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Abstract

Background: Recent advance in genetic studies added the confirmed susceptible loci for type 2 diabetes to eighteen. In this
study, we attempt to analyze the independent and joint effect of variants from these loci on type 2 diabetes and clinical
phenotypes related to glucose metabolism.

Methods/Principal Findings: Twenty-one single nucleotide polymorphisms (SNPs) from fourteen loci were successfully
genotyped in 1,849 subjects with type 2 diabetes and 1,785 subjects with normal glucose regulation. We analyzed the allele
and genotype distribution between the cases and controls of these SNPs as well as the joint effects of the susceptible loci
on type 2 diabetes risk. The associations between SNPs and type 2 diabetes were examined by logistic regression. The
associations between SNPs and quantitative traits were examined by linear regression. The discriminative accuracy of the
prediction models was assessed by area under the receiver operating characteristic curves. We confirmed the effects of SNPs
from PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 on risk for type 2 diabetes, with odds
ratios ranging from 1.114 to 1.406 (P value range from 0.0335 to 1.37E-12). But no significant association was detected
between SNPs from WFS1, FTO, JAZF1, TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-ADAM30 and type 2 diabetes. Analyses on
the quantitative traits in the control subjects showed that THADA SNP rs7578597 was association with 2-h insulin during oral
glucose tolerance tests (P = 0.0005, empirical P = 0.0090). The joint effect analysis of SNPs from eleven loci showed the
individual carrying more risk alleles had a significantly higher risk for type 2 diabetes. And the type 2 diabetes patients with
more risk allele tended to have earlier diagnostic ages (P = 0.0006).

Conclusions/Significance: The current study confirmed the association between PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B,
IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 and type 2 diabetes. These type 2 diabetes risk loci contributed to the disease
additively.
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Introduction

Type 2 diabetes is a complex disease characterized by elevated

blood glucose, caused mainly by impairment in both insulin action

and beta cell function. Although the sharp increase in prevalence

of type 2 diabetes worldwide is attributed to changes in individual

environmental exposure pattern, genetic factors do predispose to

the disease [1]. Recently, spectacular advance was made in

identifying susceptible genes involved in type 2 diabetes through

genome-wide association studies (GWAS). Several groups reported

independent GWAS in Caucasians, which not only confirmed the

effect of PPARG, KCNJ11 and TCF7L2, but also identified six

novel susceptibility loci including CDKAL1, CDKN2A-CDKN2B,

IDE-KIF11-HHEX, IGF2BP2, SLC30A8 and FTO [2,3,4,5]. And

meta-analysis on three Caucasian GWAS yielded six additional

loci (JAZF1, TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-

ADAM30 and CDC123-CAMK1D) associated with type 2 diabetes

at genome-wide statistic significance [6]. Moreover, the first two

independent GWAS in East Asian population added KCNQ1 to the

list of type 2 diabetes susceptible gene [7,8]. In addition with two

well replicated candidate genes TCF2 and WFS1 [9,10], eighteen

susceptible loci of type 2 diabetes were well recognized to date.

Several researches tried to replicate some of these loci in the

Asian populations and confirmed the effects of genetic variants in

CDKAL1, CDKN2A-CDKN2B, IDE-KIF-HHEX, IGF2BP2,

SLC30A8, FTO and TCF7L2 [11,12,13]. However, limited study

analyzed all these susceptible loci in the Asian population.

Previously, we reported the association of TCF2 and KCNQ1
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genetic variants with type 2 diabetes in our case-control samples

[14,15], thus we tested the effects of genetic variants from the

other sixteen loci as well as the joint effect of variants from all these

eighteen loci on type 2 diabetes and related clinical traits in this

study.

Methods

Ethnic statement
This study was approved by the institutional review board of

Shanghai Jiao Tong University Affiliated Sixth People’s Hospital

was in accordance with the principle of the Helsinki Declaration

II. Written informed consent was obtained from each participant.

Study population
A total of 3,634 individuals, comprising 1,849 type 2 diabetes

patients and 1,785 normal controls, were included in the present

study. The type 2 diabetes patients were recruited from the

inpatient department of Shanghai Jiao Tong University Affiliated

Sixth People’s Hospital. Diabetes was defined according to 1999

World Health Organization criteria (fasting plasma glucose

$7.0 mmol/l and/or 2-h plasma glucose $11.1 mmol/l) [16].

Individuals with glutamic acid decarboxylase and/or protein

tyrosine phosphatase IA-2 antibodies positive were excluded and

mitochondria tRNA Leu(UUR) nt3243 A-to-G mutation carriers

were excluded as well. The controls were selected from the

participants of Shanghai Diabetes Study [17]. In the present study,

the inclusion criteria for the control subjects were: 1) over 40 years

old; 2) with normal glucose regulation confirmed by a standard

75 g oral glucose tolerance test (OGTT); 3) with negative family

history of diabetes by a standard questionnaire. For each

participant, glucose tolerance status was confirmed according to

1999 World Health Organization criteria (fasting plasma glucose

,6.1 mmol/l and 2-h postprandial plasma glucose ,7.8 mmol/l).

The clinical characteristics of the study groups were shown in

Table 1.

At the level of significance of 0.05, our case-control samples had

over 80% power to detect a minimum odds ratio (OR) of 1.15 for

a single nucleotide polymorphism (SNP) with minor allele

frequency (MAF) over 0.2, a minimum OR of 1.24 for a SNP

with MAF of 0.1 and a minimum OR of 1.33 for a SNP with MAF

of 0.05.

Biochemical and anthropometric measures
All participants underwent a detailed clinical investigation.

Anthropometric variables including height, weight, waist and hip

circumferences were measured. For the controls, blood samples

were obtained at 0 and 120 min during standard 75 g OGTTs.

Plasma glucose concentrations were measured by the glucose

oxidase-peroxidase method using commercial kits (Shanghai

Biological Products Institution, Shanghai, China). Serum insulin

levels were measured by radioimmunoassay (Linco Research, St

Charles, MO, USA). Homeostasis model assessment (HOMA) was

used to estimate insulin resistance (HOMA-IR) and b-cell function

(HOMA-B) [18].

SNP selection and genotyping
We selected twenty-four SNPs from sixteen loci previously

reported to be associated with type 2 diabetes at a genome-wide

significance level, including PPARG (rs1801282), KCNJ11 (rs5219),

WFS1 (rs10010131), TCF7L2 (rs7903146), CDKAL1 (rs10946398,

rs7754840, rs9460546, rs7756992 and rs9465871), CDKN2A-

CDKN2B (rs564398 and rs10811161), IDE-KIF11-HHEX

(rs10509645, rs1111875 and rs10748582), IGF2BP2 (rs7651090),

SLC30A8 (rs13266634), FTO (rs8050136), JAZF1 (rs864754),

TSPAN8-LGR5 (rs7961581), THADA (rs7578597), ADAMTS9

(rs4607103), NOTCH2-ADAM30 (rs2641348 and rs10923931)

and CDC123-CAMK1D (rs12779790). All the SNPs were geno-

typed using MassARRAY iPLEX system (MassARRAY Compact

Analyzer, Sequenom, San Diego, CA). The genotyping underwent

several quality control procedures. Two SNPs (rs12779790 and

rs7903146) were excluded because of low call rate (,90%). One

SNP (rs10923931) was excluded because of departure from Hardy-

Weinberg equilibrium (P,0.01). The overall call rate for the

remaining 21 SNPs was 96.8%. The concordant rate calculated

based on 100 duplicates for each SNP was 99.6%.

Statistical analyses
Allele frequencies between cases and controls were compared

using x2 test. The ORs with 95% confidence intervals (CIs) with

respect to the risk alleles were presented. Genotype distributions

between cases and controls were compared using logistic

regression under a log additive model in PLINK after adjusting

age, gender and BMI as confounding factors [19]. For genes with

multiple SNPs genotyped, independent SNP effects were deter-

mined by logistic regression. Correction of multiple testing on

allele association was performed using PLINK through 10,000

permutations that randomly permutated the case/control status

independent of genotypes.

For continuous trait analysis, quantitative trait association

analyses were performed by linear regression after adjusting age,

gender and BMI as confounding factors. Quantitative traits with

skewed distribution were transformed to approximate univariate

normality by natural logarithm. In order to adjust multiple

comparison, 1,000 permutations were performed for each trait to

assess empirical P values using PLINK [19]. Additive effect models

were used for SNPs with MAFs .0.05. For SNPs with MAFs

,0.05, dominant effect models were used because of the small

numbers of homozygotes of rare alleles.

The receiver operating characteristic (ROC) curves, a tool for

displaying the discriminatory ability of a diagnostic marker in

distinguishing between cases and controls, were used for

evaluation of discriminative accuracy of age, gender, BMI and

SNPs. The area under the ROC curve (AUC), the measurement of

the ability of a marker to discriminate between the cases and

controls, was calculated by using the logistic regression model.

AUC comparisons between ROC curves were performed by

MedCalc (version 10.3.2.0; Mariakerke, Belgium) using the

method of Hanley and McNeil for ROC curve analyses.

The statistic analyses were performed by using SAS for

Windows (version 8.0; SAS Institute, Cary, NC) unless specified

otherwise. As the genes analyzed in the current study were well

Table 1. Clinical characteristics of study population.

Type 2 diabetes
patients

Normal glucose
regulation subjects

Samples (n) 1,849 1,785

Male/Female (n) 970/879 736/1,049

Age (years) 61.21612.62 57.39612.37

Duration of diabetes (years) 6.0 (1.0, 10.0)

BMI (kg/m2) 24.0463.51 23.5763.25

Data are shown as mean6SD or median (interquartile range).
doi:10.1371/journal.pone.0007643.t001
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replicated previously, a two-tailed P value of ,0.05 was

considered as statistically significant.

Results

We first examined the potential effects of 21 SNPs successfully

genotyped on type 2 diabetes susceptibility in our Chinese case-

control samples. As shown in Table 2, the CDKN2A-CDKN2B

rs10811661 showed strong association to type 2 diabetes, with an

OR of 1.406 (95% CI 1.280–1.546) per risk allele T (P = 1.37E-12).

In addition, SNPs from PPARG, KCNJ11, CDKAL1, IDE-KIF11-

HHEX, IGF2BP2 and SLC30A8 were also moderately associated

with type 2 diabetes, with ORs ranging from 1.114 to 1.282

(P,0.05). As multiple SNPs from CDKAL1 and IDE-KIF11-HHEX

were genotyped, we analyzed the linkage disequilibrium extent

among the SNPs from the same region. The five SNPs from CDKAL1

and three SNPs from IDE-KIF11-HHEX were in linkage disequilib-

rium, respectively. We then used logistic regression to determine the

independent effects of these SNPs and found SNPs rs7756992 and

rs10748582 conferred independent risks for the disease in CDKAL1

and IDE-KIF11-HHEX regions respectively (data not shown).

However, after correction of multiple comparisons, only the

association between SNPs from CDKAL1, CDKN2A-CDKN2B, IDE-

KIF11-HHEX, IGF2BP2 and SLC30A8 and type 2 diabetes remained

to be significant. And we also found the WFS1 rs10010131 and FTO

rs8050136 showed trends towards association to type 2 diabetes in

our samples (0.05,P,0.1). However, we failed to replicate the

effects of CDKN2A-CDKN2B rs564398 and SNPs from JAZF1,

TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-ADAM30, which

were identified through meta-analysis of Caucasian GWAS.

We then analyzed the effects of these SNPs on clinical measurements

in the normal controls. As shown in Table 3, we found SLC30A8

rs13266634 was associated with fasting glucose (P = 0.0118) and

TSPAN8-LGR5 rs7961581 was associated with 2-h glucose

(P = 0.0404). For insulin levels, we found rs10811161, rs864754,

rs7961581 and rs7578597 were associated with 2-h insulin levels

(P = 0.0005,0.0257). For BMI, no significant association was detected,

including FTO SNP rs8050136, which was previously reported to be an

obesity gene in the Caucasians. However, only the association between

THADA rs7578597 and 2-h insulin remained significant after

correction of multiple testing (empirical P = 0.0090).

To further investigate if these susceptible loci affected the disease

additively, we examined joint effects of risk alleles of SNPs from

susceptible loci on type 2 diabetes. Here we analyzed if the individuals

carrying more risk allele tended to have a higher risk for the disease

and if the patients with more risk alleles tended to have an earlier

diagnostic age. We also analyzed the diagnostic value of these SNPs.

We only selected SNPs with P values less than 0.1. For loci with

multiple SNPs genotyped, the SNP showed strongest association from

each locus was selected. Two additional SNPs, KCNQ1 rs2237892

and TCF2 rs4430796, which were previously genotyped and showed

significant association to type 2 diabetes in our samples, were also

Table 2. Association between SNPs from fourteen loci and type 2 diabetes in the Chinese.

Gene SNP
Chromo-
some

Chromosome
position
(Build 36)

Major/Minor
Allele

Risk
Allele

Risk allele
frequency OR (95%CI) Pallele Pgenotype

Empirical
P

Case Control

PPARG rs1801282 3 12368125 C:G C 0.950 0.939 1.246 (1.017–1.526) 0.0335 0.0701 0.4589

KCNJ11 rs5219 11 17366148 C:T T 0.425 0.394 1.138 (1.034–1.251) 0.0079 0.0031 0.1367

WFS1 rs10010131 4 6343816 G:A G 0.955 0.946 1.213 (0.975–1.510) 0.0824 0.0969 0.7816

CDKAL1 rs10946398 6 20769013 A:C C 0.441 0.414 1.114 (1.014–1.224) 0.0241 0.0074 0.3551

CDKAL1 rs7754840 6 20769229 G:C C 0.440 0.411 1.127 (1.027–1.238) 0.0119 0.0025 0.1967

CDKAL1 rs9460546 6 20771611 T:G G 0.444 0.411 1.145 (1.041–1.260) 0.0054 0.0014 0.0944

CDKAL1 rs7756992 6 20787688 G:A G 0.548 0.511 1.158 (1.056–1.272) 0.0020 0.0010 0.0364

CDKAL1 rs9465871 6 20825234 C:T C 0.554 0.522 1.140 (1.039–1.251) 0.0057 0.0021 0.1001

CDKN2A-CDKN2B rs564398 9 22019547 A:G G 0.120 0.118 1.020 (0.885–1.177) 0.7826 0.2922 1

CDKN2A-CDKN2B rs10811161 9 19269853 T:C T 0.604 0.520 1.406 (1.280–1.546) 1.37E-12 1.13E-13 0.0001

IDE-KIF11-HHEX rs10509645 10 94267846 A:C C 0.354 0.321 1.160 (1.052–1.280) 0.0031 0.0018 0.0561

IDE-KIF11-HHEX rs1111875 10 94452862 A:G G 0.310 0.273 1.201 (1.085–1.330) 0.0004 5.25E-05 0.0086

IDE-KIF11-HHEX rs10748582 10 94467199 A:T T 0.238 0.196 1.282 (1.146–1.435) 1.46E-5 1.51E-05 0.0005

IGF2BP2 rs7651090 3 186996086 A:G G 0.282 0.246 1.200 (1.079–1.334) 0.0008 0.0013 0.0141

SLC30A8 rs13266634 8 118253964 C:T C 0.613 0.559 1.251 (1.138–1.374) 3.12E-6 1.60E-06 0.0002

FTO rs8050136 16 52373776 C:A A 0.130 0.118 1.125 (0.978–1.294) 0.0996 0.1456 0.8414

JAZF1 rs864754 7 25918763 T:A T 0.759 0.751 1.046 (0.934–1.171) 0.4364 0.4359 0.9998

TSPAN8-LGR5 rs7961581 12 69949369 T:C C 0.231 0.217 1.082 (0.965–1.212) 0.1779 0.4068 0.9710

THADA rs7578597 2 43586327 T:C T 0.994 0.994 1.013 (0.548–1.873) 0.9661 0.7604 1

ADAMTS9 rs4607103 3 64686944 C:T C 0.635 0.629 1.030 (0.934–1.137) 0.5510 0.8632 1

NOTCH2-ADAM30 rs2641348 1 120239407 T:C C 0.028 0.026 1.071 (0.801–1.433) 0.6443 0.9776 1

The OR with 95% CI shown is for the risk allele. Pallele is the P value for comparison of the allele distribution between the cases and controls. Pgenotype is the P value for
comparison of genotype distribution between the cases and controls after adjusting age, gender and BMI as confounding factors. Empirical P values were calculated
through 10,000 permutations for the difference of allele distribution between cases and controls.
doi:10.1371/journal.pone.0007643.t002
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included into the combined analysis. Totally eleven SNPs (PPARG

rs1801282, KCNJ11 rs5219, WFS1 rs10010131, CDKAL1 rs7756992,

CDKN2A-CDKN2B rs10811161, IDE-KIF11-HHEX rs10748582,

IGF2BP2 rs7651090, SLC30A8 rs13266634, FTO rs8050136, KCNQ1

rs2237892 and TCF2 rs4430796) were selected into the analysis. And

we only included individuals with the genotypes of all these eleven

SNPs available (1,359 type 2 diabetes patients and 1,532 normogly-

caemic controls) into the analysis.

We found the proportion of type 2 diabetes patients increased in

the subgroups with more risk alleles (Fig. 1A) (Ptrend = 1.34E-30).

When treating the individuals carrying less than 9 risk alleles (6.6%

of the study population) as reference group, the subgroups carrying

more risk alleles had a significantly higher risk for type 2 diabetes,

with each additional risk allele increased type 2 diabetes risk by

1.265-fold (95%CI: 1.214–1.318, P = 2.66E-29). Moreover, we

found the number of risk alleles was significantly associated with

age-at-diagnosis in the type 2 diabetes patients. The patients

carrying more risk alleles tended to have a younger diagnostic age

(b= 20.6060.17 years per each additional risk allele, P = 0.0006)

(Fig. 1C). And this association remained significant after further

adjusting sex and BMI as confounding factors (b= –0.6560.18

years per risk allele, P = 0.0002). We also evaluated the predictive

value of these genetic variants in the Chinese population. In our

samples, the AUC for clinical characteristic including age, sex and

BMI was 0.614 (95%CI 0.595–0.632) while the AUC for the

number of risk alleles was 0.621 (95%CI 0.604–0.639). But when

adding the number of risk alleles to the regression model of age,

sex and BMI, the AUC increased marginally to 0.668 (95%CI

0.650–0.685) (P = 0.0002) (Fig. 1D). We also analyzed the joint

effect of SNPs from all sixteen loci (only excluding TCF7L2 and

CDC123-CAMK1D that failed genotyping) and got similar results

(data not shown).

Discussion

In this study, we confirmed the effects of variations in PPARG,

KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX,

IGF2BP2 and SLC30A8 on type 2 diabetes. The ORs of the risk

alleles were similar to those reported in Caucasians [2,3,4,5]. Our

finding also supported that WFS1 and FTO might participate in

the pathogenesis of type 2 diabetes, although the effects we

detected on rs10010131 and rs8050136 were not statistically

significant. The non-significance could be explained by the

different genetic background between Caucasian and Asian

populations. Compared with Caucasians, the MAFs of these two

variants were much rarer in the Chinese populations (0.05 vs. 0.40

for rs10010131 and 0.125 vs. 0.45 for rs8050136) [20,21], which

reduced the statistical power of our samples dramatically. It should

also be noted that the non-significance of FTO SNP may be partly

explained by the similar BMI between the cases and controls in

our samples, as FTO variant increases type 2 diabetes risk mainly

through increasing BMI. However, we failed to replicate the

effects of SNPs reported by DIAGRAM study. As these loci were

identified by a meta-analysis in over 10,000 individuals and

replicated in over 50,000 independent samples [6], the effect sizes

of these genes were relatively low compared with other loci.

Moreover, several SNPs (rs7578597spor and rs2641348) were rare

variants in the Asian populations. Therefore, we did not have

enough power to replicate these associations in our samples. But

the risk alleles of all the SNPs were the same as reported in the

Caucasians [6].

We also found rs7578597, a non-synonymous variant of

THADA, was associated with 2-h insulin levels in the controls.

Evidence showed THADA might be involved in the death receptor

pathway and apoptosis [22]. But whether THADA has similar

effect on beta cell and how it participates in the pathogenesis of

type 2 diabetes and insulin secretion is still unknown. Several study

suggested the predominant effect of the genetic contribution to

type 2 diabetes was mediated through defect in insulin secretion

rather than action [23,24]. But none of the SNPs we analyzed

showed association to HOMA-B. Wu et al [12] reported that

SNPs from CDKN2A-CDKN2B, IGF2BP2 and SLC30A8 showed

association to beta cell function in the Chinese; however, negative

finding was also reported in the current study and another study

with equivalent sample size [11]. Thus the effects of these variants

on clinical characteristics in the Chinese still need to be

investigated in cohorts with more samples.

The joint effect analysis showed that these susceptible loci

worked in an additive way and the subgroup of populations with

more risk alleles tended to have a higher risk for the disease.

However, the predictive value of these risk variants was limited in

our samples. This was similar to the previous findings in

Caucasians [25,26]. But we found the patients with more risk

alleles tended to have an earlier onset age of diabetes. Whether

individuals with extremely more risk alleles could benefit from

genetic testing and whether lifestyle intervention could reduce the

risk in this subgroup of individuals remained to be investigated.

Although the findings presented are interesting, they should be

viewed with caution. First, we cannot fully exclude the possibility

Table 3. Association of SNPs with clinical features related to glucose metabolism in the control subjects.

Traits Gene SNP AA Aa aa P Empirical P

Fasting glucose (mmol/l) SLC30A8 rs13266634 5.0260.02 4.9960.02 4.9360.03 0.0118 0.1698

2-h glucose (mmol/l) TSPAN8-LGR5 rs7961581 5.4260.04 5.4860.05 5.7560.14 0.0404 0.3546

Fasting insulin (pmol/l) TSPAN8-LGR5 rs7961581 45.3160.98 52.3161.79 47.8064.16 0.0054 0.0759

2-h insulin (pmol/l) CDKN2A-CDKN2B rs10811161 241.6968.74 257.9367.21 284.54614.22 0.0257 0.2927

2-h insulin (pmol/l) JAZF1 rs864754 268.9667.11 248.2368.35 225.81615.18 0.0110 0.1489

2-h insulin (pmol/l) TSPAN8-LGR5 rs7961581 247.8666.16 268.6868.80 323.46653.78 0.0171 0.2088

2-h insulin (pmol/l) THADA rs7578597 258.9065.05 165.79639.03 / 0.0005 0.0090

HOMA-IR TSPAN8-LGR5 rs7961581 1.6660.04 1.9360.07 1.7560.16 0.0039 0.0609

Only SNPs showed nominal significant association to clinical features are shown in the table. AA represents the homozygotes of major allele. Aa represents the
heterozygotes. aa represents the homozygotes of minor allele. Empirical P values were calculated through 1,000 permutations within each trait.
doi:10.1371/journal.pone.0007643.t003
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the population stratification exists in our samples. Although both

the cases and controls were recruited from the same city, recent

large-scale migration from other regions of the country into

Shanghai may lead to some degree of stratification. However,

according to the records of our standard questionnaires, all of our

samples lived in Eastern China more than three generations, thus

the effect of population stratification may be limited in our

samples. Second, as multiple traits were analyzed in the current

study, the possibility still exists that our findings were false positive,

especially for the continuous traits which lack replication in other

independent samples.

In conclusion, we confirmed the association between PPARG,

KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX,

IGF2BP2, SLC30A8 variants and type 2 diabetes. These risk loci

contributed to type 2 diabetes additively. Further studies in

Asian cohorts with prospective data and information on

environmental factors are needed to better elucidate the effects

of these genetic variants on diabetes risk and their interaction

with environment.
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Figure 1. The joint effect of risk alleles on type 2 diabetes susceptibility. A. Distribution of number of risk alleles in the type 2 diabetes
patients and normoglycaemic controls. Black bar = normoglycaemic, white bar = type 2 diabetes. The proportion of type 2 diabetes patients increased
in the subgroups with more risk alleles (Ptrend = 1.34E-30). B. The risk for type 2 diabetes increased according to the increase of number of risk alleles,
(OR 1.265 per each additional risk allele, P = 2.66E-29). C. The age-at-diagnosis decreased according to the increase of number of risk alleles carried
(20.6060.17 years per each additional risk allele, P = 0.0006). D. ROC curves for models containing number of risk alleles (AUC = 0.621), clinical
characteristics including age, sex and BMI (AUC = 0.614) and both (AUC = 0.668).
doi:10.1371/journal.pone.0007643.g001
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