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Abstract

The majority of studies employing short tandem repeats (STRs) require investigation of several of these genetic markers. As
such, we demonstrate the feasibility of the trinucleotide threading (TnT) approach for scalable analysis of STRs. The TnT
method represents a parallel amplification alternative that addresses the obstacles associated with multiplex PCR. In this
study, analysis of the STR fragments was performed with capillary gel electrophoresis; however, it should be possible to
combine our approach with the massive 454 sequencing platform to considerably increase the number of targeted STRs.
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Introduction

Microsatellites, or short tandem repeats (STRs), are abundant

1–6 bp nucleotide motifs repeated in a tandem fashion in genomes

from all classes of organisms, ranging from prokaryotes to

eukaryotes [1,2]. Microsatellites are predominantly present within

non-coding DNA regions, whereby they affect, for instance,

chromatin organization, DNA replication and recombination, as

well as gene activity [3]. However, an increased number of repeats

has been found in protein-coding portions of the genome, which

could influence protein function and thus the phenotype [4].

Characteristics such as high variability and abundance have

earned these repeated units widespread usage as genetic markers

in mapping and population studies [5]. Additionally, microsatel-

lites have been implicated in numerous diseases. For instance,

some cancer types show signs of STR instability [6] and unstable

trinucleotide repeats have been linked to neurodegenerative

disorders [7].

Different individuals exhibit microsatellite variations, manifest-

ed as repeat number differences, hence lending these markers

particularly suitable for establishment of human identity within the

fields of forensics or paternity testing. For instance, the FBI

employs a set of STRs as the core in the Combined DNA Index

System (CODIS) to obtain unambiguous identification [8].

In the majority of such investigations, several STRs need to be

analyzed. For this reason, parallelized STR assays are necessary.

Today, the most widely employed method involves PCR

amplification and fragment analysis by gel electrophoresis. It is,

however, difficult to increase the multiplexity of PCR as this results

in a reaction outcome dominated by unspecific amplicons.

Trinucleotide threading (TnT) represents a scalable alternative

to conventional PCR amplification circumventing the above-

mentioned problem [9]. TnT has successfully been employed to

simultaneously amplify 147 DNA regions without generation of

spurious products, yielding material suitable for genotyping [10]

and expression profiling [11]. In this proof-of-concept study, three

markers from the FBI CODIS set were assayed with TnT to

evaluate this approach for parallel amplification of STRs.

Results and Discussion

In this study, the usefulness of the trinucleotide threading (TnT)

multiplex amplification strategy for parallel STR analysis was

investigated using three markers. As TnT has been shown to

specifically amplify desired DNA regions, it could address the

inherent limitations of multiplex PCR and, accordingly, enable

larger STR sets to be amplified in a parallel fashion. The three

markers – TPOX, CSF1PO and D18S51 – were chosen among

the ones of the FBI CODIS set and represent tetra-repeats

assembled of A, G and T nucleotides. Due to the extensive use of

this collection, these STRs are well-defined and scrupulously

characterized, proving ideal substrates for this proof-of-concept

study.

In the TnT reactions, DNA threads corresponding to the

microsatellite regions are created by a three-step process: 1)

annealing of a pair of primers designed to flank the repeat regions

– an upstream extension primer and a downstream so called

thread-joining primer; 2) closing of the gap by employing the

trinucleotide set that corresponds to the repeated units; and, 3)

ligation of the two fragments (Figure 1). As all complete threads

share common universal amplification handles, they can be

amplified in a concerted fashion with a single primer pair, one

being 6FAM labeled hence allowing for detection after fragment

separation using capillary gel electrophoresis. Usage of only one

dye implicated some restrictions regarding STR choice to avoid

length overlap in the readout step. Naturally, utilization of

multiple dyes is an option if overlapping lengths are unavoidable

and can also increase the multiplicity of the reaction. However,

this strategy necessitates a different generic handle for each extra

dye.
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The fragment analysis results for the multiplex reactions

displayed three distinct peak groups, clearly separated with respect

to length, each corresponding to one of the STRs (Figure 2).

Analogous peaks were evident in the simplex reactions, allowing

for a peak-to-STR correlation (Figure 2). Additionally, the

fragment lengths concurred with most frequently encountered

repeat numbers in the literature. The signals of D18S51 are

weaker than those of the other two STRs, an expected observation

given that these fragments are the longest and PCR exhibits a bias

towards amplification of shorter fragments. Consequently, trinu-

cleotide threading represents a viable alternative for parallel STR

amplification, producing material well suited for gel identification.

The trinucleotide threading assay for analysis of STRs offers

two levels of distinction: formation of a DNA thread requires gap

bridging with a restricted nucleotide set followed by ligation. This

high discriminatory power keeps formation of unspecific products

at a minimum, therefore rendering the approach highly specific.

In particular, misannealing of the TnT primers predominantly

results in extension regions composed of all four nucleotides, hence

precluding the action of the polymerase and the ligase. Moreover,

the extremely low tendency for spurious DNA thread formation

permits cycling of the threading reaction resulting in an initial

amplification and an increased specificity. Furthermore, utilization

of biotin and magnetic beads, as well as the widely employed 96-

well plate format greatly facilitate automation of the procedure

minimizing the hands-on time required.

The TnT approach is also compatible with numerous detection

systems. Capillary gel electrophoresis was employed in this proof-

of-concept study; however, this detection platform is difficult to

parallelize. As such, array-based readout with the branch

migration assay may prove an alternative [12]. In addition,

introduction of 454’s massive parallel Pyrosequencing, with an

average read-length of 400 bases [13], opens up entirely new

possibilities for highly parallel TnT amplification and analysis of

STRs. Since a 454 plate can be divided in up to 16 lanes, 50–100

or more STRs can be parallel amplified by the TnT method, and

Figure 1. Schematic representation of multiplex amplification of microsatellite regions with trinucleotide threading. Genomic DNA
acts as template in the trinucleotide threading reaction, which entails DNA thread formation by a three-step process: 1) annealing of the threading
primers; 2) polymerase-mediated closing of the gap between the primers, corresponding to the STR section, with a trinucleotide set; and, 3) ligation
of the two thread constituents. A biotin tag on the extension primers allows immobilization of the DNA threads onto streptavidin-coated magnetic
beads and thus an efficient clean-up. The DNA threading primers carry universal amplification handles, hence enabling parallel PCR amplification.
Finally, product lengths are obtained with fragment analysis using capillary gel electrophoresis.
doi:10.1371/journal.pone.0007823.g001
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Figure 2. Fragment analysis results. (A) Electropherograms obtained from gel electrophoresis of the multiplex amplification reaction. Data from
four individuals are depicted. The relative fluorescence units (RFU) are indicated on the y-axis. The time interval for each of the electropherograms is
approximately between 30 minutes (corresponding to fragments length slightly below 130 bp) and 43 minutes (equaling fragment lengths of about
215 bp). Each of the three investigated STRs produces a discrete peak cluster. The differences in the individuals’ genotypes for this three-marker set
are apparent. (B) Electropherograms derived from the simplex reactions of individual 4, displaying a clear correlation with the STR peak groups from
the multiplex assay. RFU are shown on the y-axis. In this example, the TPOX locus is homozygous, whereas the two other loci – CSF1PO and D18S51 –
are heterozygous, generating one and two DNA threads, respectively, in the TnT reaction.
doi:10.1371/journal.pone.0007823.g002
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by using multiplex identifiers, several individuals may be analyzed

in one lane, thereby reducing the cost. In addition, use of clonal

emPCR in the 454 system greatly reduces the issue of length bias

in multiplex amplification of STRs. As was shown in this 3-plex

amplification, the length variation between threads of different

STRs allows the shorter threads to be amplified at the expense of

the longer ones in the PCR step. However, the longest threads,

corresponding to the D18S51 marker, were still easily detectable

with capillary gel electrophoresis. Nevertheless, for larger-scale

studies this bias might be aggravated. One strategy to combat this

problem could be to divide the desired STRs into pools according

to length. This would require running a few parallel TnT

reactions, but the potential multiplexity level would most likely

be superior to that of conventional PCR. For example, one could

envision partitioning a 100 marker set into three groups. These

homogenous groups would provide for a more even amplification.

Moreover, as the reactions would entail the same reagents, except

the TnT primers, a master mix could be prepared thus lessening

the added workload. An alternative approach would be to keep all

threads in the same reaction tube, but employ different

amplification handles depending on thread length. As such, the

universal primer amounts could be adjusted to enable a more

equal amplification in the PCR step. One drawback would

naturally be the necessity to use several generic sequences. Finally,

as with emulsion PCR in the 454 scenario, various compartmen-

talized techniques could be utilized, spatially separating individual

thread amplification reactions.

Meticulous STR selection is a crucial step to enable successful

TnT amplification. The intrinsic feature of requiring the presence

of a trinucleotide gap for thread formation precludes analysis of

markers with repeat units including all four nucleotides. However,

given the plentitude of STRs in the human genome, finding a

suitable set for a particular study should, in most cases, not pose

any serious problems. Microsatellites can be chosen among

reported repeats, identified by in silico sequence mining [14,15],

but also discovered through sequencing of STR enriched regions

[16]. Accordingly, the selected markers have to share regular

repeat motifs across the targeted populations. Another predica-

ment with the TnT approach pertains to unexpected presence of

the fourth type of nucleotide in the repeat region, most frequently

due to a mutation, since this prevents the creation of a complete

thread. These partial entities will not be amplified in the ensuing

universal PCR and, consequently, will not be detected. However,

examining the pattern of successful interrogations for a particular

STR seeking for anomalies could easily identify such instances. For

instance, if a marker produces high signals for all individuals but a

few, the latter could harbor the fourth type of nucleotide in the

extension region. Nonetheless, with the increased number of STRs

that can be analyzed in parallel, failure of one or a small number

still generates plentiful genotyping data.

The input material amount requirements represent a significant

assay parameter, particularly with regard to samples in limited

supply. This scenario is often encountered in crime scene

investigations within the forensic field. For other applications, such

as paternity establishment or relatedness studies, copious amounts of

material can be obtained. In this proof-of-concept study, approx-

imately 10 to 30 ng of genomic DNA (gDNA), corresponding to

roughly 1500 to 4500 cells, generated well-defined and easily

discernible peaks in the gel electrophoresis readout. However, in a

previous study, a TnT rendition for SNP genotyping was shown to

produce accurate genotypes starting from 1 ng of gDNA [9].

Accordingly, since both these assays entail samples of equal

complexity in the form of the entire genome, the amount of starting

material for STR analysis could, most likely, be reduced.

The field of forensic genetics has settled on a small set of STR

loci. The pervasive usage of this marker set has led to the

development of functional assays based on multiplex PCR and

multi-color capillary gel electrophoresis. Accordingly, the TnT

approach may not be the method of choice for forensic purposes.

However, several other STR studies could benefit from the

potentially increased multiplexity of this method.

In summary, trinucleotide threading represents a specific,

reliable and convenient multiplex amplification strategy for

microsatellites attuned to the most widely employed detection

platforms. Hence, applications requiring analysis of numerous

STRs could greatly benefit from this new technique.

Materials and Methods

STR Selection and TnT Primers
Three markers from the FBI CODIS set – TPOX, CSF1PO

and D18S51 – were chosen. These STRs are tetra-repeats with a

motif composed of the AGT trinucleotide set (Table 1). For each

marker two TnT probes – an extension primer and a thread-

joining primer – were designed to flank the STR region (Table 2).

Furthermore, care was taken to avoid the presence of the fourth

nucleotide (C) within the section enclosed by the probes.

Accordingly, this created a gap that could be filled using the

ACT trinucleotide set.

To allow parallel amplification of complete DNA threads,

generic amplification handles were appended to the 59-ends of the

extension primers and to the 39-ends of the thread-joining primers.

Corresponding amplification primers were designed, the reverse

one 6FAM-labeled for detection purposes. As only a single dye was

employed, care was taken during the STR selection and primer

design to avoid length overlap in fragment analysis. In addition,

only the most frequent STR variants were taken into consideration

(Table 1).

The 59-ends of the extension primers carried biotin to facilitate

clean up, whereas phosphate groups were added to the 59-ends of

Table 1. Selected microsatellites.

Locus Repeat structure Retrieved sequence/Number of repeats Chromosomal location
Allele
range

Most common allele
variants/Frequency

TPOX GAAT M68651/11 2p25.3 thyroid peroxidase, 10th intron 4–16 8–12/0.994

CSF1PO TAGA U63963 (redirected from X14720)/12 5q33.1 c-fms proto-oncogene, 6th intron 5–16 9–14/0.991

D18S51 AGAA X91254/21 18q21.33 7–39.2 12–21/0.980

GenBank accession codes for the retrieved sequences are shown. The repeat motif is shown in ISFG (International Society for Forensic Genetics) format. Information
about repeat structure, chromosomal location and allele range is derived from [8]. The most commonly encountered variants and the associated frequency calculations
are based on Swedish allele frequencies [17].
doi:10.1371/journal.pone.0007823.t001
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thread-joining primers to enable the TnT reaction. All primers

were ordered from MWG-Biotech AG (Ebersberg, Germany).

Trinucleotide Threading and Parallel PCR Amplification
The trinucleotide threading reaction and the subsequent parallel

PCR amplification have been described previously [9,11]. In this

study genomic DNA from nine different individuals was used as

template in separate multiplex trinucleotide threading reactions.

Additionally, simplex TnT reactions were performed for four of the

individuals to confirm the results of the multiplex amplification.

Briefly, between 12.5 and 31.5 ng of genomic DNA was combined

with 0.01 mM of each extension primer, 0.05 mM of each thread-

joining primer, 2 U of Ampligase (Epicentre Biotechnologies,

Madison, WI, USA), 0.5 U of Stoffel Fragment of AmpliTaq

DNA Polymerase (Applied Biosystems, Foster City, CA, USA) and

0.2 mM of dATP, dCTP and dTTP in 1x Ampligase buffer

(20 mM Tris-HCl pH 8.3, 25 mM KCl, 10 mM MgCl2, 0.5 mM

NAD and 0.01% Triton-X 100; Epicentre Biotechnologies) in a

total volume of 10 ml. The reaction was cycled according to the

following profile: 1) precycling: 20uC for 5 min and 95uC for 5 min;

and, 2) 99 cycles of 95uC for 15 s and 65uC for 12 min allowing for

denaturation, primer annealing, extension and ligation. The created

DNA threads, each carrying a 59-biotin, were captured with

streptavidin-coated M270 Dynabeads (Invitrogen, Carlsbad, CA,

USA) and all remaining constituents of the TnT reaction were

removed by consecutive washes with 1x TE (10 mM Tris-HCl

pH 7.5, 1 mM EDTA), water and 0.1 M NaOH. Lastly, the

immobilized threads were released at 80uC for 1 s in 20 ml water.

The clean up protocol was fully automated using a Magnatrix 1200

biomagnetic workstation (NorDiag AB, Hägersten, Sweden).

The purified products were parallel-amplified with a single

primer pair, taking advantage of the universal amplification

handles present at the ends of all DNA threads. Specifically, the

entire volume of the cleaned-up DNA threads (20 ml) was mixed

with 0.3 mM of forward primer, 0.2 mM 6FAM-labeled reverse

primer, 1 U Platinum Taq DNA Polymerase (Invitrogen), 0.2 mM

of all four dNTPs and 5 mM MgCl2 in 50 ml 1x Platinum buffer

(20 mM Tris-HCl pH 8.4 and 50 mM KCl; Invitrogen). The

following temperature protocol was used: 1) polymerase activation:

95uC for 5 min; 2) 35 amplification cycles of 95uC for 30 s, 65uC
for 30 s and 72uC for 30 s; and, 3) elongation: 72uC for 2 min.

Capillary Gel Electrophoresis
The lengths of the fragments were analyzed by capillary gel

electrophoresis in an ABI Prism 3700 DNA Analyzer (Applied

Biosystems) with the ROX500 ladder (Applied Biosystems) and the

POP-6 polymer (Applied Biosystems) according to the manufac-

turer’s instructions. 1.5 ml of the 50 ml PCR reactions were used

for the fragment analysis. The injection time was 50 seconds. The

results were visualized using the GeneScan 3.7 software (Applied

Biosystems).
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Table 2. Sequences of the trinucleotide threading and parallel amplification primers.

Locus Extension primer Thread-joining primer

TPOX 59-Bio-ggatgatggcggaagttgtcatctcTCCTTGTCAGCGTTTATTTGCCCA-39 59-Pho-GTGAGGGTTCCCTAAGTGCCTGTgtcgtgtattccggacagtacgtgg-39

CSF1PO 59-Bio-ggatgatggcggaagttgtcatctcTCCTGTGTCAGACCCTGTTCTAAG-39 59-Pho-GAAGGCAGTTACTGTTAATATCTTgtcgtgtattccggacagtacgtgg-39

D18S51 59-Bio-ggatgatggcggaagttgtcatctcGAGATGTCTTACAATAACAGTTGC-39 59-Pho-GAGACAGGTCTCAATTTGTCACTCgtcgtgtattccggacagtacgtgg-39

Forward amplification primer: 59ggatgatggcggaagttgtcatctc-39

Reverse amplification primer: 59-6FAM-ccacgtactgtccggaatacacgac-39

All sequences are written in the 59 to 39 direction. The various modifications are indicated. Lowercase letters relate to the universal amplification handles, whereas
uppercase ones denote primer portions specific to STR loci.
doi:10.1371/journal.pone.0007823.t002
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