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Abstract

Background: In metabolomics researches using mass spectrometry (MS), systematic searching of high-resolution mass data
against compound databases is often the first step of metabolite annotation to determine elemental compositions
possessing similar theoretical mass numbers. However, incorrect hits derived from errors in mass analyses will be included in
the results of elemental composition searches. To assess the quality of peak annotation information, a novel methodology
for false discovery rates (FDR) evaluation is presented in this study. Based on the FDR analyses, several aspects of an
elemental composition search, including setting a threshold, estimating FDR, and the types of elemental composition
databases most reliable for searching are discussed.

Methodology/Principal Findings: The FDR can be determined from one measured value (i.e., the hit rate for search queries)
and four parameters determined by Monte Carlo simulation. The results indicate that relatively high FDR values (30–50%)
were obtained when searching time-of-flight (TOF)/MS data using the KNApSAcK and KEGG databases. In addition, searches
against large all-in-one databases (e.g., PubChem) always produced unacceptable results (FDR .70%). The estimated FDRs
suggest that the quality of search results can be improved not only by performing more accurate mass analysis but also by
modifying the properties of the compound database. A theoretical analysis indicates that FDR could be improved by using
compound database with smaller but higher completeness entries.

Conclusions/Significance: High accuracy mass analysis, such as Fourier transform (FT)-MS, is needed for reliable annotation
(FDR ,10%). In addition, a small, customized compound database is preferable for high-quality annotation of metabolome
data.
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Introduction

In recent metabolomics studies using mass spectrometry (MS),

advances in high-resolution MS, including time-of-flight (TOF)- [1],

Orbitrap- [2], and Fourier transform ion cyclotron resonance (FT-

ICR)-MS [3], have made it possible to acquire metabolome data

with accurate mass-to-charge ratios (m/z) [4–6]. In metabolomics

research using metabolic fingerprinting and differential metabolo-

mics techniques, such as disease diagnosis [7] and marker discovery

[8], structural elucidation of no or only a small number of selected

metabolites may be performed, because the primary goal of the

analysis is evaluation of similarities and/or differences in the entire

metabolome dataset across samples. On the other hand, compre-

hensive annotation of metabolite signals is required in metabolomics

research to describe a metabolic event occurring in a target organ in

as detailed a manner as possible. However, many metabolite signals

in raw metabolome data cannot be identified through chromato-

graphic and spectroscopic comparison with that of standards,

especially in plant metabolomics studies dealing with secondary

metabolites [3,9]. To elucidate the structure of metabolite signals

prior to the isolation of metabolites, MS data, including tandem

mass spectra and high-resolution mass data, has been utilized [4].

Whereas the acquisition of MS/MS spectral data often requires

additional effort, high-resolution mass data are available from the

metabolic profile data itself. Thus, systematic searching of high-

resolution mass data against compound databases is often the first

step of metabolite annotation to determine elemental compositions

possessing similar theoretical mass numbers [3,10–15]. The

deduced elemental compositions are then adopted for ‘‘identifica-

tion’’ or ‘‘annotation’’ of metabolome signals using the compound

nomenclature system proposed by the Metabolome Standard

Initiative (MSI) [16]. Although putative elemental compositions
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could be assigned to many metabolite signals using these methods, it

should be noted that incorrect hits (i.e., false positives) derived from

errors in mass analyses will be included in the search results [17].

When the false positive rate for the elemental composition search

results as a whole is relatively high, caution should be used in

applying the search results for metabolite annotation. In addition,

quality evaluation of the search results is essential in understanding

the basic aspects of the elemental composition search, including

setting a suitable threshold, the accuracy of MS analysis required for

reliable searching, and the types of elemental composition databases

that will provide the most reliable results. Therefore, evaluation of

false discovery rates (FDRs) in elemental composition search results

is essential to minimize misinterpretation of metabolome data.

Despite its importance, the FDR issue has not been sufficiently

considered, likely due to lack of relevant methodology. In the field of

proteomics, FDRs have been estimated for peptide identification

results derived from database searches of peptide MS/MS spectra

[18]. A commonly used method is to search the set of peptide MS/MS

spectra against an original (target) protein database as well as a decoy

database, which is a database of reversed amino acid sequences of the

target database [19,20]. Because hits in decoy databases are random,

FDRs have been determined by comparing the number of query hits

in the decoy and target databases [21]. The decoy data must be

conceivable peptides, but never an exact result of a search; therefore, a

complete peptide database created from the genome sequence is

needed. On the other hand, the creation of a decoy database for an

elemental composition library would likely be difficult, because a

‘‘decoy’’ molecular formula (a compound-like formula) could not be

distinguished from the formula of an actual metabolite. Thus, a

different strategy is required to deduce the FDR for the results of an

elemental composition search. In this study, a novel methodology for

FDR evaluation is presented, considering several aspects of an

elemental composition search against a compound database.

Results

Density and completeness of compound databases
FDRs of elemental composition search results are expected to

be affected by three factors: (i) accuracy of the mass analysis of the

query metabolome data (s), (ii) width of the threshold for

searching (Dthres), and (iii) the properties of the compound

database. When the analytical error is larger than the threshold

value, the molecular formula search will not obtain a correct

answer from the database (i.e., a false negative). The false negative

rate can be estimated from (i) the mass accuracy and (ii) the search

threshold. For example, when the Dthres = 2.0s, false negatives can

be deduced to be approximately 5%, assuming a normal

distribution of mass analysis errors. On the other hand, the

frequency of false positives depends on the ‘‘density’’ of the

database (the number of molecular formulae within a specific

nominal mass window), in addition to the mass accuracy and

search threshold. As shown in Figure 1, in contrast to two

databases with sparse molecular formula entries, KEGG Com-

pound [22] and KNApSAcK [23] (5,547 and 6,544 unique

molecular formulae, respectively), PubChem (473,108 formulae)

[24] is very crowded with an abundance of molecular-formula

entries. This density suggests that a PubChem search will produce

a larger number of false positives than searching against either

KEGG or KNApSAcK (Fig. 1).

In addition, the ‘‘completeness’’ of the compound database must

be taken into consideration, because relatively small compound

databases such as KEGG and KNApSAcK may not provide exact

results, due to having incomplete collections of compound data.

Even if a compound database does not include an exact match, false

positives can occur. In this study, the completeness of compound

databases for plant metabolomics studies was roughly estimated

using the following procedure. The current version of KNApSAcK,

a collection of literature phytochemical data [23], contains 23,127

compounds and 6,544 unique molecular formulae. If a future

version of KNApSAcK included all naturally occurring phytochem-

ical compounds (approximately 200,000–400,000 compounds)

[25,26], it is estimated that the number of unique molecular

formulae would be 25,000–36,000, based on an extrapolation of the

simulated growth curve of KNApSAcK (Fig. 2). Accordingly, the

completeness of the current version is estimated to be 19–28%

(6,914/36,000 to 6,914/25,000). These results suggest that Pub-

Chem is too large and KNApSAcK and KEGG are too small to

perform an accurate molecular formula search of plant metabolome

data. To further enrich the small databases, additional phytochem-

ical-like formulae were generated in this study through in silico

‘‘derivatization’’ of KNApSAcK data, as implemented in LipidBank

[27]. Within the large elemental composition space theoretically

available, we assumed that a molecular formula located near the

current KNApSAcK region should be included in the completed

KNApSAcK. For example, hydroxylated (+O) derivatives of each

current KNApSAcK entry were likely to be included in the complete

KNApSAcK. Many phytochemical-like molecular formulae were

generated by hydroxylation (+O), dehydroxylation (2O), methox-

ylation (+CH2O), glucosylation (+C6H10O5), and dehydration

(2H2O) of existing KNApSAcK entries. In addition, generated

elemental compositions not included in the PubChem database were

discarded to remove elemental compositions not likely to correspond

to actual compounds. Consequently, a new database (called

‘‘KNApSAcK plus’’) containing a total of 18,312 formulae derived

from original and derivatized KNApSAcK entries was created.

Theoretical background of molecular formula searches
Based on the above, the results of a molecular formula search can

be divided into six classes [Cn represents the percentage of queries

classified into Class n (n = 1–6)] by the Yes-No scheme shown in Fig. 3.

Here, a, b, c1, c2, and c3 are defined as the branching ratios at A, B,

C1, C2, and C3 respectively. Among a set of queried m/z values,

some will not have a corresponding entry in the database, due to its

low completeness (branch point A, left). For these cases, the results of

the molecular formula search should be ‘‘no hit’’ (Class 1, C1), but

false positives will occur in some cases (C2) (branch point C1). Even

when the database contains the correct answers (branch point A,

right), some of the queries will fail to be matched with the correct

entries (false negatives) due to large analytical errors (branch point B,

left). For these false negatives, there are two remaining possibilities for

the search results (branch point C2), including no hits (C3) and false

positives (C4). Among the queries that receive correct answers (branch

point B, right), the most favorable result is an exact match without

false positives (C5, branch point C3, left). However, additional false

positives are likely, depending on the density of the database (C6,

branch point C3, right).

The percentage of queries that match any molecular formula

(total hits, T) is defined as:

T ~ number of queries that match any molecular formula½ �=

total number of queries½ �
ð1Þ

Theoretically, this percentage can be expressed as:

T ~ C2 z C4 z C5 z C6 ~ 1 { C1 { C3

T ~ 1 { 1 {að Þ 1 { c1ð Þ { a 1 { bð Þ 1 { c2ð Þ
ð2Þ

Metabolome Annotation FDR
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The percentage of queries that matches only the correct

molecular formula (unique hits, U) is:

U ~ C5 ~ ab 1{ c3ð Þ

FDR, in terms of unique hits, can be defined as follows:

FDR ~ T { Uð Þ = T

~ T{ab 1{c3ð Þð Þ = T
ð3Þ

These equations indicate that FDR can be calculated from T

and the branching-ratio parameters. In this study, the branching-

ratio parameters were determined by employing a Monte Carlo

simulation of an elemental composition search of metabolome

data, as follows:

(i) Random sampling was conducted of molecular formulae

from the KNApSAcK database.

(ii) Phytochemical-like molecular formulae were generated

through random selection of derivatization methods,

including hydroxylation (+O), dehydroxylation (2O),

methoxylation (+CH2O), glucosylation (+C6H10O5), and

dehydration (2H2O).

(iii) A mass analysis simulation was conducted using the

following model:

msimulated ~ mtheol z N 0,sð Þ

where msimulated and mtheol represent the simulated and

Figure 1. Density of unique molecular formula (weight) data around 289, 290, and 291 Da. (A) KEGG Compound (12,382 compounds and
5,547 unique molecular formulae comprising C, H, N, O, S, and P), (B) KNApSAcK (23,127 compounds and 6,544 unique formulae), and (C) PubChem
Compound (19,140,080 compounds and 473,108 unique molecular formulae) datasets. Vertical lines represent the monoisotopic molecular weights
for each entry. The total number of molecular formulae near each molecular weight is indicated above the group of vertical lines.
doi:10.1371/journal.pone.0007490.g001

Metabolome Annotation FDR
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Figure 2. Simulated growth curve for KNApSAcK data. (A) Simulated relationship between the number of compounds in KNApSAcK (y-axis)
and unique molecular formulae (x-axis). For example, 10,000 compounds were arbitrarily extracted from the pool of all KNApSAcK entries (23,127
compounds) without repetition, and the number of unique molecular formulae was counted. This procedure was repeated 1,000 times to obtain the
average number of unique molecular formulae (3,912) associated with 10,000 compounds. Following the determination of expected numbers of
formulae for various numbers of compounds, a simulated growth curve for KNApSAcK data was generated. The equation for the approximated curve
(R2 = 9.9999) is also shown. (B) The predicted growth curve for future KNApSAcK versions. The numbers of unique molecular formulae in future
KNApSAcK databases were estimated through extrapolation of the simulated curve.
doi:10.1371/journal.pone.0007490.g002

Figure 3. Schematic classification of molecular formula search results. Among a set of queried m/z values, some will have no matches in a
database due to its low completeness (branch point A, left). For these cases, the results of the molecular formula search should be ‘‘no hit’’ (Class 1,
C1), but false positives will occur in some cases (C2) (branch point C1). Even when the database contains a match (branch point A, right), some of the
queries will fail to receive a correct response (false negatives) due to large analytical errors (branch point B, left). For false negatives, there are two
further possibilities (branch point C2), including no hits (C3) and false positives (C4). Among the queries that receive a correct response (branch point
B, right), the most favorable result would be an exact hit without false positives (C5, branch point C3, left). However, additional false positives are
likely, depending on the density of the database (C6, branch point C3, right).
doi:10.1371/journal.pone.0007490.g003

Metabolome Annotation FDR

PLoS ONE | www.plosone.org 4 October 2009 | Volume 4 | Issue 10 | e7490



theoretical m/z values of protonated molecules, respectively.

N(0, s) is the experimental error of the mass analysis

randomly generated using a normal distribution. For the

simulation, two assumptions were made: first, that all

metabolite signals were molecular weight-related ions with

protonated ([M+H]+) or deprotonated ([M-H]2) forms; and

second, that s was a constant value (mDa). The appropri-

ateness of these assumptions is discussed in the section below.

(iv) The simulated m/z value was queried as a molecular

formula search and the results were classified into the six

groups (C1–C6) following the scheme shown in Fig. 3.

(v) Steps (i) to (iv) were repeated in order 100,000 times.

(vi) Branching-ratio parameters were determined.

The branching-ratio parameters were obtained for each

molecular formula database for various experimental errors of

mass analysis (s) and searching thresholds (Dthres) listed in Table S1.

Among the five branching-ratio parameters (a, b, c1, c2,and c3), it

was determined that a was sensitive to the nature of the queried m/z

data (data not shown), indicating that a must be determined for

every metabolome data point. Eqn. (2) can be rearranged as follows:

a~ T{c1ð Þ = {c1 z b z c2 { bc2ð Þ ð4Þ

Thus, a can be determined from the simulated values for b, c1,

and c2, as well as the value of T obtained using Eqn. (1). Eqn. (3)

then becomes:

FDR ~ T { b T{c1ð Þ 1{c3ð Þ = {c1zbzc2{bc2ð Þ½ � =T ð5Þ

Thus, FDR can be determined from T and the corresponding b,

c1, c2, and c3 values previously calculated for each database using

the Monte-Carlo simulation (Table S1).

Determination of FDR for plant metabolome data
Based on the method described above, FDRs for actual plant

metabolome data were determined as follows. In a capillary

electrophoresis (CE)-TOF/MS dataset of rice seed extracts (Oryza

sativa L. cv. Sasanishiki), 178 peaks with high-resolution m/z data

were included. The accuracy of mass analysis was deduced to be

s= ,3 mDa (data not shown); thus, the m/z data were searched

against the KNApSAcK dataset employing a suitable threshold

(Dthres = 2s, 6 mDa). Among the results, at least one molecular

formula was assigned to 98 of the queries. For a KNApSAcK

search with mass accuracy s= 3 mDa and search threshold

Dthres = 6 mDa, the branching-ratio parameters (Table S1) were

b= 0.954, c1 = 0.167, c2 = 0.249, and c3 = 0.152. Consequently,

FDR was determined to be 0.29 using Eqn. (5). The results are

shown in Table 1.

Using the same procedure for a KNApSAcK search of direct-

infusion (DI)-FT/MS data (s= 0.5 mDa) derived from the root

extract of Arabidopsis thaliana, FDR was estimated to be 0.03. In

addition, FDR was deduced to be 0.58 for liquid chromatography

(LC)-Q-TOF/MS data (s= 5 mDa) for A. thaliana shoot

metabolites (Table 1).

These results indicate that the reliability of the KNApSAcK

search results for TOF-MS data (s= 3–5Da) was relatively low

(Table 1). Narrower search thresholds (Dthres = 1 or 1.5 s) did not

result in substantial improvements in annotation quality, as

demonstrated by the LC-Q-TOF/MS data (Table 1). Thus,

elemental composition search results for TOF-MS data should be

carefully applied, considering additional structural information,

when interpreting metabolome data. It has also been suggested

that one of the most straightforward ways to improve FDR is to

improve the accuracy of mass analyses. Mass analysis accuracy at

FT-MS levels (s= ,0.5–1 mDa) is likely required to obtain a

molecular formula search with a low FDR value (,10%; Table 1).

Table 1. Estimated FDRs for Molecular Formula Search Results.

Dataset Database Threshold (D) Queries with hits Percent total hits (T) Density (c3) Completeness (a) FDR FDR’ = c3/T

CE-TOF-MS KNApSAcK 2s 97 0.54 0.15 0.48 0.29 0.28

1.5s 91 0.51 0.11 0.51 0.23 0.21

1s 80 0.45 0.06 0.58 0.17 0.13

KEGG 2s 119 0.67 0.20 0.64 0.27 0.30

PubChem 2s 169 0.95 0.98 0.68 0.99 1.04

KNApSAcK plus 2s 134 0.75 0.47 0.68 0.55 0.63

DI-FT-MS KNApSAcK 2s 110 0.35 0.009 0.36 0.03 0.03

1.5s 101 0.33 0.005 0.37 0.02 0.02

1s 97 0.31 0.002 0.46 0.01 0.01

KEGG 2s 95 0.31 0.02 0.31 0.05 0.05

PubChem 2s 266 0.86 0.83 0.72 0.87 0.97

KNApSAcK plus 2s 173 0.56 0.04 0.57 0.07 0.08

LC-TOF-MS KNApSAcK 2s 106 0.53 0.33 0.35 0.58 0.62

1.5s 84 0.42 0.22 0.28 0.54 0.52

1s 63 0.32 0.12 0.28 0.48 0.39

KEGG 2s 103 0.52 0.39 0.38 0.57 0.76

PubChem 2s 198 0.99 0.99 0.90 1.00 1.00

KNApSAcK plus 2s 136 0.68 0.69 0.48 0.79 1.02

Density (c3) values were obtained from Table S1. Percentage of total hits (T), completeness (a), FDR, and FDR’ were determined using Eqns. (1), Eqns. (4), Eqns. (5), and
Eqns. (7). Results of datasets including CE-TOF-MS (Rice seeds: total number of queries: 178, s= 3 mDa), DI-FT-MS (A. thaliana roots: total number of queries: 310, s= 0.5
mDa), LC-TOF-MS (A. thaliana shoots: total number of queries: 200, s= 5 mDa) are shown.
doi:10.1371/journal.pone.0007490.t001
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Method validation
The methodology for estimating FDRs, as described in this

study, is based on branching-ratio parameters determined by a

Monte Carlo simulation of an elemental composition search.

Thus, validation of the two assumptions employed for simplifica-

tion of the simulation model is required to ensure the accuracy of

the estimated FDRs.

The first assumption was that all metabolite signals were

considered to be molecular weight-related ions with protonated

([M+H]+) or deprotonated ([M–H]2) forms. It is generally

expected that other types of ions—such as various adducts or

fragment ions—are present in the actual metabolome data. The

low completeness (a= 0.68) of the PubChem search results for the

CE-TOF/MS dataset (Table 1) was probably due to such irregular

ions. However, the presence of irregular ions does not affect the

estimated FDRs, since molecular formula of irregular ions such as

sodium adduct ([M+Na]+) are not included in databases and it

affected only the completeness parameter (a) in Figure 3. As noted

above, the parameter a was determined for every search using

Eqn. (4).

The second assumption was that the mass analysis error (mDa)

can be considered constant. Although analytical error in the field

of mass spectrometry is commonly expressed as parts per million

(ppm) [6], mass accuracy can be significantly affected by mass to

charge ratio, concentration of the compound, and the amounts of

co-eluting metabolites. Indeed, the measured errors acquired using

TOF-MS (Q-Tof Premier, Waters) were not proportional to the

m/z values (Fig. 4). This suggests that the absolute unit (mDa)

rather than the relative unit (ppm) is more suitable for defining

threshold values for molecular formula searches. However, this

second assumption is not valid in the strictest sense. In this study,

to evaluate the appropriateness of the FDRs estimated on the basis

of this simplified model, search results for the CE-TOF/MS

dataset (database: KNApSAcK, s= 3 Da, Dthres = 6 Da, Table 1)

were compared with annotation information for authentic

compounds. The elemental compositions of 59 peaks out of 97

hits were confirmed matches to those of authentic standards (data

not shown). Because metabolite annotations by authentic com-

pounds are still incomplete, the FDR deduced from the results

[(98259)/98 = 0.39] is roughly consistent with the estimated FDR

(FDR = 0.29), suggesting that the second assumption is reasonably

valid for estimation of FDRs.

Performance of isotope ratio filtering
Recently, it has been suggested that isotope ratio filtering may

be a useful approach for improving FDR [1,3]. Metabolites

derived from living organisms contain naturally occurring stable

isotopes. Because the theoretical ratio (i = [M+1]/[M]) of single

stable isotope-labeled molecules (M+1) to monoisotopic molecules

(M) is unique to each formula, the false positive rate of the

molecular formula search can be reduced through comparison of

theoretical and measured i values. Indeed, it has been reported

that isotope ratio filtering is key to reducing the number of

candidate molecular formulae when searching an artificial

database [17]. Moreover, the isotope filtering technique has been

employed for annotating actual metabolome data [1,3]. However,

the performance of isotope filtering and the accuracy required for

determining the isotope ratio have not been well investigated

[1,17,28].

To investigate the potential of isotope ratio filtering, the Monte

Carlo simulations described above were repeated. Following

generation of phytochemical-like molecular formulae from

KNApSAcK via random selection of a derivatization method,

simulated m/z values were searched against the KNApSAcK and

PubChem databases, employing accuracies of mass analysis and

search thresholds corresponding to FT-MS (s= 1 Da and

Dthres = 2 Da) and TOF-MS (s= 5 Da and Dthres = 10 Da). For

false positives at the branch points C1–C3 in the scheme shown in

Fig. 3, the ratios (i = [M+1]/[M]) of single stable isotope-labeled

molecules (M+1) to monoisotopic molecules (M) of the query

formula (iQ) and those of the false positives (iFP) were estimated

using the following equation:

i~0:0107=0:9893|Cnz0:00015=0:99985|Hnz0:00368=

0:99632|Nnz0:00038=0:99757|Onz0:0076=0:9493|Sn

where Cn, Hn, Nn, On, and Sn represent the numbers of these

atoms in the composite formula.

The integrated frequencies of the absolute differences

(idiff = |iQ2iFP |) between iQ and iFP are shown in Fig. 5. Half

of the idiff values (y-axis) for false positives were ,,4% (x-axis)

and nearly all of the idiff values were ,10% (Fig. 5). The trends

were independent of both the target database and the search

thresholds. Therefore, highly accurate isotope ratio determina-

tion (s,2%) is needed to obtain a 50% reduction in the

frequency of false positives at branch points C1–C3. These results

indicate that isotope ratio filtering can be effective in screening

candidate molecular formulae when high-quality data with exact

isotope ratios are available.

Properties of elemental composition databases for
reliable searching

The two concepts of database, completeness and density, have

been introduced in this study to describe the properties of

molecular formula databases, corresponding to the parameters a
and c1–3 in the classification scheme shown in Fig. 3, respectively.

When c3 = c1 = c2 is assumed, Eqn. (5) can be simplified as follows:

Figure 4. Mass-to-charge ratio (m/z) dependency of the
accuracy of mass analysis. Standard deviations were calculated
from a series of m/z values for [nHCOONa+H]+ ions obtained using the
direct infusion mode of LC-Q-TOF-MS (Waters Corp.).
doi:10.1371/journal.pone.0007490.g004
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FDR’ ~ 1 = 1 { ab 1 { c3ð Þ = c3Þ½ � ~ c3 = T ð7Þ

where FDR’ represents an estimated FDR obtained using the

simplifying assumption described above. Eqn. (7) indicates that

FDR’ can be calculated from the two parameters a and c3, as b is

always 0.95 when Dthres is set to 2s. The relationships among

FDR’, completeness (a), and density (c3) in the elemental

composition search results are shown in Fig. 6. For example, for

a and c3 values for a KNApSAcK search of LC-TOF/MS data

(Dthres = 10 mDa, s= 5 mDa) of 0.35 and 0.33, respectively

(Table 1), FDR’ can be determined to be 0.59 by looking up the

corresponding column (a= 0.35) and row (c3 = 0.32) as shown in

Fig. 6. The FDR’ value obtained (0.59) is essentially the same as

that of FDR (0.58) determined by the original procedure.

Fig. 6 indicates that FDR’ could be improved by lower density

(c3) and higher completeness (a) in the database. The former can

clearly be attained by searching mass spectrometry data with a

higher accuracy of mass analysis such as FT-MS. A fairly good

FDR (0.03) was obtained for the KNApSAcK search of the DI-FT-

MS dataset (a= 0.36, c3 = 0.009; Table 1 and Fig. 6), primarily

due to the low c3 values achieved by employing a narrow

threshold value for searching (Dthres = 1 mDa, s= 0.5 mDa). The

latter strategy (higher completeness, a) requires further enrichment

of the molecular formula database, which is inevitably accompa-

nied by an increase in the density of the database (c3). Indeed,

molecular formula searches of the DI-FT/MS dataset using

PubChem afforded results with high completeness (a= 0.72).

However, the FDRs were at unacceptable levels for practical use

(0.87) because of the very high c3 values (0.83) associated with the

high density of the database (Table 1 and Fig. 6). Thus, the quality

of the molecular formula search results depends greatly on the

properties of the database. It is also apparent that a database with

high completeness (a) and low density (c3) would be preferable for

performing a high-quality search. Therefore, molecular formula

databases should not include useless entries, and a small,

customized compound database suitable for the specific research

purpose is preferable to a large, all-in-one database.

However, the completeness of the current KNApSAcK and

KEGG Compound databases are not sufficient for fully annotating

metabolome data. Thus, derivatization of the molecular formula

database was attempted by creating KNApSAcK plus. The results

of the molecular formula search indicated that completeness (a)

had improved compared to the original KNApSAcK (Table 1 and

Fig. 6). However, FDR also significantly increased, suggesting that

the number of useless entries was increased by database

derivatization.

Discussion

A novel method for evaluating the FDR of the results of an

elemental composition search of metabolome data obtained by

MS is presented in this paper. Based on the FDR analyses, several

aspects of an elemental composition search, including setting a

threshold, estimating FDR, and the types of elemental composition

databases most reliable for searching are discussed in the following

sections.

Setting a search threshold
To maintain a false negative rate of 5%, the threshold for

searching (Dthres) must be twice the standard deviation of the

analytical error of mass analysis (s). Thus, evaluation of the mass

analysis accuracy of the queried metabolome data is essential

before performing an elemental composition search. Applications

of lower thresholds for searching (Dthres = 1 or 1.5 s) did not

substantially improve low-quality annotations, as demonstrated for

the LC-Q-TOF/MS data (Table 1).

Estimating FDR
In this study, we developed a novel method for determining

FDRs of molecular formula search results that can be applied to

actual metabolome data (Table 1). The methodology is based on

branching-ratio parameters determined through a Monte Carlo

simulation of elemental composition searches. Although the

simulation model employed in this study has been validated, it is

expected that the estimated FDRs contain some error derived

from the simplifying assumptions of the simulation model. Further

improvements in the simulation model of mass analysis will enable

more exact estimation of FDRs.

The evaluation of FDRs in plant metabolome data indicated

that, although accurate mass data obtained by TOF-MS have

been widely used in assigning elemental compositions, a careful

treatment of search results is required to preclude incorrect

interpretations of metabolome data because of the relatively high

FDRs for these results [9]. On the other hand, annotations of FT-

MS data are sufficiently reliable for searches of relatively small

databases. Recently, Orbitrap mass spectrometers have been

employed for metabolome analyses [2,29–31]. Although metabo-

lome data derived from Orbitrap-MS were not analyzed in this

study, the high mass accuracy (1–5 ppm) of the analyzer should

allow a molecular formula search with low FDR. FDRs for

elemental composition search results of Orbitrap data can be

estimated by the present method because the branching-ratio

parameters for high mass accuracy data are available in Table S1.

Figure 5. Absolute differences between the theoretical isotope
ratios of the query formulae and the false positives. Results are
shown for molecular formulae in the KNApSAcK (circles) and PubChem
compound (squares) datasets, with FT-MS (s = 1 ppm and
Dthres = 2 ppm, closed symbols) and TOF-MS (s = 5 ppm and
Dthres = 10 ppm, open symbols) accuracies of mass analyses. The x-axis
represents the idiff (idiff = |iQ2iFP |) threshold and the y-axis represents
the percentage of idiff lower than the threshold among 1,000 pairs of
query formulae and false positives.
doi:10.1371/journal.pone.0007490.g005
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Features of elemental composition databases supporting
reliable searching

The estimated FDRs indicated that the quality of search results

can be improved not only by performing more accurate mass

analysis but also by modifying the properties of the compound

database (Table 1). The low percentages of total hits (T) for the

KEGG and KNApSAcK searches were a result of the low

completeness of these databases, and it has been theoretically

determined that FDR levels can be improved by using databases

with higher completeness (Fig. 6). This requires further enrichment

of the molecular formula database entries. However, such

enrichment is inevitably accompanied by an increase in the

density of the database, resulting in higher FDRs (Table 1, Fig. 6).

Thus, the molecular formula database should not include useless

entries. For example, synthetic drug entries in PubChem would

reduce the effectiveness of a plant metabolome data search.

Conversely, phytochemical entries would be useless for studies

analyzing residual drugs in food samples, suggesting that a small,

custom-made compound library suitable for the specific research

purpose is preferable to a large, all-in-one database. However, as

Figure 6. Relationships among the false discovery rate (FDR’), completeness (a), and density (c3). A search threshold Dthres = 2s was used.
The estimated FDR’s can be obtained by cross-checking the corresponding columns (a) and rows (c3). Results for four representative cases are shown.
doi:10.1371/journal.pone.0007490.g006
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noted above, compound entries in customized databases such as

KNApSAcK are currently not sufficient for full annotation of

metabolome data (Table 1). This problem was overcome, at least

in part, by using KNApSAcK plus, which was generated using in

silico derivatization of the metabolite database, as implemented in

LipidBank [27]. The levels of T improved from the original

KNApSAcK, but the FDRs also slightly increased (Table 1). These

results indicate that one of the most useful methods for developing

a high-quality database for plant metabolomics study is careful

collection of phytochemical as well as species-metabolite relation-

ship information, such as in KNApSAcK [23].

It is noteworthy that elemental composition search is not

sufficient for full elucidation of metabolite structure. Additional

information, such as isotope filtering [1,3], determination of the

carbon number using plant samples grown on 13C-labeled

medium [32,33], and application of tandem mass spectra data

[34–37], facilitate determination of a unique molecular formula.

Among these methods, this study demonstrated that exact

determination of an isotope ratio is required to perform effective

isotope filtering (Fig. 5). Even if a single formula is deduced,

additional tandem mass spectra data as well as literature

information is required for more detailed metabolite elucidation

from among the many possible structural isomers [38–41].

However, the elemental composition search is important as the

first step of metabolite annotation. An assessment of FDR and

improving the quality of elemental composition search results is

one basis for characterizing, annotating, and further identifying

metabolite signals in metabolome data.

Materials and Methods

Development of compound databases
The PubChem Compound (08/07/15 version) and KEGG

Compound (08/08/15 version) datasets were obtained from the

NIH (http://pubchem.ncbi.nlm.nih.gov/) and KEGG (http://

www.genome.jp/kegg/) web sites, respectively. The KNApSAcK

(KS, 08/08/22 version) dataset was produced by our group and is

available online (http://kanaya.aist-nara.ac.jp/KNApSAcK/).

Following the removal of non-small molecule entries, structural

isomers with identical molecular formulae were combined into one

entry. To remove manmade compounds, lists of molecular

formula comprising C, H, N, O, S, and P were obtained and

used for the analyses. All data processing was performed using in-

house Perl scripts and Microsoft Excel 2002.

Determination of FDRs
The FDRs for the elemental composition search results of actual

metabolome data were determined using the following procedures:

(i) Evaluate the mass analysis accuracy of the metabolome

data (s).

(ii) Perform a molecular formula search against each of the

databases using a suitable threshold value (Dthres =s, 1.5s,

or 2s).

(iii) Calculate the parameter T using Eqn. (1).

(iv) Determine FDR using Eqn. (3) and the values for the

branching-ratio parameters (b, c1, c2, and c3) listed in

Table S1.

Metabolome analyses
Dehulled rice seeds (Oryza sativa cv. Sasanishiki) were extracted

and analyzed using CE-TOF/MS as previously described [42].

DI-FT/MS data were acquired as part of a previous study [12].

Arabidopsis thaliana (Col-0 ecotype) seedlings were grown on 1/2

MS medium plates at 20uC with a 16-h daily photoperiod. Two

weeks after germination, whole tissues of 20 seedlings were

collected, weighed, and used for the metabolic profiling analysis of

LC-Q-TOF/MS (Q-Tof Premier, Waters Corp. Milford, MA), as

previously described [9].

Supporting Information

Table S1 Branching ratio parameters of A: KEGG Compound,

B: KNApSAcK, C: PubChem Compound, and D: KNApSAcK

plus at various accuracies of mass analysis and thresholds for

searching.

Found at: doi:10.1371/journal.pone.0007490.s001 (0.18 MB

DOC)
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