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Abstract

A multiplicative combination of tuning to interaural time difference (ITD) and interaural level difference (ILD) contributes to
the generation of spatially selective auditory neurons in the owl’s midbrain. Previous analyses of multiplicative responses in
the owl have not taken into consideration the frequency-dependence of ITD and ILD cues that occur under natural listening
conditions. Here, we present a model for the responses of ITD- and ILD-sensitive neurons in the barn owl’s inferior colliculus
which satisfies constraints raised by experimental data on frequency convergence, multiplicative interaction of ITD and ILD,
and response properties of afferent neurons. We propose that multiplication between ITD- and ILD-dependent signals
occurs only within frequency channels and that frequency integration occurs using a linear-threshold mechanism. The
model reproduces the experimentally observed nonlinear responses to ITD and ILD in the inferior colliculus, with greater
accuracy than previous models. We show that linear-threshold frequency integration allows the system to represent
multiple sound sources with natural sound localization cues, whereas multiplicative frequency integration does not.
Nonlinear responses in the owl’s inferior colliculus can thus be generated using a combination of cellular and network
mechanisms, showing that multiple elements of previous theories can be combined in a single system.
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Introduction

The barn owl is able to pinpoint sound sources with great
accuracy after hearing only a short burst of sound [1]. This
orienting response is mediated by spatially-selective auditory
neurons in the midbrain [2,3]. Spatial selectivity arises in these
auditory neurons as a result of computations performed on the
auditory input signals (for review see, [4,5]). Multiplication is
believed to be an essential computation in the generation of
spatially selective auditory neurons in the owl’s midbrain [6,7].

Space-specific neurons in the barn owl’s auditory space map
gain spatial selectivity as a result of tuning to combinations of the
interaural time difference (ITD) and interaural level difference
(LD; [8,9]). In the barn owl, as in mammals, I'TD is correlated
with the horizontal position of a sound source [8,10-12]. A vertical
asymmetry of the owl’s ears causes ILD to vary primarily with the
vertical position of a sound source [10,11,13]. Under natural
listening conditions, the I'TD and ILD at each frequency of the
sound stimulus are shaped in a direction-dependent manner
[18—-15]. Therefore, the cues for sound localization consist of I'TD
and ILD at an array of frequencies. The localization cues I'TD and
ILD are processed in parallel pathways in the brainstem [16-18],
where neurons are narrowly tuned to sound frequency (Reviews:
[4,5]). ITD and ILD initially converge in the lateral shell of the
central nucleus of the inferior colliculus (ICcl), where neurons
remain narrowly tuned to frequency [19-21]. The response to
ITD and ILD is nonlinear at the site of ITD-ILD convergence in
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ICcl, but there is a diversity of combination-selective responses
over the population [7]. In the next stage, signals converge across
frequency in the external nucleus of the inferior colliculus (ICx),
where the auditory space map is generated [22,23]. The response
to ITD and ILD in the membrane potential of space-specific
neurons in ICx is well described by a multiplication of an I'TD-
dependent component and an ILD-dependent component [6].
While the owl’s auditory system provides one of the best
examples of multiplication in a neural circuit, how the sound
localization cues are processed under natural listening conditions
and what mechanisms produce the responses of neurons in the
owl’s inferior colliculus remain unanswered questions. Pefia and
Konishi [6] observed multiplication using sound signals that differ
binaurally by a frequency-independent I'TD and a frequency-
independent ILD. However, under natural listening conditions,
the ITD and ILD at each frequency of the sound stimulus are
shaped in a direction-dependent manner [13-15]. A complete
model of sound localization in the owl must thus address how the
ITD and ILD tunings are combined with each other and across
frequency to generate the responses of space-specific neurons.
Previous models of neurons in the owl’s midbrain have reproduced
aspects of neural responses to sound source direction for single and
multiple sound sources [14,24-26]. Common among these models
is the assumption that spiking responses of space-specific neurons
results from some form of nonlinear interaction between I'TD and
ILD, both within and across frequency [6,14,27,28]. However,
frequency integration in the membrane potential of ICx neurons
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appears linear [29]. Nor have previous models addressed key
aspects of combination selectivity for I'TD and ILD observed in the
spiking responses of ICcl neurons. In particular, models that
explicitly include ICcl assume that combination selectivity for ITD
and ILD is uniform over the population [24,25], whereas
experimental measurements reveal a diversity of responses to
ITD and ILD in ICcl [7].

Here, we develop a model for the responses of I'TD- and ILD-
sensitive neurons in the barn owl’s inferior colliculus. This work
combines multiple experimental data sets [6,7,29] to model
computational operations that map onto specific regions of the
inferior colliculus. We propose that multiplication occurs between
ITD and ILD within frequency channels, but that integration
across frequency occurs using a linear-threshold operation. This
interpretation not only is based on physiological data on the
combination of ITD and ILD, but it is also consistent with
responses when multiple sound sources are presented [30].

Methods
2.1 Neurophysiology

2.1.1 Ethics statement. Experimental procedures followed
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the Institutional Animal
Care and Use Committee of the California Institute of
Technology.

2.1.2 Methods. Methods for surgery, stimulus delivery, and
data collection have been described previously [6,7].

2.2 Time-Dependent Model of Responses to ITD and ILD
in the Inferior Colliculus

We present a model for the responses of I'TD- and ILD-sensitive
neurons in the barn owl’s inferior colliculus. The model is
constructed in three stages: (1) a front end for extracting binaural
localization cues from the auditory inputs, (2) ICcl, and (3) ICx.

2.2.1 Binaural cue extraction. In the first stage of the
model, the input signals to the left and right ears are filtered with a
bank of band-pass filters [26]. Each filter is a gamma-tone function
with  an  impulse  response  given by At fi)=
Bexp(—t/tx)cos Qufi)U(1), where U(-) is the unit step
function [31]. The center frequency fi of the filter corresponds
to the characteristic frequency of an auditory-nerve fiber. The
time constant 7 1s selected so that the 10 dB width of the gamma-
tone filter is equal to the width of the frequency tuning curve of an
auditory-nerve fiber with characteristic frequency f;, computed
10 dB above threshold [32]. A Gaussian white noise signal is
added to the deterministic signal, to model the stochastic
representation of signals by populations of neurons.

For an input signal r(¢), we denote the output of the band-pass
filter with center frequency fr as v(&; fi)=h(t; fi) * 1) +n,(1)
where * denotes convolution and, for each ¢, n,(f) is a Gaussian
random variable with mean zero and standard deviation equal to
0.1]A(#; fz) * r(2)|. The noise n,(¢) is assumed to have a Gaussian
distribution with a standard deviation that scales with the signal
because it models the noise in a sum of many neurons’ responses,
where the variability of each neuron’s response increases with the
strength of the signal. Noise signals introduced in the sequel are
defined similarly and are taken as zero-mean Gaussian random
signals, uncorrelated in time, with standard deviation equal to 0.1
times the input signal magnitude. When both the left and right
components are considered, the signals are written with subscripts,
e.g., vt fx) and vr(F; fi)-

ITD is extracted from the outputs of the band-pass filterbank
using a cross-correlation-based operation [26,33,34]. The cross-
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correlation operation used here is modified from the model of
Fischer et al. [34] to include a gain control mechanism. We
describe the modified cross-correlation in two stages. The first
stage corresponds to the processing of sounds by the cochlear
nucleus magnocellularis (NM); this stage represents the input to
the cross-correlation operator. The second stage corresponds to
the coincidence detectors in nucleus laminaris (NL) where I'TD is
computed [35].

The input to the cross-correlation in each frequency channel is a
gain-modulated version of the filterbank output [33]. The gain at
cach frequency is a function of the energy, designed so that the
magnitude of the filterbank output is a linear function of stimulus
level (Figure S1), consistent with the population responses of
auditory nerve fibers in the owl [36]. The energy is computed over
a short time window by squaring and temporally smoothing the
filterbank output. We define the energy mathematically as

(1 fit) = ‘ exp(—(t—0)/DW(0; fi)’do+ng(t), where 1=2
ms. The inplolt to the cross-correlation on one side of the brain is

formed by normalizing the filterbank output with a function of the
- (i)

energy, yielding u(t; fi) = ————=

V7+g(t fir)

a constant that ensures that the denominator is nonzero.

+n,(t), where y =100 is

In the barn owl, cross-correlation is performed over a short time
window [37] and includes a mechanism that reduces the sensitivity
of coincidence detectors to ILD [38]. We model this process of

ITD computation by a gain-mod]ulated running cross-correlation,

o | -0/t~ Aif)
+uR(afANd_m;ﬁ()+c]2d0'+n£(t) where me{0,1,....N;} is the

delay index, =35 ms is the time constant for the window of

defined by x(t,m;f;)=

0.2
integration [37], A, =n—— ms is the internal delay on one side of the

brain [35], and the constant ¢= 1 causes the input to the squaring
nonlinearity to be positive so that responses are consistent with
phase-locking in NL by having only one peak per stimulus cycle [34].
The gain O(#;fi) is a quadratic function of the magnitude of

the left and right cross-correlation inputs, defined as Q(f; fi)=

' t
| exp =Dt fldor] e —alunte foido+
a]z, where T=3 ms and o = 15 is a constant that causes the gain term
to be nonzero. The gain control on the cross-correlation causes the
dependence of the output on stimulus level to be sigmodal and improves
the output tolerance to ILD, as is observed experimentally (Figure S1;
[38,39]).

ILD is extracted from the auditory input signals using a level
subtraction operation. Specifically, ILD is computed using the
interaural difference of a logarithmic function of the energy of the
signals in each frequency channel [26,40,41]. The logarithmic
function of the energy of the gamma-tone filter output employed
in the model, hereafter called the energy envelope [40], is defined
as

logyo(8(5; /k0)); 8(5; fit) > 1

+n,(t
0; otherwise /(0

W fi)= {
where =1 ms. A logarithmic function of the energy g(#; fx,7) was
selected as the envelope because a difference between the left and right
envelope signals leads to a roughly stimulus invariant representation of
ILD [40]. In particular, the interaural energy envelope difference
2(5:/i) = yR(:. /i) =y L(t:fi) = 1010 (8R4 fie:T) /8 L2 fiT)) produces

a division between the left and right energy terms that removes
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stimulus effects that are common to the left and right auditory inputs,
while preserving information about ILD.

The front end of the model therefore follows the form taken by
many sound localization models and includes a bandpass
filterbank followed by a cross-correlation and level subtraction
operation in each frequency channel [42]. The particular form of
the model is, however, tailored to the responses of neurons in the
owl’s auditory system.

2.2.2 ITD-ILD convergence in ICcl.
studies have shown that multiplicative spiking responses can occur
in neurons where input variables are combined additively in
subthreshold responses if the input-output function of the neuron
follows a power-law [43,44]. Consistent with this idea, we assume
that I'TD- and ILD-dependent cues are encoded additively in the
membrane potential of ICcl neurons. Specifically, the membrane
potential response of the ™ neuron at frequency fi is a low-pass
filtered version of the sum of I'TD-dependent and ILD-dependent
input signals, and is defined by the differential equation

Previous theoretical

Vit fi)=— % (Vits fi) = Fi(x(t; fi)) — Gi(yL (8 fi) yr(1:0)],

where T=4 ms and Xx(¢; fx) represents the cross-correlation vector
across all internal delays. This is the key equation that defines the
interaction of I'TD and ILD in the subthreshold responses of ICcl
neurons. The ITD-dependent input is a scaled version of one
element of the cross-correlation vector, Fi(x(¢;fi))=bx(t,n;;fi),
where the identity of the element n; determines the neuron’s best
ITD. The ILD-dependent input is a product of an ILD-dependent
component and energy-dependent component,

ai;

(tf)—a)az)
+az].

Gt Sy RS =yt Sl exp(—(z

Ay
1+ exp (—(z(t; fi) —asi)/ asi)

The energy-dependent component is given by the contralateral
energy envelope, y.(t;fx), because ICcl receives excitatory input
from the contralateral nucleus angularis. We assume that the left
and right LLDp contribute only the energy-independent interaural
envelope difference [20].

The ILD-dependent component here is a difference of sigmoids;
selection of different parameters can produce ILD tuning curves
that range from sigmoidal to peaked, as is seen in ICcl [7,45,46].

The membrane potential Vi(#;fr) is mapped to a spiking
probability using a threshold-sigmoid nonlinearity, rather than the
power-law nonlinearity suggested by Murphy and Miller [43].
While no data are available to constrain the input-output
properties of ICcl neurons, the threshold-sigmoid nonlinearity
provides a good fit to the expansive input-output properties of ICx
neurons (Figure 1) [47]. In contrast to the power-law nonlinearity,
the threshold-sigmoid nonlinearity allows for the spiking response
to saturate, which occurs in ICcl spiking responses [7].
Nevertheless, as seen in Figure 1, the threshold-sigmoid nonlin-
earity closely matches a power-law nonlinearity over the range of
the data for an example ICx neuron, and we therefore should
expect this nonlinearity to produce multiplicative spiking responses
in ICcl [43,44]. With this model, the spiking probability for an
ICcl neuron is given by the piecewise defined function

Tmax i V(1 _
S = { TF exp (0412275 /i) + biasy) VilliJe) = —68.2mV
0 ; otherwise
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where 7,,4,; 1s the maximum firing rate and bias; determines where
the center of the dynamic range of the membrane potential
response falls relative to the fixed spiking threshold of —68.2 mV.
Both of these parameters are neuron-specific. The fixed param-
eters are found by fitting the curve to the measured ICx data
shown in Figure 1. We define the difference between the threshold
value of —68.2 mV and the center of the dynamic range of the
neuron’s membrane potential response to ITD and ILD as
Apreshold- Spikes are produced using a non-homogeneous Poisson
process with underlying rate r;(#; fi). This model for ICcl neurons
is the commonly used linear-nonlinear-Poisson model [48].

2.2.3 Frequency convergence in ICx. Spikes are produced
for each ICx neuron using a linear-nonlinear-Poisson model. ICx
neurons have broad frequency tuning [27], and are therefore
considered as a single population where frequency channels are
merged. The membrane potential of the j ICx neuron is given by
a linear combination of filtered spikes of ICcl neurons across
frequency channels,

NN
Vith=ao+ > > owhicei(t: fi)-

k=1i=1

In the simulations, we used 300 total ICcl neurons across two to
five frequency channels as input to a given ICx neuron.
Postsynaptic potentials in the target ICx neuron are modeled by
a second-order exponential function, and responses to multiple
spikes are combined linearly. Mathematically, the input to an
ICx ncuron from the i ICcl neuron at frequency fi is given

Ni
by hicai(t; fi)= Z (t—tiw)exp (—(t—ty)/0)U(t—t;y) where

i=

(ti1,ti2,...,tin,) are spike times for the i 1Ccl neuron and t =4 ms.

20 —— Sigmoid
v Power

—_
(9]

Spikes/stimulus
S

(0]

-70 ‘ —56
Membrane potential (mV)

Figure 1. Input-Output response of an ICx neuron. The mapping
from the average membrane potential of an ICx neuron over the
presentation of a sound stimulus to the number of spikes produced is
fit with a power function (dotted line) and a threshold-sigmoid function
(solid line). The threshold-sigmoid function is used as the input-output
nonlinearity for model ICcl and ICx neurons.
doi:10.1371/journal.pone.0008015.g001
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The two central properties of this ICx model are, first, that
frequency integration in the membrane potential is linear [29]
and, second, that multiplication between ITD- and ILD-
dependent signals occurs only within frequency channels. The
incorporation of linear frequency integration in the membrane
potential is an important constraint that is imposed by the data
[29]. Connection weights between ICcl neurons and the target
ICx neuron are selected so that the membrane potential response
of the ICx neuron is a product of I'TD- and ILD-dependent
functions in each frequency channel. First, we suppose that the
measured membrane potential response of an ICx neuron to ITD
and ILD can be written as a sum over frequency of terms that are
a product of an ITD-dependent function cos(wixlTD—IPDy)
and an ILD-dependent function qx(ILD), yielding the approxi-

N,

—~ '/
mation  V,(ITDILD)=ay+ 3. cos(wxITD—IPD;)qi(ILD).

The ILD-dependent function qklzill,D) can take an arbitrary value
at each ILD. We call this model of the subthreshold ICx response
the multiplication-linear model. This model can be directly related
to the approximation obtained using a purely multiplicative
interaction of I'TD- and ILD-dependent components found from
the singular value decomposition (SVD) [6]. The parameters of the
frequency-specific functions cos (wxITD —IPDy) and qi(ILD) are
found by minimizing the squared difference between the measured
membrane potential of the ICx neuron and the approximation,
averaged over I'TD and ILD, using the Matlab function lsqnonlin.
Next, the connection weights in each frequency channel of the spiking
model {w,-k}fvzl are found to minimize <[ZZV:1 o lhicai(t; fi)D,
— cos ((uleD—IPDk)qk(ILD)]2>1TDJLD, Le., the squared differ-
ence between a linear combination of the time average of the filtered
ICcl spikes at frequency fi and the desired product of ITD- and ILD-
dependent functions at frequency fi, averaged over ITD and ILD. It is
reasonable to compute the weights separately for each frequency
channel, given the experimental evidence that learning in the owl can
elicit frequency-dependent connectivity changes in ICx [49].

2.3 Static Model

We also considered simple static models of ICx responses to
ITD and ILD in order to compare the responses of ICx neurons
under the assumption of either additive or multiplicative frequency
integration. This analysis is complementary to that involving the
spiking model presented in the previous section.

In the static model, the stimulus is completely specified by the
ITD, ILD, and average binaural intensity (ABI) at an array of
frequencies. The vectors of ITD, ILD, and ABI are denoted by
ITD, ILD, and 4, respectively. For both additive and multiplicative
models, we assume that the response of a neuron is determined by
its preferred I'TD and ILD spectra, denoted 6/7D and bILD. Each
neuron’s best I'TD and ILD spectra are given by the I'TD and ILD
spectra derived from barn owl head-related transfer functions at a
given direction [15].

In both the additive and multiplicative models, the response to
ITD and ILD at each frequency is given by the product of a
Gaussian-shaped function of ILD and a circular Gaussian-shaped
function of I'TD. Under the additive model, the response of the
ICx neuron 1s

Ny
R,ITD,ILD.A)="Y " [a+ A(k)exp (— 2%2(ILD(k) —bILD(k))?)
k=1

exp (k cos Cnfi(ITD(k)— bITD(k))))]

and under the multiplicative model, the response of the ICx neuron is
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Ny

Ry(ITDILD.A)= T1 ([a+ A(k)exp(— 2—(172(1LD(/<) —bILD(k))?)

exp (k cos 2nfy(ITD(k)— bITD(k))))).

The constant ¢ =max(4)/200 is included so that the absence of
energy in a single frequency channel does not eliminate the
response.

These static models are not directly fit to data, but are used to
illustrate the different predictions generated under the assumptions
of linear and multiplicative frequency combination.

2.4 Analysis

We used additional analysis to determine the degree of
nonlinearity in the interaction between I'TD and ILD. Following
previous studies [6,7], potential nonlinearities were quantified
using two types of statistical tests, a linear and a nonlinear fit for
each cell.

In the additive fit, the matrix of responses to pairs of stimulus
ITD and ILD, denoted R, is approximated as the minimum mean
square model of the form

R=R,+G+H

where G is a function of I'TD, H is a function of ILD, and R, is a
constant [6].

The multiplicative fit is specified in terms of the SVD of the
response matrix, after the subtraction of a constant bias [6]. A
multiplicative fit of the response matrix is obtained using the first
singular vectors U and V| weighted by the first singular value o
added to a constant bias R,,, yielding

R=R,+a U V].

The constant R, is the value between the minimum and
maximum response that minimizes the mean square error in the fit
to the data and is distinct from the constant R, used in the additive
fit.

The accuracy of the additive and multiplicative fits is given by
the root mean squared (RMS) error between the response and the
model fit, normalized by the dynamic range of the neuron’s
response. The dynamic range is the difference between the
maximum and minimum of the response. The relative accuracy
of the additive and multiplicative fits is summarized by a
multiplication index defined as MI=nRMS,,;, — nRMS,4q)/
(mRMS,,,,;;; + nRMS,4q), where nRMS, 44 1s the normalized RMS
error between the response and the additive fit and nRMS,,, is
the normalized RMS error between the response and the
multiplicative fit.

Results

We present a model for the emergence of auditory spatial
tuning in I'TD- and ILD-sensitive neurons of the barn owl’s ICx
(Figure 2). ITD- and ILD-dependent cues are extracted from
auditory input signals at an array of frequencies using cross-
correlation and level-subtraction, respectively. The ITD- and
ILD-dependent cues form the input to a network of spiking
neurons that model two regions of the inferior colliculus where
I'TD- and ILD-sensitive neurons are found, ICx and its afferent
neurons in ICcl. We assume that the nonlinear spiking responses
to I'TD and ILD found in ICcl [7] are produced by a nonlinear-
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Figure 2. Block diagram of model. The initial components of the model extract time-dependent localization cues using a running cross-
correlation, denoted x, and the interaural level difference, denoted z, from auditory input signals. A network model of spiking neurons uses these
cues, along with a measure of stimulus intensity given by an energy envelope (y), as input to neurons in the lateral shell of the central nucleus of the
inferior colliculus (ICcl), which converge on the external nucleus of the inferior colliculus (ICx). ICcl neurons add a function of the running cross-
correlation with another function of the interaural level difference and energy envelope and pass the result through a spiking nonlinearity to produce
the probability of spiking. The two central assumptions of the ICx model are, first, that frequency integration at the subthreshold level is linear [29]
and, second, that multiplication between ITD- and ILD-dependent signals occurs only within frequency channels. Connection weights between ICcl

neurons and the target ICx neuron are selected to enforce these assumptions.

doi:10.1371/journal.pone.0008015.g002

additive mechanism [43,44]. That is, we assume that in ICcl,
ITD- and ILD-dependent cues within frequency channels are
combined additively in the membrane potential and are
transformed to a nonlinear spiking response by the spiking
input-output function. The subthreshold responses of ICx
neurons can then be described as a sum across frequency of
products of I'TD- and ILD-dependent functions. The network
model describes how a linear combination of the responses of
populations of ICcl neurons can compute the products of ITD-
and ILD-dependent functions, and thereby produces the
experimentally observed responses to I'TD and ILD in ICx.

3.1 Generating ICcl Responses

3.1.1 Reproducing experimentally measured responses. The
model was able to reproduce the diversity of combination selectivity
observed in ICcl (Figure 3). In the barn owl’s ICcl, spiking responses to
ITD-ILD range from highly combination selective to more additive
than multiplicative [7]. The model produced responses to ITD and
ILD that were limited to discrete regions of ITD and ILD space, and
were therefore well described by a multiplicative model (Figure 3G).
The model also produced responses that were better described by
addition than by multiplication (Figure 3E).

@ PLoS ONE | www.plosone.org

The degree of multiplicative interaction of ITD- and ILD-
dependent signals in model spike count responses varied
systematically with the difference between the spiking threshold
and the center of the dynamic range of the subthreshold response
of ICcl neurons (Figure 3A,B). We define the difference between
the threshold value of the input-output curve and the center of the
dynamic range of the neuron’s membrane potential response to
ITD and ILD as Agyeshola (Figure 3C,D). The types of responses
produced by the model as Agyyeshola varied (Figure 3E,G,I) are
similar to those observed experimentally (7] (Figure 3F,H,J). The
variation of the accuracy of a multiplicative fit of the response with
Athreshold can be understood by considering where the dynamic
range of the membrane potential response falls on the sigmoidal
input-output curve for different Ay, eshola values (see section 2.4 for
description of additive and multiplicative fits). A low Agreshold
value places the membrane potential dynamic range near the
saturation point, a middle Ay, eshola Value places the membrane
potential dynamic range in the linear portion of the curve, and a
high Areshold places the membrane potential dynamic range near
the expansive portion of the curve. Overall, neurons with the
highest Agreshold values had the most multiplicative responses.
However, the multiplication index did not vary monotonically
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ITD-ILD response matrices of model ICcl neurons with different thresholds. (F,H,J) Experimentally measured ITD-ILD response matrices [7].

doi:10.1371/journal.pone.0008015.g003

with Agyreshola- The multiplication index is a measure of the
relative accuracy of additive and multiplicative models of I'TD-
ILD interaction. Over a range of low Ay, esnola values, the spiking
response was better described by a multiplicative fit than by an
additive fit, but the accuracy of the multiplicative fit decreased as
the Ayreshola increased (Figure 3A,B). This situation arises because
at the lowest Ayyreshold values (Figure 3E), the saturation produced
by the sigmoidal nonlinearity cannot be captured by the additive
fit. As the Ayreshola Increases, the dynamic range of the membrane
potential falls in the linear portion of the input-output curve, and
the spiking response more closely reflects the additive subthreshold
response (Figure 3G). For even higher Agesnolas the spiking
nonlinearity limits responses to discrete regions of ITD-ILD,
causing the spiking response to appear more multiplicative
(Figure 3I).

While the model responses are well-described by multiplication,
the responses are not purely multiplicative. In particular, the ITD
tuning curves for different ILD values are not gain-modulated
versions of each other (Figure 4B,D). This is evident, for example,
in the variation of the threshold I'TD with ILD, which is also seen
in the data [7] (Figure 4A,C). However, responses are restricted to
particular regions of ITD and ILD, thus acting as an AND gate.
Therefore, a multiplicative fit accurately describes the response.
Below, we examine how a population of such neurons can
combine to produce the experimentally measured responses of ICx
neurons.

3.1.2 Predictions for the emergence of multiplicative
responses in ICcl. The model predicts that ICcl responses are
more multiplicative in spike count responses than in membrane
potential responses. By construction, the membrane potential
response of the IC.cl model neuron is a linear combination of I'TD-
and ILD-dependent functions. This is evident in that the model
shows an increased response when either I'TD or ILD is in the
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preferred range (Figure 5A). As discussed above, the threshold
produces a multiplicative spiking response (Figure 5B,C). This
prediction can be tested by recording intracellularly the ITD-ILD
responses of ICcl neurons.

3.2 Generating ICx Responses from ICcl Inputs

3.2.1 Reproduction of experimentally measured ICx
subthreshold Experimentally observed me-
mbrane potential responses to ITD and ILD could be

responses.

produced in model ICx neurons using a linear combination of
ICcl spiking responses (Figure 6). We propose that the ICx
membrane potential response is a linear combination of
products of I'TD and ILD-dependent signals at each frequency
(Figure 6A-E). This multiplication-linear model provided a
more accurate description of the experimentally measured
responses than did the purely multiplicative model derived
from a singular value decomposition of the response matrix
(SVD, median nRMSE 0.11, interquartile range 0.09-0.18;
multiplication-linear, median nRMSE 0.05, interquartile range
0.03-0.08; n=14) (Figure 6F; [6]). In the spiking model, the
ITD- and ILD-dependent products at each frequency are
computed using a linear combination of the responses of a
population of ICcl neurons with the same characteristic
frequency. This computation is an example of a hidden layer
(or basis function) network performing a nonlinear operation on
its inputs, and is made possible by the nonlinear input-output
function of the ICcl neurons [50-52]. We note that each ICx
neuron is combining the responses of many ICcl neurons with
diverse responses, and is not only selecting the most
multiplicative cells. We found connection weights between
model ICcl neurons and model ICx neurons to reproduce
subthreshold ITD-ILD response matrices for 14 ICx neurons
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recorded by Pefia and Konishi [6] using broadband noise
stimuli with frequency-independent ITD and ILD. We tested
the ability of the model ICx neurons to reproduce the
experimentally measured ITD-ILD response matrices using
stimuli not used in the calculation of the connection weights.
The normalized root mean squared error between the spiking
model response and the measured I'TD-ILD response was near
the normalized root mean squared error in the SVD model
(median nRMSE 0.12, interquartile range 0.09-0.16; n=14).
Thus, there is near equivalent performance of the spiking and
SVD-based models even though the former is the result of
combining populations of Poisson responses and the latter is a
direct fit of the data.

Pefia and Konishi [6] initially observed multiplicative sub-
threshold responses of ICx neurons using stimuli presented over
headphones with frequency-independent I'TD and ILD. The
model presented here assumes that frequency integration is linear
in the subthreshold responses of ICx neurons and that multipli-
cation only occurs within frequency channels. Therefore, the
response 1s not purely a product of an I'TD-dependent component
and an ILD-dependent component. How does the multiplicative
model derived from the SVD with a single I'TD-dependent
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component and a single ILD-dependent component fit the ICx
data so well if the true underlying mechanism involves linear
frequency convergence? For directions near the center of gaze, the
associated ITD and ILD spectra are relatively constant across
frequency (Figure 7A) [14,15]. If we assume that each neurons’
preferred I'TD and ILD spectra match the I'TD and ILD spectra
derived from the HRTFs at the best direction [49,53,54], then the
inputs to the neuron are very similar across frequency. Therefore,
a sum across frequency is approximately equal to a scaled version
of a shape that is a product of an I'TD-dependent component and
an ILD-dependent component. For example, Figure 7B shows the
ITD-ILD response of the static model with additive frequency
convergence for a neuron with best direction (0°,0°) (see section
2.3 for model description). The squared correlation coefficient
between the model response and the SVD-based multiplicative fit
is 0.99.

Under natural listening conditions with broadband stimuli,
the sounds received at the left and right ears contain a spectrum
of I'TDs and ILDs [13-15]. For a neuron with a preferred
direction away from the center of gaze, the preferred I'TD and
ILD spectra can vary greatly with frequency (Figure 7C). The
model we propose for the ICx response predicts that for such
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neurons, the subthreshold I'TD-ILD response matrix will not be
accurately described by the multiplicative model derived from
the SVD (Figure 7D). Figure 7D shows the I'TD-ILD response
of the additive static model for a neuron with best direction
(—30°,—25°). Here, the squared correlation coefficient between
the response and the SVD-based multiplicative fit is 0.85. The
only difference between this model response and a model
response that yields a correlation of 0.99 (Figure 7B) is the
neuron’s preferred direction. The deviation from multiplication
for neurons with peripherally located receptive fields remains a
prediction because of the difficulty in recording ICx neurons
with preferred directions away from the center of gaze.

3.2.2 Frequency convergence in ICx spiking
responses. The ICx model produced nonlinear spiking
responses to multi-tone stimuli (Figure 8A,C,E). Nonlinear
frequency convergence is observed in spiking responses in both
ICx and the optic tectum in the barn owl [14,27,28]. The model
presented here is based on data that show frequency convergence
is linear in the membrane potential [29], but also produces
nonlinear spiking responses. When the model is tested with stimuli
that consist of a sum of two tones, the subthreshold response is well
described by a linear combination of the responses to the
component tones (Figure 8B,D,F). The spiking response to the
two-tone stimulus, in contrast, is not well described by a linear
combination of the responses to the component tones
(Figure 8A,C,E). Also, for the example in Figure 8, the spiking
response to the two-tone stimulus was larger than the optimal
linear estimate from the responses to the component tones at some
ITDs and smaller than the optimal linear estimate at others. This
is consistent with the mixture of facilitation and suppression that is
seen in the owl’s ICx [28].

This model also leads to the prediction that, in ICx,
subthreshold responses to narrowband sounds are more multipli-
cative than responses to broadband sounds. For example,
according to the model, the subthreshold response of an ICx
neuron to ITD and ILD of a tone should appear more
multiplicative than the response to a sound consisting of two
frequency components, where I'TD is varied in one frequency
channel and ILD is varied in the second (Figure 9). In the example
shown in Figure 9, the multiplication index was —0.16 for the one-
tone example and 0.37 for the two-tone example. This result
follows from the model for the ICx subthreshold response, which
specifies that nonlinearity between I'TD and ILD only occurs in
frequency channels. This prediction is therefore not dependent on
the particular ITD and ILD tuning parameters of the neuron.
Note that under a purely multiplicative model of frequency
integration, the response to either of these conditions would be
described as equally multiplicative.

3.2.3 Implications for representing multiple sound
sources. We hypothesize that non-multiplicative frequency
integration facilitates the representation of multiple, spectrally
distinct sources in the auditory space map. Listening in natural
environments requires the localization of multiple distinct sound
sources. Neurophysiological studies show that spectrally distinct
sound sources create distinct patterns of activity in the auditory
space map [30]. Also, when two sound sources are present, the
response reflects the more intense sound source [14,26]. We
examined the representation of two spectrally distinct sound
sources, located at =20 deg, in the auditory space map using the
static linear and multiplicative models of frequency integration.
By construction, with a linear model of frequency integration,
the population response to two spectrally distinct sound sources
1s the sum of the responses to the individual sounds. Therefore,
with the linear model, the space map contains peaks at the
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directions of the two sources (Figure 10A). With multiplicative
frequency integration, the response to two sounds that are
separated by 40 deg has two peaks, but the peaks are not
centered precisely at the directions of the individual sound
sources (Figure 10B). Additionally, the trough separating the
two peaks is shallower in the multiplicative model than it is in
the additive model. A more significant difference appears
between the additive and multiplicative models when we
examine the population response as the intensities of the two
sounds are varied. When one sound is more intense than the
other, the additive model produces a response that has a
dominant peak at the direction of the more intense source
(Figure 10C). The response of the multiplicative model, in
contrast, does not change greatly as either sound becomes more
intense (Figure 10D). In the multiplicative model of frequency
integration, contributions of individual frequency channels to
the final product cannot be determined. The response of the
multiplicative model of frequency integration model is thus
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inconsistent with the responses of ICx and optic tectum neurons
to concurrent sound sources [14,26].

In our linear model of frequency integration, simultaneous,
spectrally distinct sounds can be represented in the space map in
such a way that the more intense source dominates the response.
This means that information about the individual frequency
components of the sound is not lost in the responses of spatially
selective auditory neurons. This cannot occur with a purely
multiplicative model of frequency convergence, where stimulus
intensity only modulates the overall gain. However, similar results
to the linear model would be obtained with a sum and square
model that includes linear and nonlinear frequency integration
[26]. Another possible way to represent multiple sources in a
multiplicative model is to change the width of the input tuning
curves with changes in intensity. If more intense sounds produce
sharper tuning curves, then the largest peak in the space map
should occur at the direction of the more intense sound. To test
this hypothesis, we measured I'TD tuning curves of ICcl neurons in
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doi:10.1371/journal.pone.0008015.g007

three owls for different stimulus intensities. The I'TD tuning curves
of ICcl neurons did not sharpen greatly with increasing intensity
(Figure 11). The half-width of the I'TD tuning curve was on
average 10.2+27.7 us smaller for a stimulus intensity of 50 dB
than for an intensity 30-35 dB (2=9). In three of nine neurons,
the half-width increased with stimulus intensity.

Discussion

4.1 Processing of Sound Localization Cues in the Owl’s
Midbrain

We described a model for the processing of sound localization
cues in the barn owl’s midbrain. In this model, I'TD- and ILD-
dependent signals are combined multiplicatively within frequen-
cy channels, and signals are combined across frequency
channels using a linear-threshold operation. The model is
consistent with neurophyiological studies of both ITD-ILD
coding and the representation of multiple sound sources in the
owl’s midbrain.

The model presented here better captures the ICcl spiking
responses and ICx subthreshold responses to sounds than
previous models. As in previous models [14,24-26], ours
assumes that ITD- and ILD-dependent signals must be
combined over multiple frequencies to explain the neurophys-
iological and behavioral observations. However, the present
model provides an extension of previous models on three counts.
First, our model produces the diversity of spiking responses to
ITD and ILD that are seen in ICcl [7]. This extends previous
models by providing a possible mechanism for the generation of
nonlinear responses to I'TD and ILD in ICcl, and by addressing
the issue of how a heterogeneous population of ICcl responses is
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processed to produce ICx responses. Second, our model
examines the subthreshold responses of ICx neurons [6,29].
This is the first model to reconcile the observation of
multiplicative subthreshold responses to ITD and ILD [6] with
the presence of linear frequency integration in subthreshold ICx
responses [29]. Third, by including an explicit representation of
the subthreshold and spiking responses of ICcl and ICx neurons,
our model assigns each operation performed on the ITD- and
ILD-dependent input signals to a particular processing stage in
the inferior colliculus.

This model, along with previous ones, leaves several issues
open. First, how are the connections between ICcl and ICx
neurons learned? There are several proposals for the mechanisms
underlying learning in the owl’s auditory system [55-62], but
none has compared model responses to ITD and ILD over
frequency with experimentally measured responses. Second,
what dendritic mechanisms are involved in generating responses
to ITD and ILD in the inferior colliculus? Models of the owl’s
inferior colliculus have employed point neurons that neglect
processing in dendritic trees. Segregation of ICcl inputs on
different branches of the dendritic tree may be important for
generating nonlinear responses within frequency channels, while
maintaining linear frequency integration [63]. Third, how is the
diversity of responses to I'TD and ILD seen in ICcl generated
from presynaptic inputs? Models should include representations
of both the level- and time-pathway inputs to ICcl in order to
reproduce this diversity.

4.2 Mechanisms for Multiplicative Responses

We propose that the population of neurons in each frequency
channel of ICcl acts as the layer that performs multiplication of
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ITD- and ILD-dependent signals. This model makes simple the spiking input-output function. Under this model, the
biophysical assumptions: subthreshold integration of signals is responses to ITD and ILD in ICcl are only approximately
linear, and nonlinearity between I'TD and ILD is introduced by multiplicative, which is consistent with the data [7]. Thus, a
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Figure 9. Model ICx responses are more multiplicative for
tones than for two tones. (A) Subthreshold ITD-ILD response
matrix for a model ICx neuron obtained using a tonal stimulus. Since
the model assumes that the response at each frequency is a product
of an ITD-dependent function and an ILD-dependent function, the
tonal response matrix is accurately described by multiplication. (B) In
contrast, the response of the same model neuron obtained when ITD
varies in one frequency and ILD varies in a second frequency is not
accurately described by multiplication because the model assumes
that frequency integration is linear.
doi:10.1371/journal.pone.0008015.9009

clean multiplication between signals within frequency channels
emerges in the subthreshold responses of ICx neurons as a
network property. This is an example of a hidden layer (or basis
function) network performing a nonlinear operation on its
inputs [50-52]. ICx responses are produced in the model by a
linear feedforward projection of ICcl responses where frequen-
cy-specific weights lead to clean multiplicative responses within
frequency channels. One advantage of this network is that it can
learn sets of frequency-specific weights from ICcl to ICx. This is
an important constraint that the network must fulfill, given the
experimental evidence for the owl learning frequency-depen-
dent I'TD selectivity in ICx [49].

There are several previously proposed models for the
generation of multiplicative neural responses. These models
show that the mechanism that produces multiplicative responses
may be the property of a single cell [43,44,64], a recurrent
network [65], or a feedforward network [52,66,67]. Our model
employs both cellular and network mechanisms to produce
multiplicative responses. At the cellular level, our model is
consistent with previous studies that show that the spiking
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nonlinearity can produce multiplicative responses [43,44,64].
Mel [64] showed that adding and rectifying two peaked functions
produces a response that is very similar to the product of the two
peaked functions. Murphy and Miller [43] found that multipli-
cative responses could be produced by neurons that sum their
inputs if the spiking nonlinearity follows a power-law. Our model
of ICcl is consistent with these cellular models; the input to
model ICcl neurons is a sum of peaked functions of ITD and
ILD, and spiking responses are a threshold-sigmoid function of
the input. The threshold-sigmoid function matches a power-law
function over a large portion of its dynamic range. This
mechanism is able to produce responses that are well described
by multiplication. By varying where the spiking threshold falls on
the dynamic range of the subthreshold response, the model also
produced responses that were not very multiplicative, as is seen
in the data [7]. Previous studies have also shown that products of
variables can be read out from the responses of a population of
neurons with a diversity of nonlinear responses [52,67]; this is
the hidden layer model for performing multiplication. In our
model, the population of neurons in each frequency channel of
ICcl acts as the hidden layer for performing multiplication of
ITD- and ILD-dependent signals. In summary, we propose that
the owl’s inferior colliculus employs a combination of plausible
cellular and network mechanisms to produce multiplicative
responses.

A study by Poirazi et al. [68] raises the question of why the owl’s
auditory system employs ICcl as a separate neural hidden layer for
performing multiplication when dendritic mechanisms could
alternatively be used. Poirazi et al. [68] showed that the dendritic
tree of a single neuron can act as a two-layer neural network.
Under this model, it should be possible for ICx neurons to use
local dendritic processing to introduce a nonlinearity between
ITD- and ILD-dependent inputs within frequency channels. One
reason that ICcl is used, rather than local dendritic nonlinearities,
may be the complexity that dendritic hidden layers would add to
learning rules. In the dendritic hidden layer, time- and level-
pathway inputs from the same frequency channel must synapse
not only on the appropriate neuron, but on a particular segment of
the dendritic tree. A second reason for using a neural hidden layer
is that the intermediate results, the products within frequency
channels, may need to be used by both the midbrain and forebrain
[69,70]. If a dendritic hidden layer is used, then the intermediate
results cannot be shared between neurons.

4.3 Model Predictions

Based on the model, we make three specific predictions
about responses of neurons in the midbrain of the owl to I'TD
and ILD. First, in ICcl, spiking responses to I'TD and ILD will
be more multiplicative than subthreshold responses. This
prediction is based on our hypothesis that multiplicative
responses emerge in ICcl neurons as a result of the spiking
nonlinearity. In our model, subthreshold integration of I'TD
and ILD is purely linear, but this may not be satisfied in the
owl because of synaptic nonlinearities that the model does not
account for. Nevertheless, we predict that spiking responses will
be more multiplicative than will subthreshold responses. This
prediction can be tested by recording intracellularly the
responses of ICcl neurons to ITD and ILD. Second, in ICx,
neurons with preferred directions away from the center of gaze
will have less multiplicative subthreshold responses to ITD and
ILD than will neurons with preferred directions near the center
of gaze. This occurs in our model because addition and
multiplication across frequency are clearly distinguished for
neurons with highly frequency-dependent preferred ITD and
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ILD spectra. This prediction can be tested by recording
intracellularly the responses of ICx neurons with preferred
directions away from the center of gaze to ITD and ILD.
Third, we predict that frequency integration is not multiplica-
tive in the spiking responses of neurons in ICx and the optic
tectum; the response to two tones should appear as a linear-
threshold combination of the responses to the individual tones
[29]. Nonlinearity is observed in the frequency integration
responses of ICx and optic tectum neurons [14,27,28], but we
propose that this is due to a threshold-nonlinearity, not to
multiplication. While a threshold operation forms a close
approximation to multiplication, there is an important distinc-
tion between the models. Under the linear-threshold model, the
influence of a single frequency component on the neural
response varies with the intensity, while under the multiplica-
tive model it does not. The presence of a linear-threshold
nonlinearity is supported by current data showing that the more
intense of two simultancous spectrally distinct sources will have
the greater influence on the response of these neurons [14,26]
and that frequency integration is linear in subthreshold
responses of ICx neurons [29]. This prediction can be further
tested by comparing I'TD-ILD responses matrices obtained for
narrowband sounds and for sounds consisting of two frequency
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components where I'TD is varied for one frequency and ILD
varied for the other.

Supporting Information

Figure S1 (A) Linear output of the gain-modulated gammatone
filter (measured as root-mean-square, RMS), as a function of
average binaural level of a broadband noise. (B) Cross-correlation
vector as a function of average binaural level. (C) Tolerance to
ILD of the cross-correlation vector.

Found at: doi:10.1371/journal.pone.0008015.s001
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