopy (data not shown), to formally exclude that increased

lymphatics in RA could explain the presence of CD31 vessels

Figure 3. Clinicopathological correlations of immature blood vessels in RA synovial tissues. Disease duration, DAS28 score, erosive
disease, and synovial tissue infiltration by CD3, CD20 or CD68 cells is shown in groups with (+) or without (2) immature vessels as indicated. Density
of mature or immature vessels in patients stratified by disease duration and levels of activity (low: DAS28,3.2, moderate 3.2–5.1, or high.5.1).
Spearman’s correlation coefficients between immature vessels density and disease duration, DAS28, CD3 or CD20 infiltration are shown. (*) p,0.05
(see text). " p = 0.04 (Kruskall Wallys test and post hoc Dunns test (low versus moderate or high activity groups).
doi:10.1371/journal.pone.0008131.g003
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lacking aSMA-positive periendothelial cells, we performed double

CD31 and lymphatic (podoplanin) immunolabelling. Podoplanin

was detected by peroxidase immunohistochemistry due to lower

sensitivity of immunofluorescent labelling. Podoplanin immuno-

peroxidase and CD31 immunofluorescent labelling were mutually

exclusive, therefore confirming that in RA synovial tissues,

CD31+/aSMA- were immature blood vessels (Figure 2).

Clinicopathological Correlations of Immature Blood
Vessels in RA Synovial Tissues

Our RA patients represented a non-selected cross-sectional

sample, heterogeneous in terms of disease duration, and

demographic, clinical and analytical characteristics. We analysed

whether selected characteristics of the disease, particularly disease

duration and several markers of activity or severity, were

correlated with the presence or abundance of immature vessels

in synovial tissue (Table 2). The presence of immature vessels was

significantly associated to a significantly longer disease duration

(1016104 versus 7.863.6 months; p,0.0001; Table 2; Figure 3).

The density of immature blood vessels was also significantly and

positively correlated with the duration of the disease (p = 0.003;

Figure 3). In contrast, the mature vascular density did not correlate

with disease duration (Figure 3). The different density of immature

and mature vessels stratified by different disease duration segments

is shown in Figure 3.

Disease activity at biopsy as evaluated by DAS28 score was

slightly higher in patients with synovial immature vessels (5.261.5

versus 4.760.8; Table 2 and Figure 3) but the difference did not

reach statistical significance. The density of immature vessels was

significantly lower in low versus moderate and high disease activity

groups as shown in Figure 3 (p = 0.04). The density of immature

blood vessels was also significantly and positively correlated with

the DAS28 score (p = 0.009; Figure 3). Mature vascular density

was not correlated with disease activity.

The presence of erosive disease at the time of biopsy was

significantly higher in the group of patients with synovial

immature vessels (78% versus 40%; p = 0.0039; Table 2).

Stratification by sex, age, presence or absence of RF or ACPA

auto-antibodies, did not show differences in the presence or

density of immature vessels nor in mature vascular density in the

different groups (Table 2).

Synovial inflammation was also quantified as the density of

cellular infiltration by macrophages, T-cells, B-cells, or their

organization into lymphoid aggregates characterized as lymphoid

neogenesis (LN) as previously described (33). Correlation between

these parameters and the presence or density of immature vessels

was analysed. Tissues containing immature vessels contained a

higher density of T and B-cells and macrophages (Table 2;

Figure 3). A significant correlation between the density of T-cells

(p,0.0001) but not sublining macrophage infiltration and the

density of immature vessels was found (Figure 3). Density of B-cells

and the presence of LN structures were higher in tissues with

immature vessels but after correction for multiple testing the

difference was non-significant. No significant correlation between

mature vascular density and cell infiltration by any cell type or LN

structures was found.

Effects of Anti-TNF Therapy on Mature and Immature
Blood Vessels

To evaluate whether the structure or abundance of immature

vessels was modified by therapy and whether these changes

correlate with changes in the clinical course of the disease induced

by therapy, we analysed a subgroup of 25 patients rebiopsied after

anti-TNFa therapy. Clinical and synovial cellular changes in

response to therapy in this group of patients are shown in Table 3.

After therapy, a significant improvement in DAS28 scores was

observed, as well as a significant decrease in T-cell and

macrophage cell infiltration, and a non-significant decrease in B-

cell infiltration (Table 3). Seven patients had not responded, and 6

and 12 had obtained moderate and good EULAR responses to

anti-TNF-a therapy at the time of the second biopsy [35].

A statistically significant decrease in the number of CD31+/

aSMA- immature vessels was observed in biopsies obtained after

anti-TNF-a therapy (Table 3). In contrast, the number of mature

CD31+/aSMA+ vessels per mm2 was not significantly modified

after therapy (Table 3). Consistently, the fractional CD31 area was

Table 2. Clinicopathological data stratified by the presence of Immature Vessels (IV).

All patients n = 82 IV- n = 16 (20%) IV+ n = 66 (80%) p-value*

Age (years) 58613 53610 59610 NS

Female (%) 68% 69% 68% NS

RA duration (months) 836100 7.863.6 1016104 ,0.0001

DAS28 5.161.4 4.760.8 5.261.5 NS

CRP (mg/dl) 4.0263.43 3.0862.92 4.2563.50 NS

Erosive disease (%) 67% 40% 78% 0.0039

Auto-antibodies positive{ (%) 71% 65% 72% NS

CD3+ T-cells/mm2 6676466 2586239 7426460 0.0002

CD20+ B-cells/mm2 2266205 87698 2516211 NS"

CD68+ cells/mm2 164361326 99061037 172961336 NS

LN (%) 48% 29% 52.4% NS"

Mature Vessels/mm2 294695 2796111 298692 NS

Data represent baseline data recorded at the time of biopsy. IV: immature CD31+/aSMA– vessels. LN: lymphoid neogenesis; DAS28: disease activity score; CRP: C-reactive
protein; NS: Non-significant.
(*)IV- versus IV+ groups.
({)RF or ACPA auto-antibodies.
(")p,0.05 but NS after correction for multiple testing.
doi:10.1371/journal.pone.0008131.t002
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significantly decreased after therapy whereas the aSMA area was

not modified (Table 3). The relative decrease in immature vessels

density was higher in patients obtaining better EULAR therapeu-

tic responses (p = 0.01; Figure 4). Clinical and pathological

changes in responders and non-responders are also shown in

Table 3.

Discussion

The presence of immature blood vessels is a phenomenon

previously associated to cancer tissues or developmental processes

where active angiogenesis takes place [21,36]. An imbalance

between endothelial cell tube formation and the parallel

development of pericytes has been mechanistically linked to

VEGF-induced angiogenesis [23]. In RA, a severely hypoxic

environment and possibly cytokines, induce Hif (hypoxia inducible

factor) mediated transcriptional activation of VEGF and many

other pro-angiogenic genes [10,26,27,37]. Excessive expression of

VEGF in chronically inflamed RA synovial tissue is therefore one

of the key factors explaining increased angiogenesis in the synovial

membrane [5–9]. Consistently, we found abundant immature

blood vessels in the inflammatory RA tissue which represents the

first description of this vascular abnormality in a human chronic

inflammatory disease. Scanty immature vessels could also be

detected in a few OA but not in normal synovial tissues. This

suggests that active angiogenesis and the presence of immature

vessels is not a disease-specific process but it is rather associated to

the severity of inflammation. In OA, a less intense inflammatory

process and active vascular remodelling are also variably present

[2–4]. In a previous study we found that increased VEGF

expression also characterizes OA synovial fibroblasts [38]. In RA,

immature vessels seem to appear relatively early in the disease but

as disease progresses their density increases, being maximal in

long-standing, active, and erosive disease groups. The observed

correlation between lymphocyte infiltration and immature vessels

formation points to a possible link between both processes.

Among patients rebiopsied after anti-TNF-a therapy, immature

vessels depletion was preferentially observed in those patients

achieving good therapeutic responses. The important increase in

mature vessels density observed in RA tissues seems present from

the earliest phases and less susceptible to change. After anti-TNF-a
therapy, the observed decrease in immature vessels was not

paralleled by a reduction in mature vasculature. Consistently, only

CD31 but not aSMA labelled area was decreased by anti- TNF-a
therapy. These observations together with previous observations

on the effect of therapy on local or systemic angiogenesis markers

suggests that effective therapy halts active angiogenesis but has

little effect on the expanded mature vascular bed [10,28,29].

In the most refractory patients, immature vascular development

seems insufficiently targeted by anti-TNF-a therapies. Persistently

enhanced vascularity after improvement of clinical inflammation

can be a factor of chronicity and it has been associated to further

progression of joint damage [30–32]. Whether the persistent

vascular signal observed by imaging studies corresponds to

resistant immature or to higher mature vascularity is not known.

Parallel imaging and histological studies are needed to evaluate the

contribution of persistent immature/mature vessels to disease

progression and may illustrate the specific pathogenetic contribu-

tion of immature vessels.

In cancer tissues, specific anti-angiogenic anti-VEGF therapy

has been found to induce selective changes in the immature

vascular bed, a process called vascular normalization, where

immature vessels selectively disappear [21,24]. This is consistent

with the different sensitivity to VEGF depletion of immature and

mature vessels. Whereas VEGF is required to sustain newly

Figure 4. Variation in the density of immature vessels stratified
by the levels of response to anti-TNF-a therapy. Decrease in
immature (left graphics) or mature (right graphics) vessels density
between the first and second biopsy after anti-TNF-a therapy is shown
stratified by EULAR responses: 0 = : No response; 1: Moderate response;
2: Good response. (*) Kruskall Wallys test and post hoc Dunns test (non-
responders versus good responders).
doi:10.1371/journal.pone.0008131.g004

Table 3. Clinicopathological changes in patients after anti-TNFa therapy.

Basal Biopsy Post Anti-TNF Biopsy p-value D Change Non-responders* D Change Responders

DAS28 6.061.4 3.961.9 ,0.0001 20.560.7 3.261.8

CRP mg/dl 4.863.5 1.662.0 0.0004 1.064.1 4.263.6

CD31+/aSMA– vessels/mm2 52631 31627 0.017 20.4613 12616

CD31 area (%) 3.161.6 2.561.4 0.03 20.262.1 0.961.0

CD31+/aSMA+ Vessels/mm2 276682 3216110 NS 30625 8659

aSMA+ area (%) 3.6861.6 3.6061.4 NS 20.161.9 0.161.7

CD3/mm2 823688 478683 0.0064 2026398 4006698

CD20/mm2 322659 220654 NS 2196245 566411

CD68/mm2 324638 192631 0.0091 536180 1636195

CD31+/aSMA–: immature vessels. CD31+/aSMA+: mature vessels. p-value of basal versus post-anti-TNF values.
(*)Absolute decrease from basal values in patients achieving moderate or good EULAR response (responders) and non responders to anti-TNF.
doi:10.1371/journal.pone.0008131.t003
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formed vessels, this factor is dispensable for the mature vascular

network [21]. Our data suggest that upon indirect VEGF down-

regulation by anti-TNF-a therapy in RA [10–12], blood vessels

normalization rather than global vascular reduction occurs, and

suggests that VEGF antagonists might not be active on the largest

fraction of the expanded synovial vascularity. In an animal model

of airway inflammatory angiogenesis, VEGF independent angio-

genic effects of TNF-a have also been identified, suggesting that

alternative mediators may also be linked to the down-regulation of

inflammatory angiogenesis induced by TNF-a blocking [39].

Although immature vessels depletion occurred preferentially in

patients responding to anti-TNF-a therapy, the pleiotropic effects of

this intervention do not permit to speculate on the role of immature

vessels depletion in such response. In cancer, immature vessels are

associated to increased permeability and high interstitial fluid

pressure, decreasing the effective perfusion of the tissue and drug

access, and modifying inflammatory cell infiltration [20–22,25].

The role of immature vessels in inflammation has only been

explored in a murine model of Mycoplasma induced airway

inflammation [40]. In this model, enforced vascular immaturity by

ephrinA2 deletion was directly linked to greater leukocyte

infiltration and higher expression of inflammatory cytokines upon

inflammatory challenge. Further studies on the specific contribu-

tion of immature blood vessels to RA pathogenesis are needed to

understand the potential of more specific anti-angiogenic inter-

ventions for the therapy of RA.
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