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Effects of 15-Deoxy-A'*"*-Prostaglandin J2 (15d-PGJ2)
and Rosiglitazone on Human V32" T Cells
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Abstract

Background: Thiazolidinediones (TZD) class of drugs, and 15-deoxy-D12,14-prostaglandin J2 (15d-PGJ2) are immune
regulators predicted to modulate human autoimmune disease. Their effects on yd T cells, which are involved in animal
model and human and animal autoimmune diseases, are unknown.

Methodology/Principal Findings: We characterized the activity of rosiglitazone (from the TZD class of drugs) and 15d-PGJ2 in
human V&2 T cells. We found that 15d-PGJ2 and rosiglitazone had different effects on V52 T cell functions. Both 15d-PGJ2 and
rosiglitazone suppressed Vo2 T cell proliferation in response to IPP and IL2. However, only 15d-PGJ2 suppressed functional
responses including cytokine production, degranulation and cytotoxicity against tumor cells. The mechanism for 15d-PGJ2
effects on Vo2 T cells acts through inhibiting Erk activation. In contrast, rosiglitazone did not affect Erk activation but the IL2
signaling pathway, which accounts for rosiglitazone suppression of IL2-dependent, V52 T cell proliferation without affecting
TCR-dependent functions. Rosiglitazone and 15d-PGJ2 are designed to be peroxisome proliferator-activated receptor gamma
(PPARY) ligands and PPARy was expressed in V62 T cell. Surprisingly, when PPARY levels were lowered by specific siRNA, 15d-
PGJ2 and rosiglitazone were still active, suggesting their target of action induces cellular proteins other than PPARy.

Conclusions/Significance: The current findings expand our understanding of how the immune system is regulated by
rosiglitazone and 15d-PGJ2 and will be important to evaluate these compounds as therapeutic agents in human

autoimmune disease.
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Introduction

The incidence of autoimmune disease has been growing in recent
years and the contribution to disease of various immune cell subsets
are being defined. Research in autoimmunity focuses primarily on
cells of the adaptive immune system and their roles in disease. Several
studies implicated y& T cells in animal models and human
autoimmune diseases including multiple sclerosis (MS) [1,2],
experimental allergic encephalomyelitis (EAE) [3], polymyositis
[4,5], Bechet’s disease [6,7], rheumatoid arthritis (RA) [8], atopic
dermatitis (AD) [9] and systemic lupus erythematosus (SLE) [10].
Although the exact role for yd T cells remains unknown, they possess
potent cytotoxic activity, are major sources of cytokines including
IFN-y and TNF-o0 and produce chemokines involved in recruiting
monocyte/macrophages [11,12,13]. Recently, Y6 T cells in mouse
were reported to be an important source of 1L17 [14,15,16,17,18].
These functions of activated yd T cells could contribute significantly
towards inflammatory processes and promote autoimmunity.

In humans, ¥ T cells represent 1 to 10% of circulating T cells in
blood, with the majority (>80%) expressing a Vy2V32 (also termed
Vy9VE2) TCR (hereafter referred as V62 T cells) [19] that mediates
broad reactivity against microbial agents and tumors. Cells in this
subset recognize low molecular weight, non-peptidic compounds
termed ‘“‘phosphoantigens,” including isopentyl pyrophosphate
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(IPP) [20,21], an intermediate in sterol and isoprenoid biosynthesis.
Following stimulation by phosphoantigens, V82 T cells proliferate,
release cytokines (particularly IFN-y and TNF-o) [22,23] or
chemokines [24,25], and acquire cytotoxic activity against tumor
cells [26,27] or infected cells [28]. In view of the similarity between
inflammatory processes in pathogen responses and autoimmune
diseases, it is not surprising that V82 T cells might participate in
both. Thus, potential treatments for autoimmune diseases may
involve modulating human y8 T cell function.

Peroxisome proliferator-activated receptor gamma (PPARY) is a
ligand-dependent transcription factor that was recognized origi-
nally as a key regulator of adipocyte function [29,30]. Recent
studies reported that PPARY are expressed in many immune cells
[31]; PPARY ligands down-regulated dendritic cell [32], NK cell
[33], B cell [34]and helper T cell [35], and enhanced regulatory T
cell responses [36]. Some of the effects were proved to be PPAR Y-
independent [33,34,36]. Consequently, there have been many
studies using PPARY ligands in animal models of autoimmunity
including experimental allergic encephalomyelitis, asthma, arthri-
tis, and colitis [37,38,39,40,41,42,43,44,45,46]. The success of this
approach has led to the potential use of PPARYy ligands as
therapeutic agents in human autoimmune disease [47], even with

the knowledge that these compounds may target molecule other
than PPARY.
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15d-PGJ2 and the TZD class of drugs are two types of PPARY
ligands that are studied most often. In the present study, we used
synthetic PPARY ligands from the thiazolidinediones (IZD) class
of drugs that are used widely for treating type 2 diabetes because
they enhance insulin sensitivity [48] and the endogenous PPARy
ligand cyclopentenone prostaglandinl5-deoxy-D12,14-prostaglan-
din J2 (15d-PGJ2) [49]. We tested their effects on human V62 T
cell function as a model for their impact on y8 T cells in
autoimmune diseases. We also tested several different TZD class
drugs, including rosiglitazone, troglitazone and ciglitazone all with
similar results. We uncovered a mechanism for V32" T cell
inhibition that surprisingly, was partly independent of PPARYy.

Results

Both 15d-PGJ2 and Rosiglitazone Suppressed V62 T Cell
Proliferation

We tested the effects of PPARY ligands on V82 T cell proliferative
response to phosphoantigen. Freshly isolated PBMC were treated
with 15d-PGJ2 or rosiglitazone for 1 hour before adding IPP plus
IL2. Cells were cultured for 10 days with 1L2 added every 3 days.
Vo2 T cell frequency was measured every 3 days. As shown in
figure 1, both 15d-PGJ2 (Figure 1A) and rosiglitazone (Figure 1B)
suppressed IPP-driven V&2 T cell expansion in a dose-dependent
manner. To reach similar effects, a 10-fold higher concentration of
rosiglitazone was needed compared to 15d-PG]J2.

15d-PGJ2, but not Rosiglitazone, Suppressed Cytokine
Production, Degranulation and Cytotoxicity

It was reported previously that expanded V62 T cells (V82 T cell
line) but not fresh cells can kill tumor cell targets [27]. Here, we tested
whether PPARY ligands affect phosphoantigen-driven cytokine
production and degranulation in V2 T cell lines. Freshly isolated
PBMC contained 1-10% of V&2 T cells; after 10 to 14 days of culture
with IPP plus IL-2, the percentage of V82 T cells was more than 90%
(Figure 2A). V32 T cell lines were rested after washing twice and
culturing in fresh medium for 24 hours before they were treated with
15d-PG]J2 or rosiglitazone for 1 hour, then washed and stimulated
with IPP. There was a dose-dependent suppression by 15d-PGJ2 of
V&2 T cell IFN-y (Figure 2B) or TNF-a (Figure 2C) production and
degranulation (CD107a expression) (Figure 2D). However, rosiglita-
zone had no effect on cytokine expression or degranulation, even at
very high concentrations (Figure 2B, C and D).
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Figure 1. Both 15d-PGJ2 and rosiglitazone suppressed IPP-
stimulated V42 T cell proliferation. Fresh isolated PBMC was treated
with 15d-PGJ2 (A) or rosiglitazone (B) at various concentrations (uM) for
1 hour, and then stimulated with IPP (15 uM) plus IL2 (100U/ml). Cells
were cultured for 10 days by adding IL2 every 3 days. V32 T cell frequency
was detected every 3 day. The experiments were set in triplicate. The
statistical significance compared with drug vehicle (DMSO) control was
analyzed. *, P<<0.05; **, P<<0.01; ***, P<<0.001. Data are representative of
at least three independent experiments with different donors.
doi:10.1371/journal.pone.0007726.g001
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We also tested the effect of PPARY ligands on V62 T cell line
cytotoxicity. Tumor cell lines were Daudi (a Burkitt’s lymphoma)
and TU167 (a squamous carcinoma). Lysis of both Daudi
(Figure 2E) and TU167 (Figure 2F) cells were reduced significantly
and in a dose dependent manner when V82 T cells were treated
with 15d-PGJ2 before adding to targets. Rosiglitazone did not
alter V02 cytotoxicity against Daudi (Figure 2G) or TU167
(Figure 2H) at any of the concentrations tested.

Th17 cells play important roles in autoimmune diseases
[50,51,52,53] and a recent study showed that PPARY selectively
inhibits Th17 differentiation [54]. y8 T cells are also recognized as
an important source of IL-17 in mice [14,15,16,17,18]. However,
it is not clear whether human yd T cell can produce IL-17,
although a recent study reported that human V81 and V62 T cell
from HIV patient can produce both IL-17 and IFN-y[55]. We
stimulated human PBMC from healthy donors with PMA/
ionomycin and tested IL-17 production from several immune cell
types. The CD4 T cells produced IL-17 as expected, a small
frequency of V81 T cell produced both IL-17 and IFN-y that is
consistent with published data [55]. However, we did not find
IL-17 production in V82 T cells or other cell types (Figure 2I). We
also stimulated V32 T cell with IPP, but we still did not detect
IL-17 production (data not shown).

15d-PGJ2 Suppressed V62 T Cell Functions by Inhibiting
Erk Activation

The V82 T cell responses to phosphoantigen depends on TCR
signaling. We tested 15d-PGJ2 for effects on the V62 TCR
signaling pathway as a possible explanation for inhibition of
cytokine expression or cytotoxicity. The V82 T cell lines were
washed and incubated in fresh medium for 24 hours without
stimulation. Then, cells were treated with 15d-PGJ2 or rosiglita-
zone for 1 hour followed by the addition of IPP. After 30 minutes,
cells were collected for western blotting analyses. We measured
phosphorylation of several signaling molecules implicated in TCR
signal transduction: NFkB, Erk, p38 and PI-3K-associated Akt.
Our results demonstrated that NFkB, p38 and Akt were
constitutively activated (phosphorylated) in expanded V82 T cell
lines, although p38 and Akt were phosphorylated at a lower level
compared to NF«kB (Figure 3A, lane 1). Phosphorylated Erk was
not detected (Figure 3A, lane 1). IPP-stimulation activated Erk and
Akt but not NFxB (Figure 3A, lane 2). 15d-PGJ2 but not
rosiglitazone suppressed IPP-activated Erk phosphorylation.
Neither 15d-PGJ2 nor rosiglitazone affected NF«xB, p38, or Akt
activation (Figure 3A, lane 3 and 4).

We also tested whether Erk activation is important for V32 T cell
function. A highly selective inhibitor of MEK1/2, U0126, was used
to inhibit Erk activation. The U0126 inhibited IPP-stimulated Erk
activation in V82 T cells in a dose-dependent manner (Figure 3B).
When Erk activation was inhibited the functions of V2 T cells,
including cytokine production in response to IPP (Figure 3C, D) and
cytotoxicity against tumor cells (Figure 3E, F) were suppressed.
These results indicated that Erk activation is a key factor in
V82 TCR signaling pathway for functional responses. U0126 also
suppressed V82 T cell proliferation responses (Figure 3G). Based
on these data, we believe that 15d-PGJ2 inhibits V82 T cell
functionality by inhibiting Erk activation.

15d-PGJ2 and Rosiglitazone Suppressed IL2-Induced
Phosphorylation of STAT5 in V&2 T Cells

IPP-driven V62 T cell proliferation depends on IL2. Rosigli-
tazone inhibited V82 T cell proliferation without affecting the
TCR signal. Thus, we postulated that rosiglitazone might inhibit
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Figure 2. 15d-PGJ2, but not rosiglitazone, suppressed cytokine production, degranulation and cytotoxicity functions of V62 T cell.
(A) Freshly isolated PBMC contained 1-10% of V52 T cells (left panel); after 10 to 14 days of culture with IPP plus IL-2, the percentage of V52 T cells
was more than 90% (right panel). (B, C and D) V52 T cells were treated with 15d-PGJ2 or rosiglitazone at various concentrations for 1 hour and then
washed and stimulated with IPP (50 uM). After stimulating for 4 hours, the levels of IFN-y (B) or TNF-a. (C) in cell-free supernatant were detected by
antigen capture ELISA. The experiments were done in triplicate and statistical tests compared drug and vehicle (DMSO). CD107a expression (D) was
analyzed by flow cytometry. (E and F) V52 T cells were pretreated with 15d-PGJ2 at various concentrations for 1 hour. The cytotoxicity of Vo2 T cell
against Daudi (E) or TU167 (F) was evaluated at different E:T ratios in triplicate. The statistical significance of specific lysis compared with a drug
vehicle (DMSO) control at E:T=5:1 was analyzed. (G and H) V52 T cells were pretreated with rosiglitazone at various concentrations for 1 hour. The
cytotoxicity of V&2 T cell against Daudi (G) or TU167 (H) was evaluated at different E:T ratios in triplicate. (I) PBMC was stimulated with PMA (10 ng/ml)
and ionomycin (1 uM) for 4 h. IL-17 production in different cell type was detected by flow cytometry. ¥, P<0.05; **, P<<0.01; ***, P<<0.001. Data are
representative of three independent experiments using different donors.

doi:10.1371/journal.pone.0007726.g002
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Figure 3. 15d-PGJ2 suppressed V42 T cell functions by inhibiting Erk activation. The expanded V32 T cells were rested, incubated in fresh
medium for 24 hours without stimulation. (A) The cells were treated with drug vehicle (DMSO), 15d-PGJ2 (10 uM) or rosiglitazone (50 uM) for 1 hour,
then stimulated with or without IPP (15 uM). After 30 minutes, cells were collected for western blotting analyses. (B) The cells were treated with drug
vehicle (DMSO) or U0126 for 1 hour, then stimulated with or without IPP (15 uM). After 30 minutes, cells were collected for western blotting analyses.
(Cand D) V382 T cells were treated with drug vehicle (DMSO) or U0126 for 1 hour, then washed and stimulated with IPP. After 4 hours, the levels of
cell-free IFN-y (C) or TNF-o (D) were detected by antigen capture ELISA. The experiments were done in triplicate and statistical tests compared drug with
vehicle (DMSO). (E and F) V52 T cells were pretreated with U0126 for 1 hour. The cytotoxicity of V62 T cells against Daudi (E) or TU167 (F) was evaluated at
different E:T ratios. Statistical tests of specific lysis compared drug with vehicle (DMSO) control at E:T=5:1 was analyzed. (G) Fresh isolated PBMC was
treated with U0126 at various concentrations for 1 hour, then stimulated with IPP (15 uM) plus IL2 (100 U/ml). Cells were cultured for 10 days by adding
IL2 every 3 days. V62 T cell frequencies were detected every 3 days. The experiments were done in triplicate. Statistical tests compared drug with vehicle
(DMSO). *, P<0.05; **, P<0.01; ***, P<<0.001. Data are representative of three independent experiments with different donors.
doi:10.1371/journal.pone.0007726.g003

the IL2 signaling pathway. Purified V82 T cells from fresh PBMC
were pretreated with 15d-PGJ2 or rosiglitazone for 1 hour, then
incubated with IL2 for 15 minutes. The phosphorylated STATS
was stained with a specific antibody and detected by flow cytometry.
Both 15d-PG]J2 (Figure 4A) and rosiglitazone (Figure 4B) suppressed
IL2-induced phosphorylation of STATS in V&2 T cells.
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Figure 4. 15d-PGJ2 and rosiglitazone suppressed IL2-induced
phophorylation of STAT5 in V32 T cells. Purified V52 T cells from
fresh PBMC were pretreated with 15d-PGJ2 (10 uM) or rosiglitazone
(50 uM) for 1 hour, then incubated with IL2 (100 U/ml) for 15 minutes.
The phosphorylated STAT5 was stained with a specific antibody
permeabilized cells and detected by flow cytometry.
doi:10.1371/journal.pone.0007726.g004
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Primary and Expanded V52 T Cells Express PPARy

15d-PGJ2 and rosiglitazone are also PPARY ligands. We assessed
PPARY expression in primary V82 T cell and IPP-expanded V&2 T
cell lines. We examined the expression of PPARY by intracellular
staining and flow cytometry. PPARY was present among V92 cells
(Figure 5A). We confirmed the result by western blotting using
purified primary or expanded V82 T cells (Figure 5B).
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Figure 5. Primary and expanded V52 T cells express PPARy. The
expression of PPARy in both primary and expanded V52 T cells was
examined by flow cytometry using intracellular staining (A) or western
blotting (B). Data are representative of two independent experiments.
doi:10.1371/journal.pone.0007726.g005
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PPARy-Independent Effects of 15d-PGJ2 and here that rosiglitazone increased the expression of CD36 in human
Rosiglitazone on Vy2V&2 T Cell monocytes, while GW9662 suppressed the effect of rosiglitazone

PPARY ligands have the curious property of acting in both (Figure 6H), which is consistent with a previous report [57].

PPARY-dependent and independent ways. To test whether 15d- . .
PGJ2 or rosiglitazone regulated V&2 T cell through PPARY- Discussion

dependent or independent mechanism, we used the PPARYy In the present study, we report that 15d-PGJ2 and the TZD
inhibitor GW9662 that covalently modifies the PPARy ligand- drug rosiglitazone had different effects on V62 T cell functions.
binding domain and acts as an irreversible antagonist at We also elucidated the underlying mechanisms by evaluating
concentrations of 100 nM or less [34,56]. We used the optimized signal transduction pathways. This work will be important for

concentration of 100 nM GW9662 for V82 T cell. As shown in understanding the effects of 15d-PGJ2 and the TZD drugs on
Figure 6, GW9662 alone did not inhibit IPP-driven V52 immune responses and evaluating their application as therapeutic
proliferation (Figure 6A) or cytokine production (Figure 6B, C). agents in human autoimmune disease.

Furthermore, GW9662 did not relieve the inhibitory effect of 15d-PGJ2 and rosiglitazone both suppressed V82 T cell
15d-PG]J2 or rosiglitazone on V82 proliferation (Figure 6A). Also, proliferation in response to IPP and IL2. Although TZD drugs
GW9662 did not prevent the inhibitory effect of 15d-PGJ2 on have a higher binding affinity for PPARYy [31,48], rosiglitazone
cytokine production (Figure 6B, C). We next used siRNA to knock was less potent for inhibiting V82 T cell proliferation. Only 15d-
down PPARY and repeated the inhibition studies. A specific PGJ2 suppressed V82 T cell functional responses including
siRNA knocked down PPARY protein levels (Figure 6D) but did cytokine production, degranulation and cytotoxicity against tumor
not prevent the effects of 15d-PG]J2 or rosiglitazone on Vo2 T cells cells. Consequently, the effects of 15d-PGJ2 and rosiglitazone on
(Figure 6E, F and G). These data argue that 15d-PGJ2 and V82 cell responses to antigen appear to be independent of PPARY.
rosiglitazone regulate V82 T cells through PPARY-independent This hypothesis is supported by recent reports showing 15d-PGJ2
mechanisms and the molecular target for these drugs has not yet or TZD class drugs act independently of PPARYy. For example,
been defined in human y8 T cells. As a positive control, we show 15d-PGJ2 or TZD drugs modulated regulatory T cell [36], NK
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Figure 6. The effects of 15d-PGJ2 and rosiglitazone on Vy2V32 T cells are PPARy-independent. (A) Fresh isolated PBMC was pretreated
with GW9662 (100nM) for 1 hour, then treated with 15d-PGJ2 (10 uM) or rosiglitazone (50 uM) and cultured with IPP (15 uM) plus IL2 (100 U/ml).
Cells were cultured for 10 days by adding IL2 every 3 days. V52 T cell frequencies were detected at day 10. (B and C) The expanded V52 T cells were
rested by incubating in fresh medium for 24 hours without stimulation. The cells were pretreated with GW9662 (100 nM) for 1 hour, then washed
and treated with 15d-PGJ2 (10 uM) or rosiglitazone (50 uM), and stimulated with IPP. After 4 hours stimulation, the levels of IFN-y (B) or TNF-a (C) in
cell-free supernatants were detected by antigen capture ELISA. (D, E, F and G) Fresh isolated PBMC were transfected with control or PPARY specific
siRNA and cultured for 48 hours. Cells were then collected for western blotting analyses (D); or cells were treated with 15d-PGJ2 (10 uM) or
rosiglitazone (50 puM), then cultured with IPP (15 uM) plus IL2 (100 U/ml) for proliferation (E); or V82" T cell were purified and treated with 15d-PGJ2
(10 uM) or rosiglitazone (50 uM) then stimulated with IPP for IFN-y (F) or TNF-a (G) analyses as described. Data are representative of three
independent experiments with different donors. (H) Human monocytes were treated for 16 h with rosiglitazone (10 uM) in the presence or not of
GW9662 (100 nM). CD36 expression was analyzed by flow cytometry.

doi:10.1371/journal.pone.0007726.9g006
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cell [33] and astrocyte [58] functions, and induced B cell apoptosis
[34] through PPARy-independent effects. These findings, along
with our observation that a specific PPARY antagonist or siRNA
failed to block the effects of 15d-PGJ2 or rosiglitazone in V2 T
cells, support the view that a T cell target other than PPARY is
altered by these treatments. The PPARY was expressed in V82 T
cells (Fig. 5) and most immune cells, although non-genomic action
of PPARY ligands have been reported. The continued study of
PPARY in V82 T cell and other immune cell development and
function may reveal a yet undiscovered role for PPARY in the
human immune system.

We postulated that 15d-PGJ2 or rosiglitazone might affect the
V82 TCR signaling pathway. The off TCR signaling pathway has
been well studied, but less is known about the Y& TCR and its
downstream signaling pathway. A recent paper reported that
another phosphoantigen, (E)-4-hydroxy-3-methyl-but-2-enyl pyro-
phosphate (HMB-PP), induced MEK/Erk- and PI-3K/Akt-
mediated signal transduction in primary V82 T cells but IPP
failed to induce Akt phosphorylation [59]. In the present study, we
tested several key factors in the TCR signaling pathway of V62 T
cell lines after IPP stimulation including NFxB, Erk, p38, JNK and
Akt. We found that NFkB, p38 and Akt, but not Erk and JNK
(data not shown for JNK), were phosphorylated constitutively in
V82 T cell lines. IPP-stimulation activated Erk but not JNK, and
increased the phosphorylation level of Akt but not NFxB. The
NF«xB signaling pathway might be important to V32 T cell
survival as we reported previously [60]. The Erk and Akt signaling
pathway might have greater impact on functional responses by
V82 T cells. To test a hypothesis that Erk activation is responsible
for V82 T cell function, we inhibited Erk using U0126, a highly
selective inhibitor of MEKI1/2. We found that the cytokine
production and cytotoxicity functions of V&2 T cell were
suppressed when Erk was inhibited specifically, indicating a key
role for Erk in V82 T cell functions. The U0126 also suppressed
V&2 T cell proliferation, indicating that Erk activation is
important for initiating V82 T cell proliferation.

The drugs 15d-PGJ2 and rosiglitazone were distinct in terms of
their effects on the V82 TCR signaling pathway. The 15d-PGJ2 but
not rosiglitazone specifically inhibited Erk activation. This might
explain why only 15d-PGJ2 suppressed V82 T cell effector
functions. It was unclear why rosiglitazone suppressed V62 T cell
proliferation since it did not affect the Erk activation. Because V62
T cell proliferation requires IL2, we proposed that rosiglitazone
might inhibit IL2 signaling. Indeed, both 15d-PGJ2 and rosiglita-
zone inhibited IL2-induced STATY) activation, a key factor in the
IL2 signaling pathway, arguing that rosiglitazone effects on IL2
signaling explained the inhibition of cell proliferation.

PPARY ligands are effective in animal models of autoimmunity
[38,39,41,42], leading to predictions about therapeutic potential in
human disease [47]. The current findings expand our under-
standing of how the immune system is regulated by PPARY ligands
and will be helpful to evaluate their potential for human therapy.
Data presented here also provide important information on the
TCR signaling pathway in V82 T cells and will be useful for
understanding V&2 T cell function during treatments for
autoimmune disease.

Materials and Methods
PBMC and Tumor Cell Lines

Whole blood was obtained from healthy human volunteers who
provided written informed consent and all protocols were
approved by the Institutional Review Board at the University of
Maryland, Baltimore. Total lymphocytes were separated from
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heparinized peripheral blood by density gradient centrifugation
(Ficoll-Paque; Amersham Biosciences). Peripheral-blood mononu-
clear cells (PBMC) and TU167 cells (squamous cell carcinoma)
were cultured in RPMI 1640 supplemented with 10% fetal bovine
serum (FBS; GIBCO), 2 mMol/L L-glutamine, and penicillin—
streptomycin (100 U/mL and 100 mg/mlL, respectively); for
Daudi B cells (CCL-213; ATCC), 4.5 g/L glucose, 1.5 g/L
NaHCOj3, 10 mMol/L HEPES, and 1 mMol/L sodium pyruvate
were added.

In Vitro Proliferation Assays

PBMC (5x10° cells/well) were cultured in 12-well plates with
complete medium, 15 uM isopentyl pyrophosphate (IPP) (Sigma)
and 100 U/ml human recombinant IL-2 (Tecin, Biological
Resources Branch, National Institutes of Health, Bethesda, MD).
In some experiments, 15d-PGJ2 or rosiglitazone (Cayman
Chemical Company, MI) were added. Fresh complete medium
and 100 U/ml IL-2 were added every 3 days. y6 T cell
proliferation was measured by staining for CD3 and V82, then
defining, by flow cytometry, the percentage of y6 T cells within the
total lymphocyte population at days 0, 4, 7 and 10.

RNA Interference

Fresh isolated PBMC were transfected with control siRNA or a
specific siRNA that target PPARY mRNA (Dharmacon) using a
human T cell nucleofactor kit following the manufacturer’s
instructions (Amaxa Biosystem Inc. USA). Cells were used after
48 hours. The impact of RNA interference was evaluated by
immunoblotting for the PPAR-y protein (see below).

Purifying V32" Cells and Monocytes

The V82" or CD14* monocyte subsets were purified from fresh
PBMC or PBMC expanded with IPP and IL-2 using a MultiSort
Kit (MiltenyiBiotec, Auburn, CA) according to the manufacturer’s
instructions. Cells were stained with PE-conjugate V2 or CD14
antibodies for 10 minutes on ice. The labeled cells were washed
and incubated with anti-PE MicroBeads for 15 minutes on ice,
then separated in a magnetic field. We achieved 90 to 98% purity
after magnetic bead separation as measured by flow cytometry.

Immunoblot Analysis

Cells (2x10% were lysed in gel loading buffer (Invitrogen,
Carlsbad, CA); samples were boiled for 10 minutes and proteins
were separated by SDS-PAGE. Proteins were transferred to
nitrocellulose membranes and probed with various primary
antibodies. Secondary antibodies including HRP-conjugated,
anti-rabbit or anti-mouse (Cell Signaling Technology, Inc.) were
visualized with enhanced chemiluminescence (GE Healthcare,
Buckinghamshire, UK) and exposure to Kodak X-ray film.

Cytotoxicity Assay

A nonradioactive, fluorometric cytotoxicity assay with calcein-
acetoxymethyl (calcein-AM; Molecular Probes) was used to measure
cytotoxicity against Daudi B cell or TU167 squamous cell tumor
lines [60]. Expanded v§ cells (effector cells) were treated with 15d-
PG]J2 or rosiglitazone (Cayman Chemical Company, MI) at varying
concentrations for 1 hour at 37°C. Daudi B or TU167 target cells
were labeled for 15 minutes with 2 mMol/L calcein-AM at 37°C
and then washed once with PBS. Cells were combined at various
effector-to-target (E:'T) ratios in 96-well, round-bottomed microtiter
plates (Corning, NY) and incubated at 37°C in 5% CO, for 4 hours;
assays were performed in triplicate. After incubation, supernatants
were transferred to a 96-well flat-bottomed microtiter plate and
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calcein content was measured using a Wallac Victor2 1420 multi-
channel counter (1485/535 nm). Percent specific lysis was calculated
as: (test release-spontaneous release)/(maximum release-spontane-
ous release) x100.

Flow Cytometry

Unless noted, cells were stained with fluorophore-conjugated
monoclonal antibodies from BD Biosciences, San Jose, CA. Gener-
ally, 3x 10°-5%10° cells were washed, resuspended in 50-100 pL of
RPMI 1640, and stained with mouse anti-human V42 -PE clone
B6, mouse anti-human CD3-fluorescein isothiocyanate (FITC)
clone UCHT1, mouse anti-human CD3-allophycocyanin (APC)
clone UCHT1, mouse anti-human CD107a-FITC clone H4A3,
and isotype controls, including rabbit anti-mouse IgG1-FITC clone
X40, IgG1-PE clone X40, and IgG1-APC clone X40. For detecting
intracellular IL-17, cells were stained with mouse anti-human CD4
(PerCP), mouse anti-CD8 (PerCP), mouse anti-human V&2-PE,
mouse anti-human V81 (FITC), mouse anti-human CD20 (PE),
mouse anti-human CD14 (PE), mouse anti-human CD56 (PE), then
fixed, permeabilized and incubated for 45 min at 4°C with mouse
anti-human IL-17 (FITC or PE). Intracellular staining solutions
were obtained from the Cytofix/Cytoperm Kit (BD Biosciences).
For intracellular PPARY and phospho-STAT5 staining, treated and
untreated cells were fixed by adding 16% formaldehyde directly into
the culture medium to obtain a final concentration of 2~4%
formaldehyde. Cells were incubated in fixative for 10 minutes at
37°C and pelleted. They were then permeabilized by resuspending
with vigorous vortexing in 500 pL ice-cold methonal and placed on
ice at least 30 minutes. Cells were washed twice in staining medium
(PBS containing 0.5% BSA) then resuspended in staining medium
at 0.5~1x10° cells per 100 uL. and blocked in staining buffer for 10
minutes at room temperature. Optimal concentrations of mAB
against PPARYy (clone E8, Santa Cruz Biotechnology, Inc.) or
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