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Abstract

Background: Comparing patterns of divergence among separate lineages or groups has posed an especially difficult
challenge for biologists. Recently a new, conceptually simple methodology called the ‘‘ordered-axis plot’’ approach was
introduced for the purpose of comparing patterns of diversity in a common morphospace. This technique involves a
combination of principal components analysis (PCA) and linear regression. Given the common use of these statistics the
potential for the widespread use of the ordered axis approach is high. However, there are a number of drawbacks to this
approach, most notably that lineages with the greatest amount of variance will largely bias interpretations from analyses
involving a common morphospace. Therefore, without meeting a set of a priori requirements regarding data structure the
ordered-axis plot approach will likely produce misleading results.

Methodology/Principal Findings: Morphological data sets from cichlid fishes endemic to Lakes Tanganyika, Malawi, and
Victoria were used to statistically demonstrate how separate groups can have differing contributions to a common
morphospace produced by a PCA. Through a matrix superimposition of eigenvectors (scale-free trajectories of variation
identified by PCA) we show that some groups contribute more to the trajectories of variation identified in a common
morphospace. Furthermore, through a set of randomization tests we show that a common morphospace model partitions
variation differently than group-specific models. Finally, we demonstrate how these limitations may influence an ordered-
axis plot approach by performing a comparison on data sets with known alterations in covariance structure. Using these
results we provide a set of criteria that must be met before a common morphospace can be reliably used.

Conclusions/Significance: Our results suggest that a common morphospace produced by PCA would not be useful for
producing biologically meaningful results unless a restrictive set of criteria are met. We therefore suggest biologists be
aware of the limitations of the ordered-axis plot approach before employing it on their own data, and possibly consider
other, less restrictive methods for addressing the same question.
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Introduction

Determining the relative contributions of natural selection,

historical contingency, and chance events in evolutionary

radiations has been a longstanding challenge in biology, especially

from a quantitative perspective. In a recent article from PLoS One

[1], Young et al. introduce a modified methodology of principal

components analysis (PCA) combined with linear regression called

‘ordered-axis plots’ to test whether radiations of African rift lake

cichlids display differences in diversity and patterns of conver-

gence, or non-convergence centered around a common mean.

Using this method a single PCA is first carried out on equally sized

groups simultaneously in order to create a common trait space,

secondly PC scores on each axis are ordered from highest to lowest

for each group, and third ordered axes are plotted and tested for

differences in slope (indicating differences in variance) using linear

regression. The authors make a compelling case from their analysis

that African cichlids have evolved along similar axes, and that

diversity is age-ordered with lower diversity existing in the

youngest radiation from Lake Victoria. Although this study may

appear methodologically appealing given the ease with which PCA

and linear regression can be combined to produce the ‘ordered-

axis plot’ approach, we feel it is important to highlight the major

limitations this method introduces that can lead to inaccurate

conclusions about patterns of evolutionary diversification.

PCA is one of the more straightforward multivariate methods

and is primarily used to reduce dimensionality in data sets by

‘concentrating’ variation into fewer uncorrelated variables. This

process relies on identifying eigenvectors, the scale-free trajectories

that describe the maximum covariance or correlations among

variables. For evolutionary studies eigenvectors may identify

primary trajectories of divergence. PCA is most efficient at

reducing dimensionality when the original variables are highly

correlated, allowing the majority of variation to be explained by

PLoS ONE | www.plosone.org 1 November 2009 | Volume 4 | Issue 11 | e7957



just a few vectors [2,3]. This means that variables that possess

higher degrees of both variance and associated covariance will

have a greater influence over how PC axes (PCs) are determined.

In other words, in a pooled analysis the major axis of divergence in

a more variable group may ‘swamp’ the vectors present in other

less variable groups, making it appear as though all groups are

diverging the same way (Figure 1.). This influence is further

enhanced by the requirement of orthogonality (lack of correlation)

among PC axes. PC1, for example, accounts for the greatest

degree of variation, and will influence the direction of all

subsequent PCs because they must be orthogonal to this first axis

[2,3]. To alleviate this problem a PCA can be performed on a

scale-free correlation matrix rather than a covariance matrix, but

outliers could still have a strong influence in defining the direction

of the first PC.

In practice this means that a PCA applied to several groups

simultaneously, as occurs in the ‘ordered-axis plots approach’, may

not accurately account for variation in groups displaying relatively

lower magnitudes of covariance among traits (Figure 1). In turn,

PCs created from this method may not accurately describe the

major trajectories of evolution specific to less variable groups.

Although having equal sample sizes may alleviate this issue

somewhat, as is the case in Young et al. [1], variance and

covariance are not a function of sample size.

Methods

Here we demonstrate the potentially confounding effects of

these problems using our own geometric morphometric data set of

cichlid craniofacial shape from each of the three African rift lake

assemblages (Figure 2.). To begin we performed a common

translation, rotation, and scaling of size on our complete set of

landmark coordinates [3]. Partial warp scores (shape variables),

including uniform scores, were obtained from these aligned

coordinates and were then used in a PCA of each lake assemblage

separately, and a PCA on all lakes combined. The combined PCA

represented a common morphospace for all cichlids similar to

what was calculated in Young et al. [1].

Results and Discussion

We predicted that primary vectors of cichlid divergence

identified by a PCA within lakes would differ from those identified

by a PCA run on the combined dataset from all lakes (Figure 2.).

We therefore tested for differences in the variance of eigenvalues

from different PCA models. Eigenvalues are a scalar value used to

represent the amount of variation each eigenvector accounts for in

a given PCA [2,3]. If covariation among traits is high, the first few

PCs present large eigenvalues relative to later ones, and the

variance of eigenvalues is high. If covariation is low, PCs have

similar eigenvalues and variance among them is low [4,5]. We

used a procedure that bootstrapped the differences in eigenvalue

variance 1000 times by sampling with replacement from rows of

our raw data [6], and found that Tanganyika displayed

significantly higher variance in eigenvalues compared to the

common morphospace (s2 = 0.011 versus 0.008 respectively,

Figure 1. In a common morphospace, major axes of morpho-
logical diversity may still differ among groups of interest.
Ordered axis plots may not be able to discriminate between patterns of
morphological diversity along axes of a multidimensional morphospace
because of its reliance upon principal components analysis and the
inherent biases of this method. Here the aspects of diversity parallel to
PC1 are highlighted with a red arrow for each group of interest. Note
that the length of most variable group (pink) is parallel to PC1 because
it has the greatest influence over the determination of PC1 in this
common morphospace. Other less variable groups (blue, green) have
less influence over the trajectory of PC1, but still possess variation that
lies parallel to PC1. However the greatest axis of variation within these
less variable groups may lie along a vector that differs from PC1.
Without knowing a priori whether axes of variation among distinct
groups are similar, it is impossible to know the degree to which an
ordered axis plots approach will yield misleading results.
doi:10.1371/journal.pone.0007957.g001

Figure 2. Anatomical landmarks examined: 1 = Tip of the anterior-
most tooth on the premaxilla; 2 = Tip of the anterior-most tooth on the
dentary; 3 = Maxillary-palatine joint (upper rotation point of the maxilla);
4 = Maxillary-articular joint (lower point of rotation of the maxilla);
5 = Articular-quadrate joint (lower jaw joint); 6 = Insertion of the
interopercular ligament on the articular (point at which moth opening
forces are applied); 7 = Posterio-ventral corner of the preopercular;
8 = Most posterio-ventral point of the eye socket; 9 = The most anterio-
ventral point of the eye socket; 10 = Joint between the nasal bone and
the neurocranium; 11 = Posterior tip of the ascending process of the
premaxilla; 12 = Dorsal-most tip of the supraoccipital crest on the
neurocranium; 13 = Most dorsal point on the origin of the A1 division of
the adductor mandibulae jaw closing muscle on the preopercular;
14 = Most dorsal point on the origin of the A12 division of the adductor
mandibulae jaw closing muscle on the preopercular; 15 = Insertion of
the A1 division of the adductor mandibulae on the maxilla; 16 = Inser-
tion of the A2 division of the adductor mandibulae on the articular
process.
doi:10.1371/journal.pone.0007957.g002
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p = 0.004). This suggested that the common morphospace model

did not accurately reflect the patterns of trait covariation found in

Lake Tanganyika (Figure 3A). Without this investigation we would

only be able to assume that variation in cichlid traits was spread

similarly across PCs in each of the three lakes. There were no

significant differences in the spread of eigenvalue variance in

comparisons of both Malawi and Victoria to the common

morphospace (Figure 3B,C).

In addition to testing for incongruent eigenvalue variances, we

were interested in determining whether the vectors of divergence

identified in common morphospace accurately reflected lake

specific directions of cichlid divergence. To determine whether

the primary directions of divergence differed between the common

morphospace and each lake we extracted the first 5 eigenvectors

from each of our PCA models for use in Procrustes matrix

superimpositions [7,8]. Eigenvectors are orthogonal and summa-

rize information about data covariation independent of scale, and

so were useful for comparisons of vector direction among the PCA

models describing cichlid evolution. Procrustes matrix superim-

positions are a method of matrix correlation that allows for tests of

association using raw untransformed data [7]. The concordance of

two eigenvector matrices (i.e. lake specific vectors versus the

common morphospace vectors) can then be determined and tested

based on a goodness-of-fit measure. The sum of the squared

residuals between eigenvector matrices provides a goodness-of-fit

statistic (m12) that ranges between 0 and 1, and identifies the

optimal superimposition that can be used as a metric of

concordance. Small values of m12 correspond to small residual

variation and, hence, a high concordance of matrices.

Our tests of association using 1000 bootstrapped replicates

revealed that the eigenvectors of the Victoria PCA model were not

significantly associated with the common morphospace PCA

(p = 0.072, m12 = 0.796). While eigenvectors in Tanganyika and

Malawi were significantly associated with the common PCA

(p,0.01, m12 = 0.6371; and p,0.01, m12 = 0.5476, respectively),

high m12 values suggested that the concordance was not strong.

Taken together these results suggested that Malawi and Tanga-

nyika had a greater influence over the calculation of the common

morphospace than Victoria, and that the common morphospace

also had vectors that largely did not align with the vectors

identified independently in each lake. This problem was

exacerbated when we extended our analysis to include scale with

our eigenvectors by investigating potential associations between

the first 5 PCs of the common morphospace, and the first 5 lake

specific PCs. Both Victoria and Tanganyika had no association

between PC axes (p = 1.0, m12 = 0.991; p = 0.081, m12 = 0.874

respectively), while the m12 value increased in Malawi (p,0.01,

m12 = 0.624). Therefore, in this analysis our common morpho-

space did not correspond well to the major axes of variation

identified in the different lake assemblages.

To explicitly demonstrate how these biases could affect an

ordered-axis plots analysis we tested its performance on data with

known alterations in covariance structure. We first removed the

effect of PC1 from the original raw landmark data used to create

the above common cichlid morphospace using a multiple

regression in the program Standard 6 [9]. Thus, variation

identified by PC1, which accounted for more than 23.7% of the

variance in our original PCA, was now largely absent from the

data set. We next used both this PC1 standardized data set and the

original data as groups for comparison in an ordered axis plot

approach [1]. This would be akin to comparing biological groups

that differ in both their levels of variation, and their primary

direction of variation, which should bias any analysis in a common

trait space. However, the ordered-axis plot approach revealed a

regression slope of 0.98 on the new PC1, and an intercept of 0.02

(slope of 1 indicates equal levels of variance between groups,

intercept of 0 indicates a common trajectory of divergence),

Figure 3. Scree plots showing the spread of craniofacial shape
variation across the eigenvalues for the common morphspace
(black bars repeated in each plot) and each of the African rift
lake cichlid assemblages (grey bars). Tanganyika is represented in
(A), Malawi in (B) and Victoria in (C).
doi:10.1371/journal.pone.0007957.g003

Limitations of PCA

PLoS ONE | www.plosone.org 3 November 2009 | Volume 4 | Issue 11 | e7957



indicating that the major axes of variation, and levels of variation

between these data sets were extremely similar. This result is

striking because we knowingly removed the major axis of variation

from one of the data sets. Any interpretation of biological

processes such as historical contingency or selection derived from

this type of analysis would therefore be highly questionable.

Although these results highlight the potential problems of

interpreting data from a common PCA on multiple groups we do

not feel they have been especially detrimental to the results of

Young et al. [1]. In fact their main conclusion of a common axis of

divergence is supported by our own data (analysis not shown).

However, in their analysis of lake-specific morphospace, where the

angles of PCs were compared between lakes, differences did exist

between Tanganyika and Victoria for total body shape on PC1

(i.e., Mmax), which makes any interpretation from the ordered-axis

plots approach (i.e., combined morphospace) questionable for total

body shape in these two assemblages (see Figure 3. in Young et al.,

[1]). Furthermore, Young et al. [1] provide no comparison of the

common PCA model to the lake specific models, making it difficult

to know if their common morphospace accurately reflects the

major axes of divergence in each lake. Lastly, the calculations of

slope and intercept found in table 1 of Young et al. [1] would

benefit greatly from the generation of confidence intervals from a

resampling procedure to determine whether their values differ

from random. In their present form the values used to generate

rankings in table 1 do not indicate any statistical significance that

allows us to reliably determine whether evolutionary trajectories,

or variation differs among cichlid assemblages.

The ordered-axis plot method is conceptually appealing and

methodologically straight forward, but we feel that it will only be

of limited use to biologists interested in understanding the

repeatability of evolutionary radiations if their data meet the

following criteria:

1. Sample sizes among groups are equal [1].

2. The direction of evolution (covariance) is the same in all

groups.

It is the this second criterion that is especially important for

producing accurate results from an ordered-axis plot approach,

because, as we have shown, particular groups can bias a common

morphospace (Figure 1.). There are several methods for testing

whether the direction of evolution is statistically similar across

groups, including the methods we have used here, common

principal components analysis [10,11], comparisons of PCA

subspace [1] or other methods of trajectory comparison [12].

Our findings suggest the application of ordered-axis plots is only

useful for confirming, not discovering, common trajectories of

evolution. It is a method that is probably more useful for testing

differences in the mean and variances of groups along specific,

constrained axes of morphospace. It is worth pointing out

however, that several traditional tests like ANOVA and F-tests

for homogeneity of variance already exist, and are well suited to

this task, as shown by their use in Young et al. [1]. In addition,

while it may be of interest to look at divergence on specific axes in

some studies, morphometric methods have existed for several years

that allow for tests of differences in means and variance in a wholly

unconstrained shape space [3,13,14]. Given the myriad of time-

tested methods that are available for examining patterns of

divergence, and the limitations of the ordered-axis plot approach,

we urge biologists to be thoughtful when considering this

technique.
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