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Abstract

A multiplicative combination of tuning to interaural time difference (ITD) and interaural level difference (ILD) contributes to
the generation of spatially selective auditory neurons in the owl’s midbrain. Previous analyses of multiplicative responses in
the owl have not taken into consideration the frequency-dependence of ITD and ILD cues that occur under natural listening
conditions. Here, we present a model for the responses of ITD- and ILD-sensitive neurons in the barn owl’s inferior colliculus
which satisfies constraints raised by experimental data on frequency convergence, multiplicative interaction of ITD and ILD,
and response properties of afferent neurons. We propose that multiplication between ITD- and ILD-dependent signals
occurs only within frequency channels and that frequency integration occurs using a linear-threshold mechanism. The
model reproduces the experimentally observed nonlinear responses to ITD and ILD in the inferior colliculus, with greater
accuracy than previous models. We show that linear-threshold frequency integration allows the system to represent
multiple sound sources with natural sound localization cues, whereas multiplicative frequency integration does not.
Nonlinear responses in the owl’s inferior colliculus can thus be generated using a combination of cellular and network
mechanisms, showing that multiple elements of previous theories can be combined in a single system.
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Introduction

The barn owl is able to pinpoint sound sources with great

accuracy after hearing only a short burst of sound [1]. This

orienting response is mediated by spatially-selective auditory

neurons in the midbrain [2,3]. Spatial selectivity arises in these

auditory neurons as a result of computations performed on the

auditory input signals (for review see, [4,5]). Multiplication is

believed to be an essential computation in the generation of

spatially selective auditory neurons in the owl’s midbrain [6,7].

Space-specific neurons in the barn owl’s auditory space map

gain spatial selectivity as a result of tuning to combinations of the

interaural time difference (ITD) and interaural level difference

(ILD; [8,9]). In the barn owl, as in mammals, ITD is correlated

with the horizontal position of a sound source [8,10–12]. A vertical

asymmetry of the owl’s ears causes ILD to vary primarily with the

vertical position of a sound source [10,11,13]. Under natural

listening conditions, the ITD and ILD at each frequency of the

sound stimulus are shaped in a direction-dependent manner

[13–15]. Therefore, the cues for sound localization consist of ITD

and ILD at an array of frequencies. The localization cues ITD and

ILD are processed in parallel pathways in the brainstem [16–18],

where neurons are narrowly tuned to sound frequency (Reviews:

[4,5]). ITD and ILD initially converge in the lateral shell of the

central nucleus of the inferior colliculus (ICcl), where neurons

remain narrowly tuned to frequency [19–21]. The response to

ITD and ILD is nonlinear at the site of ITD-ILD convergence in

ICcl, but there is a diversity of combination-selective responses

over the population [7]. In the next stage, signals converge across

frequency in the external nucleus of the inferior colliculus (ICx),

where the auditory space map is generated [22,23]. The response

to ITD and ILD in the membrane potential of space-specific

neurons in ICx is well described by a multiplication of an ITD-

dependent component and an ILD-dependent component [6].

While the owl’s auditory system provides one of the best

examples of multiplication in a neural circuit, how the sound

localization cues are processed under natural listening conditions

and what mechanisms produce the responses of neurons in the

owl’s inferior colliculus remain unanswered questions. Peña and

Konishi [6] observed multiplication using sound signals that differ

binaurally by a frequency-independent ITD and a frequency-

independent ILD. However, under natural listening conditions,

the ITD and ILD at each frequency of the sound stimulus are

shaped in a direction-dependent manner [13–15]. A complete

model of sound localization in the owl must thus address how the

ITD and ILD tunings are combined with each other and across

frequency to generate the responses of space-specific neurons.

Previous models of neurons in the owl’s midbrain have reproduced

aspects of neural responses to sound source direction for single and

multiple sound sources [14,24–26]. Common among these models

is the assumption that spiking responses of space-specific neurons

results from some form of nonlinear interaction between ITD and

ILD, both within and across frequency [6,14,27,28]. However,

frequency integration in the membrane potential of ICx neurons
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appears linear [29]. Nor have previous models addressed key

aspects of combination selectivity for ITD and ILD observed in the

spiking responses of ICcl neurons. In particular, models that

explicitly include ICcl assume that combination selectivity for ITD

and ILD is uniform over the population [24,25], whereas

experimental measurements reveal a diversity of responses to

ITD and ILD in ICcl [7].

Here, we develop a model for the responses of ITD- and ILD-

sensitive neurons in the barn owl’s inferior colliculus. This work

combines multiple experimental data sets [6,7,29] to model

computational operations that map onto specific regions of the

inferior colliculus. We propose that multiplication occurs between

ITD and ILD within frequency channels, but that integration

across frequency occurs using a linear-threshold operation. This

interpretation not only is based on physiological data on the

combination of ITD and ILD, but it is also consistent with

responses when multiple sound sources are presented [30].

Methods

2.1 Neurophysiology
2.1.1 Ethics statement. Experimental procedures followed

the National Institutes of Health Guide for the Care and Use of

Laboratory Animals and were approved by the Institutional Animal

Care and Use Committee of the California Institute of

Technology.

2.1.2 Methods. Methods for surgery, stimulus delivery, and

data collection have been described previously [6,7].

2.2 Time-Dependent Model of Responses to ITD and ILD
in the Inferior Colliculus

We present a model for the responses of ITD- and ILD-sensitive

neurons in the barn owl’s inferior colliculus. The model is

constructed in three stages: (1) a front end for extracting binaural

localization cues from the auditory inputs, (2) ICcl, and (3) ICx.

2.2.1 Binaural cue extraction. In the first stage of the

model, the input signals to the left and right ears are filtered with a

bank of band-pass filters [26]. Each filter is a gamma-tone function

with an impulse response given by h(t; fk)~
t3 exp ({t=tk) cos (2pfkt)U(t), where U(:) is the unit step

function [31]. The center frequency fk of the filter corresponds

to the characteristic frequency of an auditory-nerve fiber. The

time constant tk is selected so that the 10 dB width of the gamma-

tone filter is equal to the width of the frequency tuning curve of an

auditory-nerve fiber with characteristic frequency fk, computed

10 dB above threshold [32]. A Gaussian white noise signal is

added to the deterministic signal, to model the stochastic

representation of signals by populations of neurons.

For an input signal r(t), we denote the output of the band-pass

filter with center frequency fk as v(t; fk)~h(t; fk) � r(t)znv(t)
where � denotes convolution and, for each t, nv(t) is a Gaussian

random variable with mean zero and standard deviation equal to

0:1 h(t; fk) � r(t)j j. The noise nv(t) is assumed to have a Gaussian

distribution with a standard deviation that scales with the signal

because it models the noise in a sum of many neurons’ responses,

where the variability of each neuron’s response increases with the

strength of the signal. Noise signals introduced in the sequel are

defined similarly and are taken as zero-mean Gaussian random

signals, uncorrelated in time, with standard deviation equal to 0.1

times the input signal magnitude. When both the left and right

components are considered, the signals are written with subscripts,

e.g., vL(t; fk) and vR(t; fk).

ITD is extracted from the outputs of the band-pass filterbank

using a cross-correlation-based operation [26,33,34]. The cross-

correlation operation used here is modified from the model of

Fischer et al. [34] to include a gain control mechanism. We

describe the modified cross-correlation in two stages. The first

stage corresponds to the processing of sounds by the cochlear

nucleus magnocellularis (NM); this stage represents the input to

the cross-correlation operator. The second stage corresponds to

the coincidence detectors in nucleus laminaris (NL) where ITD is

computed [35].

The input to the cross-correlation in each frequency channel is a

gain-modulated version of the filterbank output [33]. The gain at

each frequency is a function of the energy, designed so that the

magnitude of the filterbank output is a linear function of stimulus

level (Figure S1), consistent with the population responses of

auditory nerve fibers in the owl [36]. The energy is computed over

a short time window by squaring and temporally smoothing the

filterbank output. We define the energy mathematically as

g(t; fk,t)~

ðt

0

exp ({(t{s)=t)v(s; fk)2dszng(t), where t~2

ms. The input to the cross-correlation on one side of the brain is

formed by normalizing the filterbank output with a function of the

energy, yielding u(t; fk)~
v(t; fk)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

czg(t; fk,t)
p znu(t), where c = 100 is

a constant that ensures that the denominator is nonzero.

In the barn owl, cross-correlation is performed over a short time

window [37] and includes a mechanism that reduces the sensitivity

of coincidence detectors to ILD [38]. We model this process of

ITD computation by a gain-modulated running cross-correlation,

defined by x(t,m; fk)~
1

Q(t; fk)

ðt
0

exp ({(s{t)=t)½uL(s{Dm; fk)

zuR(s{DNd {m; fk)zc�2dsznx(t) where m[f0,1,:::,Ndg is the

delay index, t~5 ms is the time constant for the window of

integration [37], Dn~n
0:2

Nd

ms is the internal delay on one side of the

brain [35], and the constant c = 1 causes the input to the squaring

nonlinearity to be positive so that responses are consistent with

phase-locking in NL by having only one peak per stimulus cycle [34].

The gain Q(t; fk) is a quadratic function of the magnitude of

the left and right cross-correlation inputs, defined as Q(t; fk)~

½
ðt

0

exp ({(t{s)=t) uL(s; fk)j jdsz

ðt

0

exp ({(t{s)=t) uR(s; fk)j jdsz

a�2, where t~3 ms and a = 15 is a constant that causes the gain term

to be nonzero. The gain control on the cross-correlation causes the

dependence of the output on stimulus level to be sigmodal and improves

the output tolerance to ILD, as is observed experimentally (Figure S1;

[38,39]).

ILD is extracted from the auditory input signals using a level

subtraction operation. Specifically, ILD is computed using the

interaural difference of a logarithmic function of the energy of the

signals in each frequency channel [26,40,41]. The logarithmic

function of the energy of the gamma-tone filter output employed

in the model, hereafter called the energy envelope [40], is defined

as

y(t; fk)~
log10(g(t; fk,t)); g(t; fk,t)w1

0; otherwise

�
zny(t)

where t~1 ms. A logarithmic function of the energy g(t; fk,t) was

selected as the envelope because a difference between the left and right

envelope signals leads to a roughly stimulus invariant representation of

ILD [40]. In particular, the interaural energy envelope difference

z(t; fk)~yR(t; fk){yL(t,fk)~log10(gR(t; fk,t)=gL(t; fk,t)) produces

a division between the left and right energy terms that removes

Neural Multiplication
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stimulus effects that are common to the left and right auditory inputs,

while preserving information about ILD.

The front end of the model therefore follows the form taken by

many sound localization models and includes a bandpass

filterbank followed by a cross-correlation and level subtraction

operation in each frequency channel [42]. The particular form of

the model is, however, tailored to the responses of neurons in the

owl’s auditory system.

2.2.2 ITD-ILD convergence in ICcl. Previous theoretical

studies have shown that multiplicative spiking responses can occur

in neurons where input variables are combined additively in

subthreshold responses if the input-output function of the neuron

follows a power-law [43,44]. Consistent with this idea, we assume

that ITD- and ILD-dependent cues are encoded additively in the

membrane potential of ICcl neurons. Specifically, the membrane

potential response of the ith neuron at frequency fk is a low-pass

filtered version of the sum of ITD-dependent and ILD-dependent

input signals, and is defined by the differential equation

_VVi(t; fk)~{
1

t
½Vi(t; fk){Fi(x(t; fk)){Gi(yL(t; fk),yR(t,fk))�,

where t~4 ms and x(t; fk) represents the cross-correlation vector

across all internal delays. This is the key equation that defines the

interaction of ITD and ILD in the subthreshold responses of ICcl

neurons. The ITD-dependent input is a scaled version of one

element of the cross-correlation vector, Fi(x(t; fk))~bx(t,ni; fk),
where the identity of the element ni determines the neuron’s best

ITD. The ILD-dependent input is a product of an ILD-dependent

component and energy-dependent component,

Gi(yL(t; fk),yR(t,fk))~yc(t; fk)½ a1i

1z exp ({(z(t; fk){a2i)=a3i)
{

a4i

1z exp ({(z(t; fk){a5i)=a6i)
za7i�:

The energy-dependent component is given by the contralateral

energy envelope, yc(t; fk), because ICcl receives excitatory input

from the contralateral nucleus angularis. We assume that the left

and right LLDp contribute only the energy-independent interaural

envelope difference [20].

The ILD-dependent component here is a difference of sigmoids;

selection of different parameters can produce ILD tuning curves

that range from sigmoidal to peaked, as is seen in ICcl [7,45,46].

The membrane potential Vi(t; fk) is mapped to a spiking

probability using a threshold-sigmoid nonlinearity, rather than the

power-law nonlinearity suggested by Murphy and Miller [43].

While no data are available to constrain the input-output

properties of ICcl neurons, the threshold-sigmoid nonlinearity

provides a good fit to the expansive input-output properties of ICx

neurons (Figure 1) [47]. In contrast to the power-law nonlinearity,

the threshold-sigmoid nonlinearity allows for the spiking response

to saturate, which occurs in ICcl spiking responses [7].

Nevertheless, as seen in Figure 1, the threshold-sigmoid nonlin-

earity closely matches a power-law nonlinearity over the range of

the data for an example ICx neuron, and we therefore should

expect this nonlinearity to produce multiplicative spiking responses

in ICcl [43,44]. With this model, the spiking probability for an

ICcl neuron is given by the piecewise defined function

ri(t; fk)~

rmax ,i

1z exp ({0:4122Vi(t; fk)zbiasi)
; Vi(t; fk)§{68:2mV

0 ; otherwise

(

where rmax,i is the maximum firing rate and biasi determines where

the center of the dynamic range of the membrane potential

response falls relative to the fixed spiking threshold of 268.2 mV.

Both of these parameters are neuron-specific. The fixed param-

eters are found by fitting the curve to the measured ICx data

shown in Figure 1. We define the difference between the threshold

value of 268.2 mV and the center of the dynamic range of the

neuron’s membrane potential response to ITD and ILD as

Dthreshold. Spikes are produced using a non-homogeneous Poisson

process with underlying rate ri(t; fk): This model for ICcl neurons

is the commonly used linear-nonlinear-Poisson model [48].

2.2.3 Frequency convergence in ICx. Spikes are produced

for each ICx neuron using a linear-nonlinear-Poisson model. ICx

neurons have broad frequency tuning [27], and are therefore

considered as a single population where frequency channels are

merged. The membrane potential of the jth ICx neuron is given by

a linear combination of filtered spikes of ICcl neurons across

frequency channels,

Vj(t)~a0z
XNf

k~1

XN

i~1

vikhICcl,i(t; fk):

In the simulations, we used 300 total ICcl neurons across two to

five frequency channels as input to a given ICx neuron.

Postsynaptic potentials in the target ICx neuron are modeled by

a second-order exponential function, and responses to multiple

spikes are combined linearly. Mathematically, the input to an

ICx neuron from the ith ICcl neuron at frequency fk is given

by hICcl,i(t; fk)~
PNi

i~1

(t{tin) exp ({(t{tin)=t)U(t{tin) where

(ti1,ti2,:::,tiNi
) are spike times for the ith ICcl neuron and t = 4 ms.

Figure 1. Input-Output response of an ICx neuron. The mapping
from the average membrane potential of an ICx neuron over the
presentation of a sound stimulus to the number of spikes produced is
fit with a power function (dotted line) and a threshold-sigmoid function
(solid line). The threshold-sigmoid function is used as the input-output
nonlinearity for model ICcl and ICx neurons.
doi:10.1371/journal.pone.0008015.g001
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The two central properties of this ICx model are, first, that

frequency integration in the membrane potential is linear [29]

and, second, that multiplication between ITD- and ILD-

dependent signals occurs only within frequency channels. The

incorporation of linear frequency integration in the membrane

potential is an important constraint that is imposed by the data

[29]. Connection weights between ICcl neurons and the target

ICx neuron are selected so that the membrane potential response

of the ICx neuron is a product of ITD- and ILD-dependent

functions in each frequency channel. First, we suppose that the

measured membrane potential response of an ICx neuron to ITD

and ILD can be written as a sum over frequency of terms that are

a product of an ITD-dependent function cos (vkITD{IPDk)

and an ILD-dependent function qk(ILD), yielding the approxi-

mation V
_

j(ITD,ILD)~a0z
PNf

k~1

cos (vkITD{IPDk)qk(ILD).

The ILD-dependent function qk(ILD) can take an arbitrary value

at each ILD. We call this model of the subthreshold ICx response

the multiplication-linear model. This model can be directly related

to the approximation obtained using a purely multiplicative

interaction of ITD- and ILD-dependent components found from

the singular value decomposition (SVD) [6]. The parameters of the

frequency-specific functions cos (vkITD{IPDk) and qk(ILD) are

found by minimizing the squared difference between the measured

membrane potential of the ICx neuron and the approximation,

averaged over ITD and ILD, using the Matlab function lsqnonlin.

Next, the connection weights in each frequency channel of the spiking

model fvikgN
i~1 are found to minimize S½

PN
i~1 vikShICcl,i(t; fk)Tt

{ cos (vkITD{IPDk)qk(ILD)�2TITD,ILD, i.e., the squared differ-

ence between a linear combination of the time average of the filtered

ICcl spikes at frequency fk and the desired product of ITD- and ILD-

dependent functions at frequency fk, averaged over ITD and ILD. It is

reasonable to compute the weights separately for each frequency

channel, given the experimental evidence that learning in the owl can

elicit frequency-dependent connectivity changes in ICx [49].

2.3 Static Model
We also considered simple static models of ICx responses to

ITD and ILD in order to compare the responses of ICx neurons

under the assumption of either additive or multiplicative frequency

integration. This analysis is complementary to that involving the

spiking model presented in the previous section.

In the static model, the stimulus is completely specified by the

ITD, ILD, and average binaural intensity (ABI) at an array of

frequencies. The vectors of ITD, ILD, and ABI are denoted by

ITD, ILD, and A, respectively. For both additive and multiplicative

models, we assume that the response of a neuron is determined by

its preferred ITD and ILD spectra, denoted bITD and bILD. Each

neuron’s best ITD and ILD spectra are given by the ITD and ILD

spectra derived from barn owl head-related transfer functions at a

given direction [15].

In both the additive and multiplicative models, the response to

ITD and ILD at each frequency is given by the product of a

Gaussian-shaped function of ILD and a circular Gaussian-shaped

function of ITD. Under the additive model, the response of the

ICx neuron is

Ra(ITD,ILD,A)~
XNf

k~1

½azA(k) exp ({
1

2s2
(ILD(k){bILD(k))2)

exp (k cos (2pfk(ITD(k){bITD(k))))�

and under the multiplicative model, the response of the ICx neuron is

Rm(ITD,ILD,A)~ P
Nf

k~1
½azA(k) exp ({

1

2s2
(ILD(k){bILD(k))2)

�

exp (k cos (2pfk(ITD(k){bITD(k)))Þ�:

The constant a = max(A)/200 is included so that the absence of

energy in a single frequency channel does not eliminate the

response.

These static models are not directly fit to data, but are used to

illustrate the different predictions generated under the assumptions

of linear and multiplicative frequency combination.

2.4 Analysis
We used additional analysis to determine the degree of

nonlinearity in the interaction between ITD and ILD. Following

previous studies [6,7], potential nonlinearities were quantified

using two types of statistical tests, a linear and a nonlinear fit for

each cell.

In the additive fit, the matrix of responses to pairs of stimulus

ITD and ILD, denoted R, is approximated as the minimum mean

square model of the form

R̂R~RazGzH

where G is a function of ITD, H is a function of ILD, and Ra is a

constant [6].

The multiplicative fit is specified in terms of the SVD of the

response matrix, after the subtraction of a constant bias [6]. A

multiplicative fit of the response matrix is obtained using the first

singular vectors U1 and V1 weighted by the first singular value s1

added to a constant bias Rm, yielding

R̂R~Rmzs1U1VT
1 :

The constant Rm is the value between the minimum and

maximum response that minimizes the mean square error in the fit

to the data and is distinct from the constant Ra used in the additive

fit.

The accuracy of the additive and multiplicative fits is given by

the root mean squared (RMS) error between the response and the

model fit, normalized by the dynamic range of the neuron’s

response. The dynamic range is the difference between the

maximum and minimum of the response. The relative accuracy

of the additive and multiplicative fits is summarized by a

multiplication index defined as MI = (nRMSmult 2 nRMSadd)/

(nRMSmult + nRMSadd), where nRMSadd is the normalized RMS

error between the response and the additive fit and nRMSmult is

the normalized RMS error between the response and the

multiplicative fit.

Results

We present a model for the emergence of auditory spatial

tuning in ITD- and ILD-sensitive neurons of the barn owl’s ICx

(Figure 2). ITD- and ILD-dependent cues are extracted from

auditory input signals at an array of frequencies using cross-

correlation and level-subtraction, respectively. The ITD- and

ILD-dependent cues form the input to a network of spiking

neurons that model two regions of the inferior colliculus where

ITD- and ILD-sensitive neurons are found, ICx and its afferent

neurons in ICcl. We assume that the nonlinear spiking responses

to ITD and ILD found in ICcl [7] are produced by a nonlinear-
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additive mechanism [43,44]. That is, we assume that in ICcl,

ITD- and ILD-dependent cues within frequency channels are

combined additively in the membrane potential and are

transformed to a nonlinear spiking response by the spiking

input-output function. The subthreshold responses of ICx

neurons can then be described as a sum across frequency of

products of ITD- and ILD-dependent functions. The network

model describes how a linear combination of the responses of

populations of ICcl neurons can compute the products of ITD-

and ILD-dependent functions, and thereby produces the

experimentally observed responses to ITD and ILD in ICx.

3.1 Generating ICcl Responses
3.1.1 Reproducing experimentally measured responses. The

model was able to reproduce the diversity of combination selectivity

observed in ICcl (Figure 3). In the barn owl’s ICcl, spiking responses to

ITD-ILD range from highly combination selective to more additive

than multiplicative [7]. The model produced responses to ITD and

ILD that were limited to discrete regions of ITD and ILD space, and

were therefore well described by a multiplicative model (Figure 3G).

The model also produced responses that were better described by

addition than by multiplication (Figure 3E).

The degree of multiplicative interaction of ITD- and ILD-

dependent signals in model spike count responses varied

systematically with the difference between the spiking threshold

and the center of the dynamic range of the subthreshold response

of ICcl neurons (Figure 3A,B). We define the difference between

the threshold value of the input-output curve and the center of the

dynamic range of the neuron’s membrane potential response to

ITD and ILD as Dthreshold (Figure 3C,D). The types of responses

produced by the model as Dthreshold varied (Figure 3E,G,I) are

similar to those observed experimentally [7] (Figure 3F,H,J). The

variation of the accuracy of a multiplicative fit of the response with

Dthreshold can be understood by considering where the dynamic

range of the membrane potential response falls on the sigmoidal

input-output curve for different Dthreshold values (see section 2.4 for

description of additive and multiplicative fits). A low Dthreshold

value places the membrane potential dynamic range near the

saturation point, a middle Dthreshold value places the membrane

potential dynamic range in the linear portion of the curve, and a

high Dthreshold places the membrane potential dynamic range near

the expansive portion of the curve. Overall, neurons with the

highest Dthreshold values had the most multiplicative responses.

However, the multiplication index did not vary monotonically

Figure 2. Block diagram of model. The initial components of the model extract time-dependent localization cues using a running cross-
correlation, denoted x, and the interaural level difference, denoted z, from auditory input signals. A network model of spiking neurons uses these
cues, along with a measure of stimulus intensity given by an energy envelope (y), as input to neurons in the lateral shell of the central nucleus of the
inferior colliculus (ICcl), which converge on the external nucleus of the inferior colliculus (ICx). ICcl neurons add a function of the running cross-
correlation with another function of the interaural level difference and energy envelope and pass the result through a spiking nonlinearity to produce
the probability of spiking. The two central assumptions of the ICx model are, first, that frequency integration at the subthreshold level is linear [29]
and, second, that multiplication between ITD- and ILD-dependent signals occurs only within frequency channels. Connection weights between ICcl
neurons and the target ICx neuron are selected to enforce these assumptions.
doi:10.1371/journal.pone.0008015.g002
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with Dthreshold. The multiplication index is a measure of the

relative accuracy of additive and multiplicative models of ITD-

ILD interaction. Over a range of low Dthreshold values, the spiking

response was better described by a multiplicative fit than by an

additive fit, but the accuracy of the multiplicative fit decreased as

the Dthreshold increased (Figure 3A,B). This situation arises because

at the lowest Dthreshold values (Figure 3E), the saturation produced

by the sigmoidal nonlinearity cannot be captured by the additive

fit. As the Dthreshold increases, the dynamic range of the membrane

potential falls in the linear portion of the input-output curve, and

the spiking response more closely reflects the additive subthreshold

response (Figure 3G). For even higher Dthreshold, the spiking

nonlinearity limits responses to discrete regions of ITD-ILD,

causing the spiking response to appear more multiplicative

(Figure 3I).

While the model responses are well-described by multiplication,

the responses are not purely multiplicative. In particular, the ITD

tuning curves for different ILD values are not gain-modulated

versions of each other (Figure 4B,D). This is evident, for example,

in the variation of the threshold ITD with ILD, which is also seen

in the data [7] (Figure 4A,C). However, responses are restricted to

particular regions of ITD and ILD, thus acting as an AND gate.

Therefore, a multiplicative fit accurately describes the response.

Below, we examine how a population of such neurons can

combine to produce the experimentally measured responses of ICx

neurons.
3.1.2 Predictions for the emergence of multiplicative

responses in ICcl. The model predicts that ICcl responses are

more multiplicative in spike count responses than in membrane

potential responses. By construction, the membrane potential

response of the ICcl model neuron is a linear combination of ITD-

and ILD-dependent functions. This is evident in that the model

shows an increased response when either ITD or ILD is in the

preferred range (Figure 5A). As discussed above, the threshold

produces a multiplicative spiking response (Figure 5B,C). This

prediction can be tested by recording intracellularly the ITD-ILD

responses of ICcl neurons.

3.2 Generating ICx Responses from ICcl Inputs
3.2.1 Reproduction of experimentally measured ICx

subthreshold responses. Experimentally observed me-

mbrane potential responses to ITD and ILD could be

produced in model ICx neurons using a linear combination of

ICcl spiking responses (Figure 6). We propose that the ICx

membrane potential response is a linear combination of

products of ITD and ILD-dependent signals at each frequency

(Figure 6A–E). This multiplication-linear model provided a

more accurate description of the experimentally measured

responses than did the purely multiplicative model derived

from a singular value decomposition of the response matrix

(SVD, median nRMSE 0.11, interquartile range 0.09–0.18;

multiplication-linear, median nRMSE 0.05, interquartile range

0.03–0.08; n = 14) (Figure 6F; [6]). In the spiking model, the

ITD- and ILD-dependent products at each frequency are

computed using a linear combination of the responses of a

population of ICcl neurons with the same characteristic

frequency. This computation is an example of a hidden layer

(or basis function) network performing a nonlinear operation on

its inputs, and is made possible by the nonlinear input-output

function of the ICcl neurons [50–52]. We note that each ICx

neuron is combining the responses of many ICcl neurons with

diverse responses, and is not only selecting the most

multiplicative cells. We found connection weights between

model ICcl neurons and model ICx neurons to reproduce

subthreshold ITD-ILD response matrices for 14 ICx neurons

Figure 3. Accuracy of the multiplicative model as a function of spiking threshold in ICcl. The relative accuracy of the additive and
multiplicative models of ITD-ILD interaction, summarized by the correlation between the multiplicative fit and the response (A) and the multiplication
index (B), depends systematically on the difference between the threshold value of the input-output curve and the center of the dynamic range of
the neuron’s membrane potential response to ITD and ILD, denoted as Dthreshold. Dthreshold is illustrated for positive (C) and negative (D) values. (E,G,I)
ITD-ILD response matrices of model ICcl neurons with different thresholds. (F,H,J) Experimentally measured ITD-ILD response matrices [7].
doi:10.1371/journal.pone.0008015.g003
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recorded by Peña and Konishi [6] using broadband noise

stimuli with frequency-independent ITD and ILD. We tested

the ability of the model ICx neurons to reproduce the

experimentally measured ITD-ILD response matrices using

stimuli not used in the calculation of the connection weights.

The normalized root mean squared error between the spiking

model response and the measured ITD-ILD response was near

the normalized root mean squared error in the SVD model

(median nRMSE 0.12, interquartile range 0.09–0.16; n = 14).

Thus, there is near equivalent performance of the spiking and

SVD-based models even though the former is the result of

combining populations of Poisson responses and the latter is a

direct fit of the data.

Peña and Konishi [6] initially observed multiplicative sub-

threshold responses of ICx neurons using stimuli presented over

headphones with frequency-independent ITD and ILD. The

model presented here assumes that frequency integration is linear

in the subthreshold responses of ICx neurons and that multipli-

cation only occurs within frequency channels. Therefore, the

response is not purely a product of an ITD-dependent component

and an ILD-dependent component. How does the multiplicative

model derived from the SVD with a single ITD-dependent

component and a single ILD-dependent component fit the ICx

data so well if the true underlying mechanism involves linear

frequency convergence? For directions near the center of gaze, the

associated ITD and ILD spectra are relatively constant across

frequency (Figure 7A) [14,15]. If we assume that each neurons’

preferred ITD and ILD spectra match the ITD and ILD spectra

derived from the HRTFs at the best direction [49,53,54], then the

inputs to the neuron are very similar across frequency. Therefore,

a sum across frequency is approximately equal to a scaled version

of a shape that is a product of an ITD-dependent component and

an ILD-dependent component. For example, Figure 7B shows the

ITD-ILD response of the static model with additive frequency

convergence for a neuron with best direction (0u,0u) (see section

2.3 for model description). The squared correlation coefficient

between the model response and the SVD-based multiplicative fit

is 0.99.

Under natural listening conditions with broadband stimuli,

the sounds received at the left and right ears contain a spectrum

of ITDs and ILDs [13–15]. For a neuron with a preferred

direction away from the center of gaze, the preferred ITD and

ILD spectra can vary greatly with frequency (Figure 7C). The

model we propose for the ICx response predicts that for such

Figure 4. Spiking responses of ICcl neurons are not purely multiplicative. ITD curves obtained at different ILD values were not purely gain-
modulated versions of each other in both the experimentally measured responses (A) and the model responses (B). (C,D) Normalized versions of the
ITD curves shown in (A,B).
doi:10.1371/journal.pone.0008015.g004
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neurons, the subthreshold ITD-ILD response matrix will not be

accurately described by the multiplicative model derived from

the SVD (Figure 7D). Figure 7D shows the ITD-ILD response

of the additive static model for a neuron with best direction

(230u,225u). Here, the squared correlation coefficient between

the response and the SVD-based multiplicative fit is 0.85. The

only difference between this model response and a model

response that yields a correlation of 0.99 (Figure 7B) is the

neuron’s preferred direction. The deviation from multiplication

for neurons with peripherally located receptive fields remains a

prediction because of the difficulty in recording ICx neurons

with preferred directions away from the center of gaze.

3.2.2 Frequency convergence in ICx spiking

responses. The ICx model produced nonlinear spiking

responses to multi-tone stimuli (Figure 8A,C,E). Nonlinear

frequency convergence is observed in spiking responses in both

ICx and the optic tectum in the barn owl [14,27,28]. The model

presented here is based on data that show frequency convergence

is linear in the membrane potential [29], but also produces

nonlinear spiking responses. When the model is tested with stimuli

that consist of a sum of two tones, the subthreshold response is well

described by a linear combination of the responses to the

component tones (Figure 8B,D,F). The spiking response to the

two-tone stimulus, in contrast, is not well described by a linear

combination of the responses to the component tones

(Figure 8A,C,E). Also, for the example in Figure 8, the spiking

response to the two-tone stimulus was larger than the optimal

linear estimate from the responses to the component tones at some

ITDs and smaller than the optimal linear estimate at others. This

is consistent with the mixture of facilitation and suppression that is

seen in the owl’s ICx [28].

This model also leads to the prediction that, in ICx,

subthreshold responses to narrowband sounds are more multipli-

cative than responses to broadband sounds. For example,

according to the model, the subthreshold response of an ICx

neuron to ITD and ILD of a tone should appear more

multiplicative than the response to a sound consisting of two

frequency components, where ITD is varied in one frequency

channel and ILD is varied in the second (Figure 9). In the example

shown in Figure 9, the multiplication index was 20.16 for the one-

tone example and 0.37 for the two-tone example. This result

follows from the model for the ICx subthreshold response, which

specifies that nonlinearity between ITD and ILD only occurs in

frequency channels. This prediction is therefore not dependent on

the particular ITD and ILD tuning parameters of the neuron.

Note that under a purely multiplicative model of frequency

integration, the response to either of these conditions would be

described as equally multiplicative.

3.2.3 Implications for representing multiple sound

sources. We hypothesize that non-multiplicative frequency

integration facilitates the representation of multiple, spectrally

distinct sources in the auditory space map. Listening in natural

environments requires the localization of multiple distinct sound

sources. Neurophysiological studies show that spectrally distinct

sound sources create distinct patterns of activity in the auditory

space map [30]. Also, when two sound sources are present, the

response reflects the more intense sound source [14,26]. We

examined the representation of two spectrally distinct sound

sources, located at 620 deg, in the auditory space map using the

static linear and multiplicative models of frequency integration.

By construction, with a linear model of frequency integration,

the population response to two spectrally distinct sound sources

is the sum of the responses to the individual sounds. Therefore,

with the linear model, the space map contains peaks at the

Figure 5. ICcl spiking responses are more multiplicative than
are subthreshold responses. The subthreshold response of a model
ICcl neuron (A) reflects the additive interaction of ITD and ILD specified
in the model form. The spiking threshold (B) limits responses to discrete
regions of ITD and ILD, which produces a spiking response that is well
described by a multiplicative model (C).
doi:10.1371/journal.pone.0008015.g005
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directions of the two sources (Figure 10A). With multiplicative

frequency integration, the response to two sounds that are

separated by 40 deg has two peaks, but the peaks are not

centered precisely at the directions of the individual sound

sources (Figure 10B). Additionally, the trough separating the

two peaks is shallower in the multiplicative model than it is in

the additive model. A more significant difference appears

between the additive and multiplicative models when we

examine the population response as the intensities of the two

sounds are varied. When one sound is more intense than the

other, the additive model produces a response that has a

dominant peak at the direction of the more intense source

(Figure 10C). The response of the multiplicative model, in

contrast, does not change greatly as either sound becomes more

intense (Figure 10D). In the multiplicative model of frequency

integration, contributions of individual frequency channels to

the final product cannot be determined. The response of the

multiplicative model of frequency integration model is thus

inconsistent with the responses of ICx and optic tectum neurons

to concurrent sound sources [14,26].

In our linear model of frequency integration, simultaneous,

spectrally distinct sounds can be represented in the space map in

such a way that the more intense source dominates the response.

This means that information about the individual frequency

components of the sound is not lost in the responses of spatially

selective auditory neurons. This cannot occur with a purely

multiplicative model of frequency convergence, where stimulus

intensity only modulates the overall gain. However, similar results

to the linear model would be obtained with a sum and square

model that includes linear and nonlinear frequency integration

[26]. Another possible way to represent multiple sources in a

multiplicative model is to change the width of the input tuning

curves with changes in intensity. If more intense sounds produce

sharper tuning curves, then the largest peak in the space map

should occur at the direction of the more intense sound. To test

this hypothesis, we measured ITD tuning curves of ICcl neurons in

Figure 6. Reproduction of subthreshold responses to ITD and ILD in ICx. The model assumes that ICx subthreshold responses consist of a
sum across frequency of products of ITD- and ILD-dependent components. (A–E) Example frequency components for an ICx neuron. (F) Comparison
of the relative mean-square-error of the nonlinear-linear model to the relative mean-square-error of the SVD model of responses of 14 ICx neurons.
The error is shown for the static and spiking versions of the nonlinear-linear model. The relative error is the mean-square error divided by the dynamic
range of the neuron’s response. The static (H) and spiking (G) models were able to reproduce the subthreshold responses of ICx neurons to ITD and
ILD (I) [6].
doi:10.1371/journal.pone.0008015.g006
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three owls for different stimulus intensities. The ITD tuning curves

of ICcl neurons did not sharpen greatly with increasing intensity

(Figure 11). The half-width of the ITD tuning curve was on

average 10.2627.7 ms smaller for a stimulus intensity of 50 dB

than for an intensity 30–35 dB (n = 9). In three of nine neurons,

the half-width increased with stimulus intensity.

Discussion

4.1 Processing of Sound Localization Cues in the Owl’s
Midbrain

We described a model for the processing of sound localization

cues in the barn owl’s midbrain. In this model, ITD- and ILD-

dependent signals are combined multiplicatively within frequen-

cy channels, and signals are combined across frequency

channels using a linear-threshold operation. The model is

consistent with neurophyiological studies of both ITD-ILD

coding and the representation of multiple sound sources in the

owl’s midbrain.

The model presented here better captures the ICcl spiking

responses and ICx subthreshold responses to sounds than

previous models. As in previous models [14,24–26], ours

assumes that ITD- and ILD-dependent signals must be

combined over multiple frequencies to explain the neurophys-

iological and behavioral observations. However, the present

model provides an extension of previous models on three counts.

First, our model produces the diversity of spiking responses to

ITD and ILD that are seen in ICcl [7]. This extends previous

models by providing a possible mechanism for the generation of

nonlinear responses to ITD and ILD in ICcl, and by addressing

the issue of how a heterogeneous population of ICcl responses is

processed to produce ICx responses. Second, our model

examines the subthreshold responses of ICx neurons [6,29].

This is the first model to reconcile the observation of

multiplicative subthreshold responses to ITD and ILD [6] with

the presence of linear frequency integration in subthreshold ICx

responses [29]. Third, by including an explicit representation of

the subthreshold and spiking responses of ICcl and ICx neurons,

our model assigns each operation performed on the ITD- and

ILD-dependent input signals to a particular processing stage in

the inferior colliculus.

This model, along with previous ones, leaves several issues

open. First, how are the connections between ICcl and ICx

neurons learned? There are several proposals for the mechanisms

underlying learning in the owl’s auditory system [55–62], but

none has compared model responses to ITD and ILD over

frequency with experimentally measured responses. Second,

what dendritic mechanisms are involved in generating responses

to ITD and ILD in the inferior colliculus? Models of the owl’s

inferior colliculus have employed point neurons that neglect

processing in dendritic trees. Segregation of ICcl inputs on

different branches of the dendritic tree may be important for

generating nonlinear responses within frequency channels, while

maintaining linear frequency integration [63]. Third, how is the

diversity of responses to ITD and ILD seen in ICcl generated

from presynaptic inputs? Models should include representations

of both the level- and time-pathway inputs to ICcl in order to

reproduce this diversity.

4.2 Mechanisms for Multiplicative Responses
We propose that the population of neurons in each frequency

channel of ICcl acts as the layer that performs multiplication of

Figure 7. The accuracy of the multiplicative model decreases for ICx neurons with receptive field away from the center of gaze. (A)
The ITD and ILD spectra at direction (0u,0u) are approximately constant across frequency [15]. A model neuron with additive frequency integration
and best direction (0u,0u) has a response to ITD and ILD that is well described by multiplication (B). (C) The ITD and ILD spectra at directions away
from the center of gaze can vary significantly with frequency. (D) A model neuron with additive frequency integration and best direction (30u,225u)
has a response to ITD and ILD that is not as well described by multiplication as the neuron in (B).
doi:10.1371/journal.pone.0008015.g007
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ITD- and ILD-dependent signals. This model makes simple

biophysical assumptions: subthreshold integration of signals is

linear, and nonlinearity between ITD and ILD is introduced by

the spiking input-output function. Under this model, the

responses to ITD and ILD in ICcl are only approximately

multiplicative, which is consistent with the data [7]. Thus, a

Figure 8. Nonlinear frequency integration in ICx spiking responses. Spiking (A) and subthreshold membrane potential (B) responses to
single tones (F1 and F2) and sums of the individual tones (F1 + F2) in a model ICx neuron. (C,D) Approximation of the response to the sum of tones by
an optimal linear combination of the responses to the individual tones. (E,F) Comparison of the optimal linear estimate with the response. The solid
line is the identity line.
doi:10.1371/journal.pone.0008015.g008
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clean multiplication between signals within frequency channels

emerges in the subthreshold responses of ICx neurons as a

network property. This is an example of a hidden layer (or basis

function) network performing a nonlinear operation on its

inputs [50–52]. ICx responses are produced in the model by a

linear feedforward projection of ICcl responses where frequen-

cy-specific weights lead to clean multiplicative responses within

frequency channels. One advantage of this network is that it can

learn sets of frequency-specific weights from ICcl to ICx. This is

an important constraint that the network must fulfill, given the

experimental evidence for the owl learning frequency-depen-

dent ITD selectivity in ICx [49].

There are several previously proposed models for the

generation of multiplicative neural responses. These models

show that the mechanism that produces multiplicative responses

may be the property of a single cell [43,44,64], a recurrent

network [65], or a feedforward network [52,66,67]. Our model

employs both cellular and network mechanisms to produce

multiplicative responses. At the cellular level, our model is

consistent with previous studies that show that the spiking

nonlinearity can produce multiplicative responses [43,44,64].

Mel [64] showed that adding and rectifying two peaked functions

produces a response that is very similar to the product of the two

peaked functions. Murphy and Miller [43] found that multipli-

cative responses could be produced by neurons that sum their

inputs if the spiking nonlinearity follows a power-law. Our model

of ICcl is consistent with these cellular models; the input to

model ICcl neurons is a sum of peaked functions of ITD and

ILD, and spiking responses are a threshold-sigmoid function of

the input. The threshold-sigmoid function matches a power-law

function over a large portion of its dynamic range. This

mechanism is able to produce responses that are well described

by multiplication. By varying where the spiking threshold falls on

the dynamic range of the subthreshold response, the model also

produced responses that were not very multiplicative, as is seen

in the data [7]. Previous studies have also shown that products of

variables can be read out from the responses of a population of

neurons with a diversity of nonlinear responses [52,67]; this is

the hidden layer model for performing multiplication. In our

model, the population of neurons in each frequency channel of

ICcl acts as the hidden layer for performing multiplication of

ITD- and ILD-dependent signals. In summary, we propose that

the owl’s inferior colliculus employs a combination of plausible

cellular and network mechanisms to produce multiplicative

responses.

A study by Poirazi et al. [68] raises the question of why the owl’s

auditory system employs ICcl as a separate neural hidden layer for

performing multiplication when dendritic mechanisms could

alternatively be used. Poirazi et al. [68] showed that the dendritic

tree of a single neuron can act as a two-layer neural network.

Under this model, it should be possible for ICx neurons to use

local dendritic processing to introduce a nonlinearity between

ITD- and ILD-dependent inputs within frequency channels. One

reason that ICcl is used, rather than local dendritic nonlinearities,

may be the complexity that dendritic hidden layers would add to

learning rules. In the dendritic hidden layer, time- and level-

pathway inputs from the same frequency channel must synapse

not only on the appropriate neuron, but on a particular segment of

the dendritic tree. A second reason for using a neural hidden layer

is that the intermediate results, the products within frequency

channels, may need to be used by both the midbrain and forebrain

[69,70]. If a dendritic hidden layer is used, then the intermediate

results cannot be shared between neurons.

4.3 Model Predictions
Based on the model, we make three specific predictions

about responses of neurons in the midbrain of the owl to ITD

and ILD. First, in ICcl, spiking responses to ITD and ILD will

be more multiplicative than subthreshold responses. This

prediction is based on our hypothesis that multiplicative

responses emerge in ICcl neurons as a result of the spiking

nonlinearity. In our model, subthreshold integration of ITD

and ILD is purely linear, but this may not be satisfied in the

owl because of synaptic nonlinearities that the model does not

account for. Nevertheless, we predict that spiking responses will

be more multiplicative than will subthreshold responses. This

prediction can be tested by recording intracellularly the

responses of ICcl neurons to ITD and ILD. Second, in ICx,

neurons with preferred directions away from the center of gaze

will have less multiplicative subthreshold responses to ITD and

ILD than will neurons with preferred directions near the center

of gaze. This occurs in our model because addition and

multiplication across frequency are clearly distinguished for

neurons with highly frequency-dependent preferred ITD and

Figure 9. Model ICx responses are more multiplicative for
tones than for two tones. (A) Subthreshold ITD-ILD response
matrix for a model ICx neuron obtained using a tonal stimulus. Since
the model assumes that the response at each frequency is a product
of an ITD-dependent function and an ILD-dependent function, the
tonal response matrix is accurately described by multiplication. (B) In
contrast, the response of the same model neuron obtained when ITD
varies in one frequency and ILD varies in a second frequency is not
accurately described by multiplication because the model assumes
that frequency integration is linear.
doi:10.1371/journal.pone.0008015.g009
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ILD spectra. This prediction can be tested by recording

intracellularly the responses of ICx neurons with preferred

directions away from the center of gaze to ITD and ILD.

Third, we predict that frequency integration is not multiplica-

tive in the spiking responses of neurons in ICx and the optic

tectum; the response to two tones should appear as a linear-

threshold combination of the responses to the individual tones

[29]. Nonlinearity is observed in the frequency integration

responses of ICx and optic tectum neurons [14,27,28], but we

propose that this is due to a threshold-nonlinearity, not to

multiplication. While a threshold operation forms a close

approximation to multiplication, there is an important distinc-

tion between the models. Under the linear-threshold model, the

influence of a single frequency component on the neural

response varies with the intensity, while under the multiplica-

tive model it does not. The presence of a linear-threshold

nonlinearity is supported by current data showing that the more

intense of two simultaneous spectrally distinct sources will have

the greater influence on the response of these neurons [14,26]

and that frequency integration is linear in subthreshold

responses of ICx neurons [29]. This prediction can be further

tested by comparing ITD-ILD responses matrices obtained for

narrowband sounds and for sounds consisting of two frequency

components where ITD is varied for one frequency and ILD

varied for the other.

Supporting Information

Figure S1 (A) Linear output of the gain-modulated gammatone

filter (measured as root-mean-square, RMS), as a function of

average binaural level of a broadband noise. (B) Cross-correlation

vector as a function of average binaural level. (C) Tolerance to

ILD of the cross-correlation vector.

Found at: doi:10.1371/journal.pone.0008015.s001 (0.17 MB

PDF)
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