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Abstract

During the last years gene interaction networks are increasingly being used for the assessment and interpretation of
biological measurements. Knowledge of the interaction partners of an unknown protein allows scientists to understand the
complex relationships between genetic products, helps to reveal unknown biological functions and pathways, and get a
more detailed picture of an organism’s complexity. Being able to measure all protein interactions under all relevant
conditions is virtually impossible. Hence, computational methods integrating different datasets for predicting gene
interactions are needed. However, when integrating different sources one has to account for the fact that some parts of the
information may be redundant, which may lead to an overestimation of the true likelihood of an interaction. Our method
integrates information derived from three different databases (Bioverse, HiMAP and STRING) for predicting human gene
interactions. A Bayesian approach was implemented in order to integrate the different data sources on a common
quantitative scale. An important assumption of the Bayesian integration is independence of the input data (features). Our
study shows that the conditional dependency cannot be ignored when combining gene interaction databases that rely on
partially overlapping input data. In addition, we show how the correlation structure between the databases can be detected
and we propose a linear model to correct for this bias. Benchmarking the results against two independent reference data
sets shows that the integrated model outperforms the individual datasets. Our method provides an intuitive strategy for
weighting the different features while accounting for their conditional dependencies.
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Introduction

One of the basic aims of the post-genomic era is the

construction of reliable and accurate interactomes for different

organisms and especially for human. Such interaction maps allow

for understanding the complex relationships between genetic

products, help to reveal unknown biological functions and

pathways, and get a more detailed picture of an organism’s

complexity [1,2].

High throughput techniques, such as yeast two-hybrid (Y2H) or

mass spectrometry-based proteomics (AP-MS), led to the con-

struction of large protein-protein interaction (PPI) networks. For

example in case of the human interactome, approximately 5,000
interactions were characterized by using Y2H [3,4] and close to

6,400 by using AP-MS techniques [5]. Together with the PPIs that

have been characterized in small-scale experiments [6], the sum of

the experimentally determined physical interactions does not

exceed 52,000. This is less than 25% of the estimated human

interactome that is predicted to include between 200,000–400,000
interactions [7,8].

In order to deal with this lack of information different methods

for predicting interactions have been developed leading to the

creation of databases, which integrate known and predicted

interactions from various data sets. Such data integration improves

the coverage and the specificity of interaction predictions [2,9].

Different evidences may cover different interaction types and

interactions supported by diverse evidences are of higher

confidence. Furthermore, it has been shown that integrating data

from a variety of sources allows for reliably predicting interactions

even though individual evidences may only be weak predictors if

taken alone [10,11].

Because of the exceptional importance of human interaction

data in the life sciences we sought for combining predictions of

human gene interactions from different sources. Such ‘meta

interactome’ should combine the information retrieved from

various interaction databases in a consistent way and thus establish

a more comprehensive map of the human interactome.

STRING [12], HiMAP [13] and Bioverse [14] are examples of

databases integrating evidence for gene interactions in human and

other species. Those databases report quantitative confidence scores

for each interaction, with higher scores reflecting higher likelihood that

the given interaction is real. The total number of genes and

interactions in each of the three databases is shown in Table 1. These

databases use different prediction methods, experimental sources and

different scoring schemes for quantitatively integrating this informa-

tion. Even though all of these databases use partly overlapping input

data, only 3% of the interactions are reported in more than one

database (Figure 1). Hence, by combining the data from all three

databases the size of the predicted human interactome could be

significantly increased. In addition, the integration renders the

overlapping interactions particularly confident. The size of this ‘core

interactome’ (43,741) is similar to the total number of experimentally
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determined interactions. Here we present an integrated human

interactome consisting of the combined data from all three databases.

Since all three input databases predict functional association between

genes also our integrated network reflects functional similarity of genes

rather than physical binding of protein products. For integrating the

scores from the different databases we employed a Bayesian approach

that quantifies the likelihood of an interaction given all available

evidences [10]. The main advantages of this method are that (i) it

allows for combining highly heterogeneous types of data, such as

categorical and numerical features, (ii) it weighs each information

source according to its reliability, (iii) it provides a uniform scoring

scheme for comparing and integrating databases, and (iv) scores have

an intuitive meaning as they reflect conditional probability relation-

ships between evidences and gold-standard data sets.

An important assumption of the ‘Naive Bayesian Integration’ is,

however, that all evidences used are statistically independent [15].

Previous work has shown that dependencies between the input

data exist, but that such correlations do not pose a major

confounding effect [10]. This previous work was assessing the

dependence between different types of evidences, such as

independent measurements of the same protein interaction.

However, here we are integrating data from different databases

that partially rely on identical data (e.g. gene expression

measurements or text mining). Hence, the assumption of

independence may strongly bias the interaction predictions in

our case. We therefore developed a method for correcting for the

bias introduced when combining statistically dependent data with

a Bayesian approach in order to create a continuous scale

confidence score that is comparable between interactions with

common and unique evidences (Figure 2).

Results

0.1 Cross Validation
We applied Bayesian theory to the original scores provided by

Bioverse, HiMAP and STRING in order to calculate log-

likelihood scores (LLS) for each of these three data sets

independently. This model assumes independence between

different evidences, in order to train the input data for predicting

PPIs. A three-fold cross validation was implemented for evaluating

the Bayesian model. The cross validation was done by training the

LLS computation based on two thirds of the reference dataset.

Subsequently, LLS were computed for the remaining interactions

and compared to the actual enrichment of true positives in the test

set (Figure 3). If the LLS prediction works perfectly, we expect a

1:1 relationship between the predicted LLS and the actual

enrichment of true positives. Figure 3 shows that, when assessing

individual databases, the predicted LLS coincide with the actual

enrichment of true positives in the test set, thereby validating the

accuracy of the method.

0.2 Integrating interactions with more than one evidence
When combining scores for interactions that are reported in

more than one database we have to consider the issue of statistical

dependence between the evidences. The so-called Naive Bayesian

Integration relies on the assumption of independence by simply

multiplying the probability ratios (see Methods):

LLStotal~
Xi~n

i~1

log
P T jEið Þ=P T ’jEið Þ

P Tð Þ=P T ’ð Þ

� �
ð1Þ

However, for correlated evidences this assumption would yield

an overestimation of the true interaction likelihood.

Figure 1. Venn diagram of the overlap between Bioverse, HiMAP and STRING. (A) Overlap between genes. Approximately 57% of the
genes are common to at least two databases. (B) Overlap between interactions. Only 2.8% of the interactions are reported in more than one
database.
doi:10.1371/journal.pone.0007492.g001

Table 1. Number of proteins and interactions in different
databases.

Proteins Interactions

Bioverse 8,907 393,237

STRING 16,225 1,133,702

HiMAP 5,557 36,078

doi:10.1371/journal.pone.0007492.t001

Accounting for Data Redundancy
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In order to assess the correlation structure between the

databases we divided the interactions that are reported in at least

two databases into four different subgroups: (i) interactions that are

reported in Bioverse and STRING but not in HiMAP, (ii)

interactions that are reported in Bioverse and HiMAP but not in

STRING, (iii) interactions that are reported in STRING and

HiMAP but not in Bioverse and, finally, (iv) interactions that are

reported in all three databases.

For each of these subsets we computed integrated LLS by

initially assuming independence, i.e. we applied equation 1. In

order to avoid circular reasoning we trained the individual LLS
for each database on interactions that are present in only one

database, predicted the LLS of interactions that are common (i.e.

from the sets (i) – (iv) above) and computed the integrated

predicted LLS by applying equation 1 (Figure 4). However,

because the fraction of common interactions is quite small, the

training is almost identical when including interactions that are

common to more than one database (not shown).

If the information in the three datasets was non-redundant (i.e.

if the evidences were truly independent) the predicted scores would

perfectly match the observed ones, like in the cross validation

shown above (Figure 3). However, Figure 4 clearly shows a

systematic bias. The regression lines show a systematically

increasing overprediction of the true likelihood scores.

If two databases use the same data source for predicting an

interaction, the naive Bayes model accounts twice for the same

information, which leads to an overestimation of the true

interaction probability. Figure 4 also shows that the bias is very

similar for the different combinations of interactions reported in

two databases (i–iii), suggesting that the degree of redundancy is

similar among them. Consistently, interactions that are reported in

three databases tend to be overestimated even more than

interactions reported in two databases.

For further investigating the sources of redundancy we calculated

the correlations of scores from the input databases for the portion of

Figure 2. Diagram depicting the steps of log-likelihood score
(LLS) calculation. Initially log-likelihood scores were calculated for
each database independently. A naive Bayes classifier was applied to
the individual data sets for mapping the interaction confidence onto a
common scale. Subsequently a linear correction was applied to LLS
obtained from more than one database.
doi:10.1371/journal.pone.0007492.g002

Figure 3. Cross validation. Three-fold cross validation was applied
for each of the three databases independently. Training of the LLS
prediction was done based on two-thirds of the reference data. The x-
axis represents the predicted LLS from the training parameters while
the y-coordinate represents the actual enrichment with true positives in
the test set. The data were binned in five bins and the dots show the
respective LLS for each bin. The color indicates the source database.
For all three datasets predicted and observed results are very close to
the ideal case (solid line). The correlation coefficients between
predicted and true LLS are reported in the figure legend.
doi:10.1371/journal.pone.0007492.g003

Figure 4. Estimating feature dependencies. The plot of observed
versus estimated LLS for all four subgroups of integrated interactions
illustrates the dependencies between the three different datasets as
well as the linear correlation between predicted and observed log-
likelihood scores. The approach is the same in as Figure 3 with the
difference that the test set is limited to common interactions. Linear
correlation coefficients (R2) are reported in the legend.
doi:10.1371/journal.pone.0007492.g004
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the redundant data (Table 2). Unfortunately, STRING is the only

database that provides details on how individual interaction scores

are composed. Bioverse and HiMAP provide only an integrated

score, making it impossible to assess the correlation between

individual evidences in the different data sources, or to eliminate the

common ones. The correlation coefficients show no correlation

between Bioverse an HiMAP and the different STRING inputs,

suggesting that we cannot just exclude inputs from the redundant

data sources in order to correct for the bias.

Though the observed scores for integrated evidence do not

coincide with the predicted ones (as shown in Figure 4), the bias is

linear in the log-space. This observation suggests applying a linear

correction of LLS that are based on more than one database in

order to account for the redundancy between the databases.

Thus, after summing the LLS from the individual databases, we

perform a linear regression against the actual enrichment of true

positives as shown in Figure 4. The regression parameters (slope and

intercept) are then used to correct the predicted LLS. Importantly,

we perform a separate regression and correction for each database

pair and for interactions common to all three databases.

0.3 Assessing the linear bias correction
In order to independently quantify the impact of the dependency

between the data sources on our prediction and for scoring the

success of our correction, we could not apply a cross validation, due

to the small overlap between the common interactions and the

‘Gold Standard’. Thus, we utilized three other sets of interactions

that are based on experimental evidence but are distinct from our

previous reference dataset. The first one consists of human

interactions from the MIPS CORUM database (Comprehensive

Resource of Mammalian protein complexes) [16]. The MIPS

CORUM database is a resource of manually annotated protein

complexes from mammalian organisms. We used the Core Set, that

is a reduced dataset which is essentially free of redundant entries,

and consists of 2,235 proteins. After using the ‘matrix model’ we

obtained 28,490 binary interactions. The ‘matrix model’ [17]

assumes that any two proteins within a complex have a pairwise

interaction. The second dataset is derived from HPRD and includes

protein interactions measured in vitro or with Y2H experiments,

after excluding all interactions that were already used in the

previous positive reference set. The last dataset is derived from

IntAct [18] by using interactions that are described as ‘Physical

interactions’ in the field ‘Interaction type’. We merged these three

datasets and obtained a total of 60,327 interactions. In order to test

the success of our correction for the four different redundant subsets

we split this second benchmark dataset in two subsets. The first one

contains all interactions reported in only one of the input data sets

(‘unique interactions’) and the second one consists of interactions

reported in more than one database (‘common interactions’).

Ideally, the predicted LLS should be close to the true one and the

predictive performance of the training based on HPRD in vivo

interactions should be the same for both, common and unique

interactions. A large difference between ‘unique’ and ‘common’

indicates a bias. If the data were completely correlated, using the

maximum instead of the sum of the LLS would be a better

predictor of the true likelihood. In order to asses the correlation

between different common evidences and compare the ‘maximum

score’ approach with our corrected bias method we tested the

success of this approach for the ‘common interactions’ dataset.

Figure 5 shows the correlation between the LLS obtained after

training with the HPRD in vivo interactions and the actual

enrichment of true positives using our second benchmark data set.

The corrected LLS of the common interactions are more consistent

with scores from the unique interactions and they are closer to the

unity line (diagonal) than the uncorrected sum of scores (Naive

Bayesian approach) or the maximum. Hence, the linear correction

is successfully reducing the bias introduced by the partial

redundancy between the databases. Using the maximum also

reduces the overprediction bias considerably. However, in several

cases the scores are less consistent with the scores of the ‘unique’

edges (Figure 5). This is an issue when scores between ‘unique’ and

‘common’ edges are compared in subsequent analyses. This

assessment is also supported by the findings from the correlation

between different individual data sources (Table 2). The ‘maximum

approach’ assumes a perfect correlation between the features, which

is not the case for our data. Finally this assessment shows that the

correction is not strictly dependent on a single training

dataset.

0.4 Evaluating the predictive power of the bias correction
After training the Bayesian predictor and applying the bias

correction we set out to assess the predictive power of this

Table 2. Correlation of scores from different evidences.

neigh fus cooc coexp exper dbase txt STRING HiMap Bioverse

neigh - 0.3256 0.2118 0.1068 0.1191 0.0137 0.0383 0.1869 0.018 0.0052

fus - - 0.0816 0.0247 0.0057 6e-04 0.0039 0.1 0.0042 4e-04

cooc - - - 0.0156 0.0186 0 0.0814 0.1407 2e-04 0.0036

coexp - - - - 0.0243 0.0101 0.0027 0.0015 0.005 0.006

exper - - - - - 0.0082 0.1384 0.5073 0.0264 0.1158

dbase - - - - - - 0.0045 0.2386 0.0057 2e-04

txt - - - - - - - 0.6146 0.0313 0.1043

STRING - - - - - - - - 0.028 0.1946

HiMap - - - - - - - - - 0.0199

The linear correlation coefficients (R2) for the redundant interactions. Information for individual experimental inputs is available only for STRING. The first eight columns

correspond to the individual STRING datasources, while the column named ‘STRING’ refers to the integrated score provided by the database. Bioverse and HiMAP

provide only one integrated score. Abbreviations. neigh: neighborhood, fus: fusion, cooc: cooccurence, coexp: coexpression, exper: experimental, dbase: database, txt:

textmining.
doi:10.1371/journal.pone.0007492.t002
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method for the interactions having at least two evidences. We

applied a three-fold cross validation to assess our bias

correction. The training sets were used for computing the

correction parameters and the success of the correction was

subsequently tested on the remaining edges. Additionally, we

tested the integrated interactome, along with the three

individual interactomes, on the second, independent reference

interactions from above (HPRD non-in vivo interactions, MIPS

CORUM, and IntAct). Figure 6 shows the cumulative

precision and recall of the three individual databases and the

integrated scoring after correcting for the dependency between

the databases for both cases.

In order to assess the generality of the bias correction across the

genome and to avoid pair associated biases we measured the recall

of genes rather than interactions [11]. The integrated model

clearly outperforms any of the individual databases in both cases.

In particular it achieves a better precision than any of the

individual databases at almost any level of recall. When testing on

Figure 5. Assessing the linear bias correction. Linear regression plots for trained (predicted) versus tested LLS based on a second,
independent reference data set for the different combinations of redundant subsets. Red line: interactions reported in only one database. Green and
blue line: corrected and uncorrected LLS for interactions reported in at least two databases. Orange line: Using the maximum of the individual LLS
instead of the sum. Ideally, all predictions should be along the diagonal. The bias corrected scores are clearly better predictors of the true interaction
likelihood.
doi:10.1371/journal.pone.0007492.g005

Accounting for Data Redundancy
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Figure 6. Benchmarking the integrated interactome. (A) Cross validation based on the HPRD in vivo reference set. (B) Training on HPRD in
vivo, testing on independent reference set (see main text for details). We divided the test dataset in 20 bins based on their descending log-likelihood
score and assessed the cumulative precision and recall for each successive bin for the corrected score and for the scores derived from training the
individual databases. The integrated network shows equal or better overall performance. The maximum F-score of each network is reported in the
legend. The F-score (2 � precision � recall= precisionzrecallð Þ) is an integrated measure of the predictive power.
doi:10.1371/journal.pone.0007492.g006
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the independent reference set, the integrated interactome achieves

a recall of 80%, which is significantly higher than the maximum

recall of any of the individual databases (STRING: 74%, Bioverse:

41%, HiMAP: 26%).

Discussion

By combining the information from different databases that

independently predict gene interactions it is possible to signifi-

cantly increase the coverage and significance of such networks.

Even though such databases rely on partially overlapping

information they score largely distinct sets of interactions.

In this study, we integrated information from three different

interaction databases, STRING, Bioverse and HiMAP and

created a joint network consisting of 17,491 human genes and

1,518,168 interactions. In order to map the confidence scores from

the individual databases onto a common probability scale we used

a Bayesian approach. A Bayes classifier has the benefit of easily

integrating diverse features, dealing with missing values and being

readily interpretable and computationally inexpensive.

One of the major considerations when combining different

features was whether or not we should take conditional

dependencies into account. Lu et al. [19] suggest that correcting

for conditional dependencies, when predicting protein interac-

tions, does not significantly improve the performance. Specifically

they addressed this question by comparing the performance of a

simple Naive Bayes classifier (SNB) with that of a boosted Naive

Bayes classifier (BNB) [20]. Boosting approximates the best linear

combination of all possible weak classifiers (e.g different features)

via maximum likelihood on a logistic scale, thereby solving

statistical dependence problems [21]. Thus, a boosted Naive

classifier is more resistant to redundant information between

evidences. However, Lu et al. showed that their SNB performs

almost as well as the BNB for weakly dependent yeast protein-

protein interaction data. Hence, previous work was suggesting that

the dependence between evidences can largely be ignored when

using a Bayesian classifier for predicting gene interactions [22].

The main difference between previous work and this study is that

we are integrating databases that are partly relying on identical

data. Our study shows that the conditional dependency cannot be

ignored when combining databases that rely on partly overlapping

input data. Fortunately, this bias can be removed by applying a

simple linear correction to the integrated log likelihood scores

derived from the naive Bayes classifier. When comparing the

prediction accuracy of the Naive Bayesian approach against the

corrected Bayesian approach, the latter was performing signifi-

cantly better. This is important because, though the interactions

that are reported in more than one database cover only 3% of the

total predicted interactome, they are creating a network of 43,741
high scoring interactions which is important for follow up analyses

requiring high confidence interactions. Further, only after

applying our correction, scores of ‘common’ interactions become

comparable to scores of ‘unique’ interactions.

Materials and Methods

0.5 Data Collection
Information about gene associations was collected from

STRING [12,23] (version 8.0), HiMAP [13] (version 1.0), and

Bioverse [14,24] (version 2.0). No filtering criteria were applied

when integrating the three databases, i.e. even low-scoring

interactions were included. All gene identifiers were mapped to

ENSEMBL gene IDs. Interactions involving genes that have no

ENSEMBL gene ID were discarded.

STRING uses a variety of methods for predicting protein

associations: Genomic Context (like gene fusion, phylogenetic co-

occurrence, conserved neighborhood), high-throughput experi-

ments (Y2H), conserved co-expression in different conditions,

previous knowledge (database imports and and literature co-

occurrence), and observed interaction of orthologous genes in

other species. A final combined (Bayesian) score is calculated to

integrate the individual scores.

HiMAP includes approximately 39,000 interactions of human

genes, which are predicted based on model organism interactions

(Saccharomyces cerevisiae [25–28], Drosophila melanogaster [29] and

Caenorhabditis elegans [30]), co-expression matrices from ONCO-

MINE [31,32], shared biological function from Gene Ontology

[33] and information about enriched domain pairs from InterPro

[34].

Bioverse uses a method for predicting protein-protein

interactions similar to the interolog method [35–37]. Interactions

were predicted when each member of an experimentally derived

interaction was found to be similar with different interaction

candidates in the query interactome. A score based on the

similarity score was calculated for assessing the interaction

probability.

0.6 Reference dataset
Like any other supervised method, Bayesian integration requires

a reference (‘Gold Standard’) data set (both for positive and

negative interactions). Such set of trusted reference interactions

should have a sufficient size which allows for statistically reliable

predictions, no systematic bias, and be as reliable as possible. We

used interactions from the Human Protein Reference Database

(HPRD) reported as in vivo as our gold-standard for positive

interactions (17,547 interactions in total). By using in vivo

interactions only we constrained the positives to a set of well

defined and accurate PPIs.

The construction of negative training sets for protein interaction

prediction is a notorious problem [10,38], because many

interactions that are not reported in the databases may actually

be true positives due to our incomplete knowledge. We therefore

restricted the construction of the negative training set to the same

proteins as in the positive training set. Given that the proteins in

the HPRD in vivo dataset have been individually studied we

reasoned that comparably few interactions of these proteins are

unknown. Hence, interactions among these proteins that are not in

our positive control set, are more likely to be true negative

interactions.

0.7 Log-likelihood calculation - Bayesian approach
In order to combine information from the three different data

sets we calculated log-likelihood scores as described previously

[10,22]. Likelihood scores quantify the ability of evidences to

predict protein interactions by measuring the ratio of ‘true to false

number of interactions’ for a benchmark set with that specific

evidence.

Each of the three input databases is considered as distinct

evidence and initially the predictive power of all three evidences is

estimated independently from each other. According to the

Bayesian rule the posterior odds of interaction are analogous to

the prior odds and the likelihood score (ratio, LS)

Opost~Oprior � LS ð2Þ

where

Accounting for Data Redundancy
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LS~P E=Tð Þ=P E=T ’ð Þ ð3Þ

Oprior~P Tð Þ=P T ’ð Þ ð4Þ

and

Opost~P T jEð Þ=P T ’jEð Þ ð5Þ

Hence, when transforming to logarithmic scale we get:

LLS~log
P T jEð Þ=P T ’jEð Þ

P Tð Þ=P T ’ð Þ

� �
ð6Þ

where P EjTð Þ and P EjT ’ð Þ are the probabilities of an interaction

to have the evidence, given that the interaction is true or false (to

belong to the positive or the negative reference data set) and

P T jEð Þ and P T ’jEð Þ are the probabilities of an interaction to be

true or false, given the evidence exists, while P Tð Þ and P T ’ð Þ
represent the prior probabilities of an interaction to belong to the

positive or negative set, respectively, in comparison to the whole

interaction space. The prior probabilities are obtained from the

fractions of positive and negative interactions in the reference set.

Note that equation 2 computes the ratio of two Bayes factors. Log-

likelihood scores can be used as uniform scoring schemes between

interactions and as measures for weighting each individual feature

according to its reliability. LLS with values greater than zero

indicates that interactions with the given evidence score are more

likely to be true than false interactions.

Calculating LLS means adjusting different evidences to a

common benchmark. That makes the different scores comparable

even if they initially are of a different nature.

In order to train for log-likelihood calculation we used the

interactions that are present both in the dataset serving as evidence

and in the positive or negative reference datasets. These

interactions were binned, while ensuring that each bin includes

the same number of interactions. Binning allows us to estimate the

conditional expectation of the dependent variable given the

independent variable, i.e. apply equation 6. After calculating the

LLS for each bin we applied a linear regression using the original

database scores as the independent and the LLS trained on our

common reference set as the dependent variable. This regression

was subsequently used for predicting the LLS of new interactions

(i.e. interactions not part of the reference dataset).

0.8 Linear bias correction
We applied a linear regression between observed and predicted

scores for interactions with more than one evidence in order to

correct for feature dependencies. First, we computed a predicted

LLSpred by summing the LLS from the individual databases

(Naive Bayesian model),

LLSpred~
X

LLSi: ð7Þ

Next, we computed the correlation between the predicted and

true LLS based on the ‘common’ interactions,

LLStrue~a � LLSpredzb: ð8Þ

Finally, the parameters a and b were used for correcting for the

bias.
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