
Sequence and Structure Signatures of Cancer Mutation
Hotspots in Protein Kinases
Anshuman Dixit1,2, Lin Yi1, Ragul Gowthaman1, Ali Torkamani3, Nicholas J. Schork3, Gennady M.

Verkhivker1,2,4*

1 Graduate Program for Bioinformatics, Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America, 2 Department of Pharmaceutical

Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America, 3 Scripps Genomic Medicine, Department of Molecular and

Experimental Medicine, Scripps Health and The Scripps Research Institute, La Jolla, California, United States of America, 4 Department of Pharmacology, University of

California San Diego, La Jolla, California, United States of America

Abstract

Protein kinases are the most common protein domains implicated in cancer, where somatically acquired mutations are
known to be functionally linked to a variety of cancers. Resequencing studies of protein kinase coding regions have
emphasized the importance of sequence and structure determinants of cancer-causing kinase mutations in understanding
of the mutation-dependent activation process. We have developed an integrated bioinformatics resource, which
consolidated and mapped all currently available information on genetic modifications in protein kinase genes with
sequence, structure and functional data. The integration of diverse data types provided a convenient framework for kinome-
wide study of sequence-based and structure-based signatures of cancer mutations. The database-driven analysis has
revealed a differential enrichment of SNPs categories in functional regions of the kinase domain, demonstrating that a
significant number of cancer mutations could fall at structurally equivalent positions (mutational hotspots) within the
catalytic core. We have also found that structurally conserved mutational hotspots can be shared by multiple kinase genes
and are often enriched by cancer driver mutations with high oncogenic activity. Structural modeling and energetic analysis
of the mutational hotspots have suggested a common molecular mechanism of kinase activation by cancer mutations, and
have allowed to reconcile the experimental data. According to a proposed mechanism, structural effect of kinase mutations
with a high oncogenic potential may manifest in a significant destabilization of the autoinhibited kinase form, which is likely
to drive tumorigenesis at some level. Structure-based functional annotation and prediction of cancer mutation effects in
protein kinases can facilitate an understanding of the mutation-dependent activation process and inform experimental
studies exploring molecular pathology of tumorigenesis.
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Introduction

A central goal of cancer research involves the discovery and

functional characterization of the mutated genes that drive

tumorigenesis [1]. The Human Genome Project has provided

researchers with unprecedented insights into the structure and

organization of genes. Large-scale resequencing and polymor-

phism characterization studies have subsequently focused on the

identification and cataloguing of naturally occurring gene and

sequence variation [2–5]. The Cancer Genome Atlas and related

DNA sequencing initiatives have specifically investigated the

genetic determinants of cancer [6]. These studies have determined

that only a fraction of genetic alterations contributing to

tumorigenesis may be inherited, while somatically acquired

mutations can contribute decisively during the progression of a

normal cell to a cancer cell. Protein kinases play a critical role in

cell signaling and have emerged as the most common protein

domains that are implicated in cancer [7–11]. Although the kinase

catalytic domain is highly conserved, protein kinase crystal

structures have revealed considerable structural differences

between closely related active and highly specific inactive forms

of kinases [12–17]. Evolutionary conservation and conformational

plasticity of the kinase catalytic domain allow for a dynamic

equilibrium between active and inactive kinase forms, which can

facilitate regulation of the catalytic activity [15–17]. There are

more than 500 protein kinases encoded in the human genome and

many members of this family are prominent therapeutic targets for

combating diseases caused by abnormalities in signal transduction

pathways, especially various forms of cancer [18–22].

The complete sequencing of the human genome and high-

throughput generation of genomic data have opened up avenues

for a systematic approach to understanding the complex biology of

cancer and clinical targeting of activated oncogenes. Large-scale

tumor sequencing studies have identified a rich source of naturally

occurring mutations in the protein kinase genes with many being

simple single nucleotide polymorphisms (SNPs) [23–32]. A subset

of these SNPs could occur in the coding regions (cSNPs) and lead

to the same polypeptide sequence (synonymous SNPs, sSNPs) or

result in a change in the encoded amino acid sequence

(nonsynonymous coding SNP, nsSNPs). Resequencing studies of

PLoS ONE | www.plosone.org 1 October 2009 | Volume 4 | Issue 10 | e7485



the kinase coding regions in tumors have classified tumor-

associated somatic mutations revealing that only a small number

of kinase mutations may contribute to tumor formation (known as

cancer driver mutations) while the majority could be neutral

mutational byproducts of somatic cell replication (known as

passenger mutations) [23–28]. While protein kinases have a

prominent role in tumorigenesis, commonly mutated protein

kinases in cancer appeared to be the exception to the rule and

most of kinase driver mutations are expected to be distributed

across many protein kinase genes [27]. Cancer mutations in

protein kinases could often exemplify the phenomenon of

oncogene addiction whereby, despite the accrual of numerous

genetic alterations over the maturation of a tumor, cancer cells

could remain reliant upon particular oncogenic pathways and may

become addicted to the continued activity of specific activated

oncogenes [33,34]. The dominant oncogenes that confer the

oncogene addiction effect include ABL, EGFR, VEGFR, BRAF,

FLT3, RET, and MET kinase genes [34].

The recent discovery of lung cancer mutations in the EGFR

kinase domain [35–37] and their differential sensitivity to EGFR

inhibitors have suggested that genetic alterations may be associated

with structural changes, rendering tumors sensitive to selective

inhibitors. Structural determinations of the EGFR [38–41] and

ABL cancer mutants [42,43] have suggested that molecular

mechanisms of kinase activation by cancer mutations and activity

signatures of cancer drugs may be associated with the dynamics of

functional transitions between inactive and active kinase forms.

Biophysical modeling of protein kinase structure and dynamics has

revealed important mechanistic features of kinase activation at

atomic resolution. Molecular dynamics (MD) simulations of large-

scale conformational transitions have been performed for many

therapeutically important protein kinases, including HCK kinase

[44], adenylate kinase [45], Src kinase [46–51], cyclin-dependent

kinase 5 (CDK5) [52], ABL kinase [53], KIT kinase [54] EGFR,

RET and MET kinase domains [55–57]. These studies have

suggested that cancer mutations can have a subtle, yet profoundly

important functional affect not only on local conformational

changes at the mutational site, but also on allosteric regulation

and cooperative interactions in signal transduction networks

[58,59]. According to the proposed mechanism of kinase

activation, structural effect of cancer mutations could manifest in

shifting the dynamic equilibrium between inactive and active kinase

forms towards a constitutively active kinase, thereby causing

deleterious consequences for kinase regulation.

Cancer biology studies of protein kinase genes have integrated

genetic, structural and functional approaches to characterize

underlying molecular signatures of cancer mutations. High-through-

put DNA sequence analysis and functional assessment of candidate

cancer mutations in the tyrosine kinase genes have identified point

mutations in the conserved hot spots from the activation loop in

leukemia-associated tyrosine kinases [60–63]. A high-throughput

platform has been used to interrogate the entire FLT3 coding

sequence in AML patients and experimentally test the functional

consequences of each candidate tumorigenic allele [63]. These

studies have indicated that rare driver variants could often occur at

frequencies indistinguishable from passenger mutations. As a result,

functional analysis of candidate mutations identified in genome-wide

screens can be ultimately required to determine which mutations

contribute to cell transformation. Computational approaches, when

combined with structural and functional studies, have also facilitated

the identification and prediction of candidate cancer genes and

individual alleles contributing to tumorigenesis [64–67].

Bioinformatics tools were recently developed to distinguish

between driver and passenger nsSNPs [68,69]. Though quite

powerful, generalized prediction methods may fail to achieve the

sensitivity and specificity attainable by prediction models tailored to

individual protein families. We have developed kinase-targeted

machine learning models that focused on nsSNPs in protein kinases

by leveraging known sequence-based and structure-based protein

kinase features to identify patterns in residues and sequence motifs

harboring functionally relevant variations [70–72]. The developed

support-vector machine (SVM) method has been shown to

differentiate between disease-associated nsSNPs and neutral nsSNPs

with ,80% accuracy [70]. These findings have suggested that

the predictive power of machine learning models in assessing

functionally important mutations can be significantly enhanced by

selecting informative attributes characteristic of a specific protein

family. Furthermore, we have found that kinase regions harboring a

large number of cancer mutations in multiple protein kinases could

contain a high proportion of the predicted driver mutations, while

kinase subdomains devoid of cancer mutations were more likely to

contain passenger mutations [71,72]. These results have suggested

that biological characteristics and functional consequences separat-

ing cancer driver mutations from passenger mutations in protein

kinases may differ from those separating disease-associated from

neutral nsSNPs across the entire genome.

The growing body of genetic, molecular and functional

information about protein kinases genes, combined with their

prominent role as therapeutic targets for cancer intervention have

produced an unprecedented explosion of diverse data. A large

amount of information about genetic modifications in protein kinase

families has been accumulated in different sources, including

PupaSNP [73], dbSNP database [74], Online Mendelian Inheri-

tance in Man (OMIM) from National Center for Biotechnology

Information (NCBI) [75,76], KinMutBase [77,78], BTKbase [79],

Human gene mutation database (HGMD) [80,81], Catalogue of

Somatic Mutations in Cancer database (COSMIC) [82], Protein

Kinase Resource (PKR) [83], and Mutations of Kinases in Cancer

(MoKCa) [84]. While current databases and information portals

have accumulated a large amount of information on kinase SNPs,

there is a growing need for integration and comprehensive mapping

of diverse data categories on protein kinase genes within a central

resource.

In this work, we introduce Composite Kinase Mutation Database

(CKMD), a single repository and integrated bioinformatics resource

that consolidated and unequivocally mapped all currently available

information on genetic variations in protein kinase genes with

sequence, structural and functional data. CKMD and web-based

resource are freely available at http://verklab.bioinformatics.ku.

edu/database/. The functionality and capabilities of CKMD portal

can allow for robust functional annotation of protein kinase genes

and enable kinome-wide prediction and structure-functional

analysis of cancer mutations. The database-driven analysis of

sequence and structure-based signatures of kinase SNPs has clarified

salient aspects of sequence conservation patterns and structural

profiles of cancer-causing mutations, including the emergence of

structurally conserved tumorigenic hotspots across multiple protein

kinases. Furthermore, structural modeling and energetic analysis of

kinase cancer mutations, which constitute the largest mutational

hotspot, have provided useful insights into a common mechanism of

kinase activation.

Results

Sequence-Structure Classification and Mapping of Kinase
SNPs

The integration and mapping of diverse data types in CKMD

provided a convenient framework for kinome-wide analysis of

Cancer Mutation Hotspots
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sequence-based and structure-based signatures of cancer muta-

tions. Genetic variations in protein kinase genes are widely spread

across both phylogenetic and structural space, and only a subset of

all SNPs could be directly mapped to the kinase catalytic domain.

We began by analyzing the distribution of various SNPs categories

that could be mapped onto the 12 functional subdomains (SDs) of

the kinase catalytic core [7] (Figure 1). Structural mapping of

sSNPs resulted in a uniform coverage of kinase subdomains,

showing only a weak preference towards SD II which has no

obvious functional role in kinase regulation (Figure 2A). In

contrast, the distribution of nsSNPs highlighted the preferential

bias towards specific functional regions. Indeed, functionally

important P-loop (SD I), hinge region (SD V), catalytic loop (SD

VIB), and especially activation loop (SD VII) along with the

downstream P+1 loop region (SD VIII) tend to be more densely

populated (Figure 2B). The P+1 segment links the subdomains in

Figure 1. Functional Subdomains of the Kinase Catalytic Core. The kinase catalytic domain was subdivided into 12 subdomains (SD) using
the ABL kinase crystal structure (pdb entry 1IEP) as the reference for defining the residue ranges as follows : SD I:242–261(P-loop region); SD2 :262–
278; SD3:279–291(aC-helix); SD4:292–309; SD5:310–335 (hinge region); SD6A:336–356; SD6B357–374 (catalytic loop); SD7:375–393 (activation loop) ;
SD8:394–416 (P+l loop); SD9:417–438; SD10:439–461; SD11:462–480; SD12:481–498. The alignment of functional subdomains for protein kinase genes
was done using structure-informed multiple sequence alignment.
doi:10.1371/journal.pone.0007485.g001

Figure 2. The Distribution of SNPs Types across Functional Subdomains of the Kinase Catalytic Core. The distribution of kinase sSNPs is
shown in panel (A) and the distribution of sSNPs is presented in panel (B).
doi:10.1371/journal.pone.0007485.g002

Cancer Mutation Hotspots
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the C-terminal lobe with the ATP and substrate binding regions in

the N-terminal lobe. Moreover, the P+1 loop is directly connected

to the F-helix, which serves as a central scaffold in the assembly of

active kinase form [85–87].

The kinase catalytic domain harbors a significant number of

nsSNPs falling into three major categories: common and likely

neutral nsSNPs, inherited disease-causing nsSNPs, and cancer-

causing (somatic) nsSNPs. We analyzed evolutionary conservation

patterns among these three different categories of kinase nsSNPs

(Figure 3). A measure of conservation was derived from the

absolute value of the substitution position-specific evolutionary

conservation score, termed ‘‘subPSEC,’’ which was obtained by

aligning a given protein against a library of Hidden Markov

Models (HMM) representing distinct protein families [88,89]. The

score was defined as -|ln(Paij/Pbij)|, where Paij is the probability of

observing amino acid a at position i in HMM j. According to the

PANTHER website [89], a score of -3 would correspond to an

estimated 50% probability that the SNP may be a disease causing

variant. The SNPs conservation profiles for kinase genes could be

described as the absolute value of subPSEC score, where the

higher the score, the greater the degree of evolutionary

conservation. The distribution of common nsSNPs was biased

towards a lower level of conservation, as would be expected for

neutral variants with little or no functional significance. Cancer-

associated nsSNPs appeared to fall into positions with a higher

level of conservation than common nsSNPs, yet could be as

conserved as disease-causing nsSNPs (Figure 3A). This analysis

indicated that either cancer-associated nsSNPs may not necessarily

fall into evolutionary highly conserved positions, or the distribu-

tion may be skewed towards a lower conservation level by cancer

variants of no functional consequence (passenger mutations).

Using a recently developed SVM-based method capable of

predicting functionally important cancer mutations [70,71], we

compared the evolutionary conservation distributions of cancer

driver mutations and passenger mutations at different levels of

conservation (Figure 3B). Although the predicted cancer driver

mutations did fall at the positions exhibiting slightly higher

conservation level, as compared to the passenger mutations, the

difference was rather modest. Hence, it appeared that cancer

mutations in protein kinases may not display strong sequence

conservation signals and consequently, functional importance of

kinase genetic variants may not be directly related with their

evolutionary conservation.

We also analyzed molecular determinants of genetic variations

in protein kinases utilizing CKMD resource for a comprehensive

structural mapping of nsSNPs onto the kinase catalytic core. The

database-driven analysis revealed a differential enrichment of

SNPs categories in functional regions of the kinase domain

(Figures 4, 5). Common nsSNPs tend to be randomly distributed

within the catalytic core, only sparsely populating functional

segments of the catalytic core, such as the catalytic or activation

loops, whereas these nsSNPs more densely occupy evolutionary

unconserved regions of the C-terminal tail (Figure 4A). The

disease-causing nsSNPs primarily mapped to the regions involved

in regulation and substrate binding, such as the APE-loop and the

P+1 region, as well as the catalytic loop (Figure 4B). Cancer-

associated nsSNPs tend to target regions directly involved in the

catalytic activity that are mainly localized in the P-loop, activation

loop and catalytic loop (Figures 4C). The distribution of kinase

nsSNPs across functional kinase subdomains reinforced the notion

that the kinase regions that are enriched (or devoid) of SNPs could

be markedly different across the three mutation types, with a

minimal overlap. Indeed, the distribution shows a clear preference

for cancer-causing nsSNPs to accumulate mostly in the activation

loop region (SDVII) as well as populating the P-loop (SD I)

(Figure 5A). A significant number of disease-associated nsSNPs

Figure 3. The Distribution of nsSNPs Types across Evolutionary Conservation Levels. (A) The probability distribution of common nsSNPs
(shown in blue bars), disease-causing SNPs (shown in red bars) and cancer-causing nsSNPs (shown in green bars) as a function of evolutionary
conservation level. (B) The probability distribution of cancer driver mutations (shown in blue bars) and passenger nsSNPs ( shown in red bars) as a
function of evolutionary conservation level. For both panels (A) and (B), a higher score corresponds to a higher level of conservation.
doi:10.1371/journal.pone.0007485.g003

Cancer Mutation Hotspots
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were not directly involved in the ATP binding, but rather buried

in the catalytic core. Interestingly, the P+1 loop and the residues

that anchor this pocket to the F-helix were some of the most

enriched in disease-associated mutations, but not cancer-causing

mutations. These results corroborate with previous findings

indicating that disease-associated mutations could primarily affect

the kinase regions involved in functional regulation, allosteric

interactions and substrate binding [72].

Functional differences across different mutation types could be

also reflected in the position-specific distribution of nsSNPs at the

mutational hotspots determined by the number of structurally

equivalent protein kinase positions (Figure 5B). The distribution

of common nsSNPs, that have little or no functional affect and

could be randomly distributed throughout the catalytic core, was

dominated by weakly conserved positions mutated in a single, or

two protein kinases. In contrast, the disease-causing nsSNPs tend

Figure 4. Structural Mapping of nsSNPs onto the Kinase Catalytic Domain. Structural mapping is shown for common nsSNPs (A), disease-
causing nsSNPs (B), and cancer-causing nsSNPs (C). In all panels the green coloration represents regions with a SNP frequency equivalent to what
would be expected by random chance, blue coloration represents regions that are statistically devoid of SNPs, and red coloration depicts regions that
are statistically enriched in SNPs. Enrichment of SNPs in these regions was calculated as described in the Materials and Methods section. For clarity,
the SNPs density was mapped onto a representative kinase crystal structure (EGFR, pdb entry 1M14) by projecting the multiple sequence kinase
alignment onto the protein structure.
doi:10.1371/journal.pone.0007485.g004

Figure 5. The Distribution of nsSNPs Types across Functional Subdomains of the Catalytic Core. (A) The distribution of common nsSNPs
(shown in blue bars), disease-causing nsSNPs (shown in red bars), and cancer-causing nsSNPs (shown in green bars) in the functional subdomains of
the kinase catalytic core. The expected probability of a SNP occurring in a kinase subdomain region was calculated for each SNP type as described in
the Materials and Methods section. (B) The position-specific distribution of common nsSNPs (shown in blue bars), disease-causing nsSNPs (shown in
red bars), and cancer-associated nsSNPs (shown in green bars) across different categories of structurally conserved mutational hotspots as
determined by the number of SNPs per structurally identical position.
doi:10.1371/journal.pone.0007485.g005

Cancer Mutation Hotspots
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to be concentrated at structurally equivalent positions, with a

significant excess of mutations occurring at positions mutated in

four or more different protein kinases. The position-specific

distribution of cancer nsSNPs was shifted towards a higher

number of nsSNPs per position, probably due to the selection of

tumorigenic mutational hotspots shared across multiple protein

kinases (Figure 5B).

Structural Bioinformatics Analysis of Kinase Mutational
Hotspots

Kinome-wide analysis of sequence and structure-based signa-

tures of cancer mutations, revealed that a significant number of

cancer mutations could fall at structurally equivalent positions

within the catalytic core. These structurally conserved mutations

tend to cluster into specific mutational hotspots which may be

shared by multiple kinase genes. Cancer mutation hotspots in

protein kinases are largely localized within the P-loop, hinge

region, and activation loop (Figure 6A, Table S1). Of special

interest is a spectrum of EGFR, ABL, MET, FLT3 and KIT

cancer mutations that correspond to the same structurally

conserved position in the activation loop, which appeared to be

mutated in at least 8 different kinases (Figure 6A, Table S1).

This site corresponds to the known driver mutations BRAF-V600,

FLT3-D835, KIT-D816, PDGFRa-D842, MET-D1228, EGFR-

L861, ABL-L387, and ErbB2-L869. Despite a sequence-specific

conservation pattern, many mutations at this structurally con-

served position are commonly occurring activating mutations,

including D1228H/N/V in MET [90,91], D835E/F/H/N/V/Y

in FLT3 [92,93], D816E/F/H/N/I/V/Y in KIT [94,95] and

V600D/E/G/K/L/M/R in BRAF [96]. In some cases, these

mutations could have important implications for targeted inhibitor

therapies by leading to drug resistance effects in KIT [97], BRAF

[98], EGFR [99], ABL [100], and MET [101]. Another

functionally important mutational hotspot corresponds to the

conserved gate-keeper kinase position and includes ABL-T315I,

EGFR-T790M, KIT-T670E, and PDGFRa-T674I variants

(Figure 6A, Table S1). Some of the structurally equivalent

positions could be conserved across the kinome, as the aspartate

and glycine residues from the DFG motif (corresponding to the

reference positions EGFR-D855 and EGFR-G857), as well as a

conserved glycine in the hinge region (which corresponds to the

EGFR-G796 reference position). There are examples of cancer

mutations displaying a subgroup level of conservation, including

EGFR-L858 position, which bears a conserved leucine in EGFR

and ABL kinases, or a conserved aspartate shared in FLT3, KIT,

MET, PDGFRa.

While most of the cancer driver mutations are likely to be rather

rare, it is striking that a significant number of functionally

important cancer mutants fall at structurally conserved positions

within the kinase catalytic core. Moreover, we have observed that

structurally conserved hotspots of cancer driver mutations often

bear mutations with a high oncogenic activity (Figure 6B). A

quantitative characterization of ‘‘oncogenicity’’ could be described

in a variety of ways, including cell transformation potential,

substrate utilization, and catalytic efficiency. However such data

are typically available only for a limited number of genes and

mutations and are not suitable for genome-wide analysis. We used

a convenient definition of an oncogenic potential that may be

offered by using the frequency profiles of somatic mutations in the

protein kinases genes obtained from the COSMIC repository [82].

This analysis revealed that a rather small number of somatic

Figure 6. Structurally Conserved Mutational and Oncogenic Hotspots in the Kinase Catalytic Domain. (A) Structural localization of the
conserved mutational hotspots is illustrated using the crystal structure of the active EGFR kinase (pdb entry 2J6M). The large-size red ball corresponds
to the structural position of L861, and denotes localization of the largest mutational hotspot shared in 8 different kinases. The medium-size yellow
balls correspond to structural positions of T790, D855, and G857 residues (respective mutational hotspots shared by 6 different kinases). The smaller
green ball corresponds to G796 position (5 structurally conserved kinase mutations); the cyan balls correspond to L718 and G721 positions (each
position denote residues with 4 cancer mutations); and the smallest blue ball corresponds to L858 position (3 structurally conserved kinase
mutations). Cancer mutation hotspots in protein kinases are largely localized within the P-loop, hinge region, and activation loop. See also Table S1
for a comprehensive annotation of structurally conserved mutational hotspots. (B) Structural localization of cancer driver mutations with the high
oncogenic potential is illustrated using the crystal structure of the active EGFR kinase (pdb entry 2J6M). The dominant oncogenic mutations are
BRAF-V600E, KIT-D816V, and PDGFRa-D842V which all correspond to the same structurally conserved mutational hotspot. Structural annotation of
cancer driver mutations is arranged according to their oncogenic potential as determined by the frequency of observing respective somatic
mutations in the protein kinases genes. The higher the oncogenic potential of the cancer drive, the larger the ball denoting structural position of the
respective mutation.
doi:10.1371/journal.pone.0007485.g006

Cancer Mutation Hotspots
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kinase mutations with the known oncogenic potential could

emerge with a high frequency in the mutational samples (Table
S2). Strikingly, these functionally important mutations fall into

major structurally conserved positions in the kinase catalytic

domain. Indeed, highly oncogenic mutations BRAF-V600E, KIT-

D816V, and PDGFRa-D842V belong to the largest mutational

hotspot (Figure 6B). The functional importance of oncogenic

kinase mutations from mutational hotspots such as ABL-T315I,

EGFR-L858R, and RET-M918T, is also widely recognized. For

instance, structurally conserved RET-M918T and MET-M1250T

cancer drivers are situated in the substrate binding C-lobe of the

kinase core (Figure 6B) and are known to be associated with

oncogenic activation by displaying the highest transforming

potential among known RET [102–106] and MET mutations

[107–110]. The presented analysis suggests that structurally

conserved hotspots in the kinase catalytic domain may be

statistically enriched by mutations with a high probability of being

cancer drivers. We argue that the preferential structural

localization of oncogenic mutations in the activation loop and

the substrate binding C-lobe of the kinase domain may be

determined by their strategic location critical for the kinase

autoinhibition, regulation and allosteric interactions in signal

transduction networks.

Structural and Energetic Signatures of Kinase Mutational
Hotspots

Structural modeling and energetic analysis of cancer mutation

effects can provide further insights into molecular mechanisms of

kinase activation. We employed homology modeling and MD

simulations to analyze whether structurally conserved cancer

drivers that target the same tumorigenic hotspot in the kinase

catalytic domain may also share a common activation mechanism.

Molecular modeling focused on a quantitative comparison of

MET-D1228V, MET-D1228H [90,91], FLT3-D835V, FLT3-

D835E [92,93], and KIT-D816V, KIT-D816H [94,95] mutants.

Substitutions of D835 in FLT3 and D816 in KIT result in the

constitutive activation of the receptor, this residue has been

suggested to play an important regulatory role. The crystal

structures of FLT3 [111], KIT [112] and MET kinases

[113,114] have suggested that cancer mutations may destabilize

the autoinhibited wild-type (WT) form. It is important to note that

structural modeling studies were performed to evaluate the extent

of local perturbations that could be induced by cancer mutations

on the autoinhibited kinase structure. Given the absence of high

resolution crystal structures of kinase cancer mutants and nature of

large conformational changes caused by activating mutations, we

focused on understanding local functional effects of cancer

mutations rather than attempting to make computational

predictions of the mutant structures.

Homology modeling and MD simulations of commonly occur-

ring activating mutations in this mutational hotspot revealed a

significant local reorganization of the autoinhibited kinase confor-

mation. This is reflected in the local structural variations near the

site of mutation (root mean square deviations, RMSD = 3 Å24 Å)

(Table S3). The majority of cancer mutations resulted in moderate

global changes, but considerable local structural changes near the

mutational site and in the activation loop. The results revealed that

structurally conserved FLT3-D835V (Figure 7) and KIT-D816V

mutations (Figure 8) enhanced the local protein mobility near the

mutational site and destabilized the autoinhibited kinase confor-

mation through a similar molecular mechanism. Interestingly,

FLT3-D835 and KIT-D816 participate in stabilization of the 310-

helix (Figures 7A, 8A), which includes a stretch of residues (I836,

M837, S838, D839, N841 in FLT3 and I817, K818, N819, D820

and S821 in KIT). During simulations the 310-helix rapidly

unfolded and remained in the unfolded state for both FLT3-

D835V (Figure 7B) and KIT-D816 mutants (Figure 8B). Local

perturbations induced by these mutations caused similar disruptions

in the interaction networks responsible for stabilization of the

inactive kinase form. In agreement with earlier studies [115–117],

our results confirmed that deleterious effects of FLT3-D835V and

KIT-D816V substitutions could primarily result from destabiliza-

tion of the 310-helix motif that is critical for the integrity of the

inactive kinase form. Homology modeling and MD refinement of

the EGFR-L861Q mutant, initiated from the inactive, Src-like

EGFR crystal structure (Figure 9A), reproduced conformational

changes in the activation loop leading to the active kinase form

Figure 9B). This may be attributed to a considerable incompat-

Figure 7. Structural Modeling of the FLT3-D835V Mutant. (A) The crystal structure of the autoinhibited wild-type FLT3 (pdb entry 1RJB). The
position of D835 and key conserved residues K644 and E661 are highlighted. The location of the critical 310-helix is indicated with an arrow. (B)
Structural model of FLT3-D835V cancer mutant. Structural change in FLT3-D835V position and unwinding of the 310-helix are highlighted with
arrows.
doi:10.1371/journal.pone.0007485.g007

Cancer Mutation Hotspots
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ibility of the activating mutation with the Src-like structure of the

WT EGFR. While the hydrophobic Leu-861 is packed in a

hydrophobic core of the WT structure (Figure 9A), switching to a

polar residue triggered a conformational transition of the activation

loop folding outwards, towards an active-like kinase state

(Figure 9B).

According to our recent findings [56,57], cancer mutations in

ABL and EGFR kinases, that display high oncogenic activity, may

also induce the greater differential effect on thermodynamic

stability of the inactive and active kinase forms. These energetic

factors may serve as thermodynamic catalysts of kinase activation

by cancer mutations. In line with this hypothesis, structural

signatures of the cancer mutational hotspot may manifest in

deleterious protein stability changes in the inactive state of the

enzyme, thereby promoting transitions to the constitutively active

kinase form. In the present study, we verified and expanded the

initial conjecture by analyzing structural mapping of mutational

hotspots and performing computational evaluation of protein

stability changes using CUPSAT and FOLDx methods

(Figures 10,11). Both approaches revealed a consistent trend,

whereby commonly occurring activating mutations with an

appreciable oncogenic activity resulted in a considerable destabi-

lization of the autoinhibited WT structure (Figure 10). For

example, mutations D1228H, D1228N, and D1228V in MET

from the mutational hotspot are known to have significant

oncogenic transformation effect of NIH 3T3 cells [118,119].

Accordingly, these mutations were shown to have a significant

destabilization effect on the protein structure (Figure 10).

In order to illustrate functional significance of structural effects

and concomitant protein stability changes for kinase cancer

Figure 8. Structural Modeling of the KIT-D816V Mutant. (A) The crystal structure of the autoinhibited wild-type KIT (pdb entry 1T46). The
position of D816 and key conserved residues K623 and E640 are highlighted. The location of the critical 310-helix is indicated with an arrow. (B)
Structural model of KIT-D816V cancer mutant. Structural change in KIT-D816V position and unwinding of the 310-helix are highlighted with arrows.
doi:10.1371/journal.pone.0007485.g008

Figure 9. Structural Modeling of the EGFR-L861Q Mutant. (A) The inactive, Src-like structure of EGFR (pdb entry 2G7). The position of L861 is
indicated with an arrow. The conserved salt bridge between K645 and E762 is broken in the inactive structure. (B) The model of the EGFR-L861Q
mutant displays the active-like conformation of the activation loop. The new position of EGFR-L861Q residue and the restored salt bridge between
K745 and E762 are indicated with arrows.
doi:10.1371/journal.pone.0007485.g009
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Figure 10. Protein Stability Analysis of the Cancer Mutation Hotspot. Protein stability differences calculated between the WT and mutants
for structurally conserved mutations using CUPSAT (A) and FOLDx approaches (B). Negative values of protein stability changes correspond to
destabilizing mutations.
doi:10.1371/journal.pone.0007485.g010

Figure 11. Protein Stability Analysis of KIT Mutations. Protein stability differences between the WT and mutants for a panel of KIT mutations
using CUPSAT (A) and FOLDx approaches (B). The panel included both disease-causing mutations and commonly occurring cancer mutations at D816
position. Negative values of protein stability changes correspond to destabilizing mutations.
doi:10.1371/journal.pone.0007485.g011
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mutations, we compared protein stability differences between

oncogenic KIT mutations at the D816 position and a spectrum

of disease-causing KIT variants (Figure 11). A considerable

destabilization effect on the autoinhibited inactive kinase was

observed for the activating KIT mutations. In contrast, disease-

causing SNPS only marginally affected protein stability of the WT

KIT structure. Despite simplified energy models employed in the

CUPSAT and FOLDx approaches, we observed consistent trends,

capturing highly oncogenic mutations as the mutations which elicit

larger and more detrimental protein stability changes. These

results are consistent with our earlier studies; supporting the

hypothesis that functional role of cancer mutations may be

associated with their impact on the protein kinase stability.

Discussion

Development of the integrated bioinformatics resource CKMD

has enabled structure-based functional annotation and prediction

of cancer mutation effects in protein kinases. Structural mapping

of kinase genetic variants onto aligned crystal structures and

mutational models has allowed to characterize molecular effects of

nsSNPs. We have found an enrichment of different categories of

SNPs in the different structural regions of the kinase domain,

suggesting structure-based determinants responsible for selection

of tumorigenic mutational hotspots. The distributions of nsSNPs

types has shown that (a) neutral kinase nsSNPs are randomly

distributed within the catalytic core; (b) disease-causing nsSNPs

map to regulatory and substrate binding regions; and (c) cancer-

causing nsSNPs can target catalytic and nucleotide binding

functions, preferentially clustering in the activation loop of the

kinase domain. Based on these results, we could speculate about

potential diversity of structural mechanisms that may be associated

with the effects of genetic alterations. It is possible that disease-

causing mutations may function by perturbing the local environ-

ment near the organizing F-helix, which is responsible for

maintaining structural plasticity and correct positioning of the

key catalytic and regulatory spine regions [85–87]. On the other

hand, structural effects of cancer-causing mutations may manifest

in perturbing flexible regions that are directly involved in

conformational transitions between inactive and active kinase

forms. The preferential localization of cancer-causing mutations in

the P-loop and the activation loop may lower the energetic barrier

for triggering the dynamic imbalance shifted towards the

constitutively active kinase conformation. The earlier analysis of

protein kinase motions indicated that conformational motions in

functionally important protein regions which harbor cancer

mutations, namely the P-loop and activation loop, are coupled

and may be highly correlated [56,57].

Although kinase cancer mutations may not exhibit a strong

sequence conservation signal, we have identified a number of

structurally equivalent positions within the protein kinase catalytic

core can be frequent targets of tumorigenic mutations. These

structurally conserved mutations tend to cluster into specific

mutational hotspots which may be shared by multiple kinase

genes. Sequence and structure-based methods were used to

characterize molecular determinants of mutational hotspots in

protein kinases. We have determined that structurally conserved

hotspots in the kinase catalytic domain can be often enriched by

cancer driver mutations with a high oncogenic potential.

Structural modeling and energetic analysis of the mutational

hotspots have also suggested a common molecular mechanism of

kinase activation by cancer mutations, which may be determined

by a combined effect of the partial destabilization of the inactive

state and a concomitant stabilization of the active-like form of the

enzyme. Furthermore, the results have indicated that cancer

mutations with the higher oncogenic potential can have a greater

differential effect on thermodynamic stability of the inactive and

active kinase forms. Structure-based computational prediction and

analysis of cancer mutation effects may thus be helpful for

integrative cancer biology studies exploring the molecular

pathology of tumorigenesis.

Ongoing development of database-oriented research tools

within the CKMD environment will allow for automated

structural and network-based bioinformatics analyses of rapidly

growing knowledge-base of resequencing data on protein kinase

genes. Further integration of genetic, functional, and structural

insights about the molecular basis of tumorigenesis into robust

bioinformatics infrastructure can ultimately help to discover

molecular signatures of cancer mutations.

Materials and Methods

The Database Content and Organization
CKMD was developed as a bioinformatics resource for

structure-functional analysis of genetic variations in protein

kinases. We employed MySQL as a relational database manage-

ment system for storing and managing the information content.

Perl, a widely used scripting language was used to parse the data

into various table forms. PHP5 Hypertext preprocessor was used

in the design of the database interface, while Apache was used as

the web server. Data stored in CKMD were mainly gathered from

NCBI [74–76], COSMIC [82], SwissProt [120–122], and

Protein Data Bank (PDB) [123]. We have also integrated non-

redundant information about genetic variations in protein kinases

from more specialized resources PupaSNP [73], KinMutBase

[77,78], BTKbase [79], HGMD [80,81], PKR [83], and

MoKCa [84].

Main entries in CKMD were indexed as genes and each gene

entry contained many sub-entries of related information associated

with that gene. We opted the gene id (GeneID) from Entrez Gene

database as the unique identifier to index all entries in CKMD.

This was partly due to the fact that the COSMIC database also

referenced to GeneID in its entries. SwissProt, however, did not

reference to GeneID and thus we developed a relation that

matched SwissProt accession numbers with GeneIDs. This

relation was crucial to coherently incorporate SwissProt data into

CKMD along with the data from other sources. The raw data

gathered from NCBI, SwissProt, and COSMIC were text files. All

MySQL tables in CKMD referenced to either GeneID or

SwissProt accession number. For each SNP entry, information

about its position, nucleotide change and corresponding amino

acid change was uniquely mapped on the protein kinase sequence

and structure. The main information sources and a general

architectural framework of CKMD are summarized in the design

diagrams (Figure S1).

CKMD provides a simple and intuitive user interface that

allows users to browse, search, download, and analyze genetic,

sequence, structure and functional data on protein kinase data

within a single integrated source. There are five main options

available in CKMD: Composite, Browse, Search, Download, and

Statistics. The ‘‘Composite’’ option offers a convenient and

transparent way to view all information stored in CKMD for

kinases genes. The ‘‘Browse’’ option allows to browse through

entries in CKMD in three major categories: Gene, Mutation, and

Structure. The ‘‘Search’’ option permits to query CKMD for a

particular entry using many different searching criteria. The

‘‘Download’’ option allows to download and view all available

protein kinase crystal structures and a large number of mutational

Cancer Mutation Hotspots
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models. Finally, the ‘‘Statistics’’ option offers various sequence and

structure-based statistical analyses of SNPs distributions across

kinase genes. The important CKMD functionality is that the

database stores and provides a convenient access to protein kinase

crystal structures and mutational models with the mapped nsSNPs.

A total of 989 crystal structures corresponding to 126 kinase genes

were collected from PDB and consolidated in CKMD. To

facilitate structure-functional analysis of genetic variations in

kinase genes, all crystal structures and mutational models were

structurally aligned using a java-based multiple alignment tool

STRAP (http://www.charite.de/bioinf/strap) and TM-align al-

gorithm [124]. We have developed Java applet using Jmol, an

open-source Java viewer for chemical structures in 3D (http://

www.jmol.org/), to provide graphical representation of protein

kinase structures. This interface could allow users to load and view

multiple and aligned protein kinase structures along with

convenient tools for manipulation of three-dimensional structures,

localization and molecular analysis of SNPs.

Protein kinase sequences were obtained from Kinbase (http://

kinase.com/kinbase/). Common SNPs were retrieved from

PupaSNP [73] and dbSNP [74] using the Ensembl data mining

tool, Biomart (http://www.ensembl.org/Homo_sapiens/martview).

The disease causing SNPs were retrieved from OMIM [75,76],

KinMutBase [77,78], and HGMD resources [80,81]. Currently,

there are 518 kinase gene entries in CKMD, both referenced in

NCBI [74–76] and SwissProt database [120–122], and 7955

unique SNP entries corresponding to these kinase genes that are

referenced in NCBI. These unique SNP entries include 3722

synonymous, 3985 missense, 75 nonsense and 173 frameshift

mutations. We have also gathered 780 OMIM variant entries from

NCBI and 3542 SwissProt variant entries. Cancer mutations were

retrieved from OMIM [75,76] and COSMIC resources [82]. The

complete lists of mRNA and protein products for each unique SNP

entry were also included and cross-linked to NCBI database. All

nsSNPs were assigned to positions in Kinbase protein sequence using

flanking sequences in the Ensembl and Entrez Gene sequences

because of higher confidence in Kinbase sequences versus other

publicly available sequences. Corresponding positions in DNA

sequences were determined using a combination of flanking

sequences given in dbSNP data and Genewise (http://www.ebi.ac.

uk/Wise2/).

Motif-based and Structure-based Multiple Sequence
Alignments

Motif-based alignments of kinase sequences to the catalytic core

were first generated by implementation of the Gibbs motif

sampling method [125,126]. This method identifies characteristic

motifs for each individual subdomain of the kinase catalytic core,

which are then used to generate high-confidence motif-based

Markov chain Monte Carlo multiple alignments based on these

motifs [127,128]. These subdomains define the core structural

components of the protein kinase catalytic core. Intervening

regions between these subdomains were not aligned. The nsSNPs

were then mapped to the kinase catalytic domain in accordance

with this alignment. Cancer driver predictions were performed by

using the SVM approach as described in our earlier work [70,71].

Sequence analysis was done with the aid of the subPSEC

conservation measure [88,89].

To further verify structural distribution of nsSNPs in functional

kinase regions, we also performed structure-informed multiple

alignment of kinase sequences using PROMALS3D approach

[129]. In this approach, 30 different kinase crystal structures

(Table S4) (the maximum allowed limit of structural information

used by PROMALS3D) and kinase catalytic domain sequences for

445 different genes were used for the multiple sequence alignment.

The obtained alignment was then matched against the alignment

of the kinase sequences with the available crystal structure to

ascertain the quality of the sequence alignment. The predicted and

observed residue ranges for the catalytic loop, hinge region, aC-

helix, activation loop and P-loop are in excellent agreement with

the observed residue ranges for these functional kinase regions

(Table S5).

Kinase SNP Distribution and Enrichment Analysis
Functionally important subdomains of the kinase catalytic core,

as in the nomenclature defined by Hanks and Hunter [7], were

examined to determine the distribution of nsSNPs and identify

structurally conserved hotspots of functionally important muta-

tions. The number of SNPs in each of the subdomains was

calculated from the structure-informed multiple sequence align-

ment described in the previous section. The expected probability

E(p) of a SNP occurring in a kinase subdomain region was

calculated separately for each SNP type as previously documented

[71,72]. In brief, the average length of each region was calculated

as the weighted average of the region length in each kinase

considered, where weights correspond to the total number of SNPs

occurring within each kinase. This weighting helps avoid biases

that might arise as a result of some kinases simply harboring more

SNPs than others. The probability of a SNP occurring within a

particular region purely by chance was computed as its weighted

average length over the sum of every region’s weighted average

length . The probability (p-value) of the observed total number (x)

of SNPs occurring within each region, where n is the total number

of SNPs considered, was calculated using the general binomial

distribution as follows:

If x/n , E(p):

p-value xð Þ~
Xx

x~0

n

x

� �
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 !
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Structural Modeling and MD Refinement of Kinase
Cancer Mutants

We have also consolidated in CKMD all publically available

crystal structures of WT and mutant protein kinases from PDB. A

total of 989 kinase crystal structures corresponding to 126 genes

were deposited in CKMD. Although a number of kinase crystal

structures including mutants have been solved, there is still very

little structural information about most cancer kinase mutants. To

facilitate structure-functional analysis of cancer mutation effects in

protein kinases we have generated and stored in CKMD structural

models of a large number of protein kinase mutants (Figure S2).

Only a subset of all SNPs can be directly mapped onto the kinase

crystal structures. As a result, there are some protein kinases with

the known WT crystal structure and known SNPs, yet no

mutational models could be generated, because either all known

mutations reside outside of the resolved crystal structure of the

kinase catalytic domain or only synonymous mutations were

available.
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Structural modeling of nsSNPs was carried out using MOD-

ELLER [130,131] with a subsequent refinement of side-chains by

the SCRWL3 program [132]. Initial models were built in

MODELLER using a flexible sphere of 5 Å around mutated

residue and the inactive crystal structures of the WT EGFR,

FLT3, and KIT kinases as the templates. A protocol involving a

conjugate gradient (CG) minimization, followed by simulated

annealing refinement was repeated 20 times to generate 100 initial

models for each studied mutant. In the optimization stage, we

initially used 5000 steps of conjugate gradient (CG) minimization

to remove unfavorable contacts and ensure sufficient relaxation of

the local environment near mutational site. The predicted

mutational models were chosen out of the 100 models as scored

by the MODELLER default scoring function. These final models

were then refined in 2ns MD simulations using NAMD 2.6 [133]

with the CHARMM27 force field [134,135]and the explicit

TIP3P water model as implemented in NAMD 2.6 [136].

Equilibration was done in stages by gradually increasing the

system temperature in steps of 20K starting from 10K until 310K.

At each stage, 10,000 equilibration steps was employed, while

applying a harmonic restraining force of 10 Kcalmol21Å22 to all

backbone Ca atoms. Subsequently, the system was equilibrated for

150,000 steps at 310K (NVT) and then for additional 150,000

steps at 310K using Langevin piston (NPT) to maintain the

pressure. Finally the restrains were removed and the system was

equilibrated for 500,000 steps to prepare the system for simulation.

An NPT simulation was run on the equilibrated structure keeping

the temperature at 310K and pressure at 1 bar using Langevin

piston coupling algorithm. Nonbonded van der Waals interactions

were treated by using a switching function at 10A and reaching

zero at 12 Å distance.

Protein Stability Calculations
To quantify the destabilization effect of cancer mutations on the

inactive, autoinhibited kinase form, we computed the protein

stability change upon these mutations using CUPSAT (Cologne

University Protein Stability Analysis Tool) approach for the

prediction and analysis of protein stability changes upon point

mutations [137,138] and Foldx method [139,140]. In the

CUPSAT approach, coarse-grained atom potentials and torsion

angle potentials are used to predict protein stability upon point

mutations. Foldx analysis of protein stability is based on the

empirical force field which was developed for the rapid evaluation

of the effect of mutations on the stability, folding and dynamics of

proteins and nucleic acids. The free energy of folding is evaluated

in this approach from the difference in Gibbs free energy between

the crystal structure of the protein and a hypothetical unfolded

reference state of which no structural details are known.
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Figure S1 CKMD Architecture and Information Sources.

Found at: doi:10.1371/journal.pone.0007485.s001 (0.20 MB TIF)

Figure S2 The Gene-based Distribution of Structurally Mapped

Kinase Cancer Mutations. For clarity of presentation, only top 70

kinase genes that have cancer-causing nsSNPs mapped onto three-

dimensional protein structure are presented.

Found at: doi:10.1371/journal.pone.0007485.s002 (0.75 MB TIF)
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protein kinase genes.
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mutational samples
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Table S3 Analysis of the crystal structures and mutational

models
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63. Fröhling S, Scholl C, Levine RL, Loriaux M, Boggon TJ, et al. (2007)

Identification of driver and passenger mutations of FLT3 by high-throughput

DNA sequence analysis and functional assessment of candidate alleles. Cancer

Cell 12: 501–513.

64. Parmigiani G, Boca S, Lin J, Kinzler KW, Velculescu V, et al. (2009) Design

and analysis issues in genome-wide somatic mutation studies of cancer.

Genomics 93: 17–21.

65. Torkamani A, Verkhivker G, Schork NJ (2009) Cancer driver mutations in

protein kinase genes. Cancer Lett 281: 117–127.

66. Krallinger M, Izarzugaza JMG, Rodriguez-Penagos C, Valencia A (2009)

Extraction of human kinase mutations from literature, databases and

genotyping studies BMC Bioinformatics 10(Suppl 8): S1.

67. Izarzugaza JM, Redfern OC, Orengo CA, Valencia A (2009) Cancer

associated mutations are preferentially distributed in protein kinase functional

sites. Proteins. In press.

68. Kaminker JS, Zhang Y, Waugh A, Haverty PM, Peters B, et al. (2007)

Distinguishing cancer-associated missense mutations from common polymor-

phisms. Cancer Res 67: 465–473.

69. Kaminker JS, Zhang Y, Watanabe C, Zhang Z (2007) CanPredict: a

computational tool for predicting cancer-associated missense mutations.

Nucleic Acids Res (Web Server issue) 35: W595–598.

70. Torkamani A, Schork NJ (2007) Accurate prediction of deleterious protein

kinase polymorphisms. Bioinformatics 23: 2918–2925.

71. Torkamani A, Schork NJ (2008) Prediction of cancer driver mutations in

protein Kinases. Cancer Res. Cancer Res 68: 1675–1682.

72. Torkamani A, Kannan N, Taylor SS, Schork NJ (2008) Congenital disease

SNPs target lineage specific structural elements in protein kinases. Proc Natl

Acad Sci USA 105: 9011–9016.

73. Conde L, Vaquerizas JM, Santoyo J, Al-Shahrour F, Ruiz-Llorente S, et al.

(2004) PupaSNP Finder: a web tool for finding SNPs with putative effect at

transcriptional level. Nucleic Acids Res 32: W242–W248.

74. Sherry ST, Ward M, Sirotkin K (1999) dbSNP-database for single nucleotide

polymorphisms and other classes of minor genetic variation. Genome Res 9:

677–679.

75. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, et al. (2008)

Database resources of the National Center for Biotechnology Information.

Nucleic Acids Res 36: D13–D21.

76. Rebholz-Schuhmann D, Marcel S, Albert S, Tolle R, Casari G, et al. (2004)

Automatic extraction of mutations from Medline and cross-validation with

OMIM. Nucleic Acids Res 32: 135–142.

77. Stenberg KA, Riikonen PT, Vihinen M (2000) KinMutBase, a database of

human disease-causing protein kinase mutations. Nucleic Acids Res 28:

369–371.

78. Ortutay C, Väliaho J, Stenberg K, Vihinen M (2005) KinMutBase: a registry of

disease-causing mutations in protein kinase domains. Hum Mutat 25: 435–442.

79. Väliaho J, Smith CI, Vihinen M (2006) BTKbase: the mutation database for X-

linked agammaglobulinemia. Hum Mutat 27: 1209–1217.

80. Krawczak M, Ball EV, Fenton I, Stenson PD, Abeysinghe S, et al. (2000)

Human gene mutation database – a biomedical information and research

resource. Hum Mut 15: 45–51.

81. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, et al. (2003) Human

Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21: 577–581.

82. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, et al. (2004) The

COSMIC (Catalogue of Somatic Mutations in Cancer) database and website.

Br J Cancer 91: 355–358.

Cancer Mutation Hotspots

PLoS ONE | www.plosone.org 13 October 2009 | Volume 4 | Issue 10 | e7485



83. Niedner RH, Buzko OV, Haste NM, Taylor A, Gribskov M, et al. (2006)

Protein kinase resource: an integrated environment for phosphorylation
research. Proteins 63: 78–86.

84. Richardson CJ, Gao Q, Mitsopoulous C, Zvelebil M, Pearl LH, et al. (2009)

MoKCa database–mutations of kinases in cancer. Nucleic Acids Res
37(Database issue): D824–31.

85. Kannan N, Neuwald AF (2005) Did protein kinase regulatory mechanisms evolve
through elaboration of a simple structural component? J Mol Biol 351: 956–972.

86. Kornev AP, Haste NM, Taylor SS, Eyck LF (2006) Surface comparison of

active and inactive protein kinases identifies a conserved activation mechanism.
Proc Natl Acad Sci U S A 103: 17783–17788.

87. Kornev AP, Taylor SS, Ten Eyck LF (2008) A helix scaffold for the assembly of
active protein kinases. Proc Natl Acad Sci U S A 105: 14377–14382.

88. Thomas PD, Kejariwal A (2004) Coding single-nucleotide polymorphisms
associated with complex vs. Mendelian disease: evolutionary evidence for

differences in molecular effects. Proc Natl Acad Sci U S A.101: 15398–15403.

89. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, et al. (2003)
PANTHER: A library of protein families and subfamilies indexed by function,

Genome Res. 13: 2129–2141.
90. Chiara F, Michieli P, Pugliese L, Comoglio PM (2003) Mutations in the met

oncogene unveil a ‘‘dual switch’’ mechanism controlling tyrosine kinase activity

J Biol Chem 278: 29352–29358.
91. Lorenzato A, Olivero M, Patane S, Rosso E, Oliaro A, et al. (2002) Novel

somatic mutations of the Met oncogene in human carcinoma Metastases
activating cell motility and invasion, Cancer Res 62: 7025–7030.

92. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, et al. (2001)
Activating mutation of D835 within the activation loop of FLT3 in human

hematologic malignancies. Blood 97: 2434–2439.

93. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, et al. (2001)
Identification of novel FLT-3 Asp835 mutations in adult acute myeloid

leukaemia. Br J Haematol 113: 983–988.
94. Ferrao PT, Gonda TJ, Ashman LK (2003) Constitutively active mutant

D816VKit induces megakayocyte and mast cell differentiation of early

haemopoietic cells from murine foetal liver. Leuk Res 27: 547–555.
95. Tan A, Westerman D, McArthur GA, Lynch K, Waring P, et al. (2006)

Sensitive detection of KIT D816V in patients with mastocytosis. Clin Chem 52:
2250–2257.

96. Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, et al. (2006) Mutually
exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in

the same human melanoma. Oncogene 25: 3357–3364.

97. Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, et al. (1993)
Identification of mutations in the coding sequence of the proto-oncogene c-kit

in a human mast cell leukemia cell line causing ligand-independent activation
of c-kit product. J Clin Invest 92: 1736–1744.

98. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, et al. (2004)

Mechanism of activation of the RAF-ERK signaling pathway by oncogenic
mutations of B-RAF. Cell 116: 855–867.

99. Fu YN, Yeh CL, Cheng HH, Yang CH, Tsai SF, et al. (2008) EGFR mutants
found in non-small cell lung cancer show different levels of sensitivity to

suppression of Src: implications in targeting therapy. Oncogene 27: 957–965.
100. Corbin AS, La Rosée P, Stoffregen EP, Druker BJ, Deininger MW (2003)

Several Bcr-Abl kinase domain mutants associated with imatinib mesylate

resistance remain sensitive to imatinib. Blood 101: 4611–4614.
101. Maritano D, Accornero P, Bonifaci N, Ponzetto C (2000) Two mutations

affecting conserved residues in the Met receptor operate via different
mechanisms. Oncogene 19: 1354–1361.

102. Gujral TS, Singh VK, Jia Z, Mulligan LM (2006) Molecular mechanisms of

RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B.
Cancer Res 66: 10741–10749.

103. Gujral TS, Mulligan LM (2006) Molecular implications of RET mutations for
pheochromocytoma risk in multiple endocrine neoplasia 2. Ann N Y Acad Sci

1073: 234–240.

104. Lai AZ, Gujral TS, Mulligan LM (2007) RET signaling in endocrine tumors:
delving deeper into molecular mechanisms. Endocr Pathol 18: 57–67.

105. Cranston AN, Carniti C, Oakhill K, Andzelm ER, Stone EA, et al. (2006) RET is
constitutively activated by novel tandem mutations that alter the active site

resulting in multiple endocrine neoplasia type 2B. Cancer Res 66: 10179–10187.
106. Knowles PP, Rust JM, Kjaer S, Scott RP, Hanrahan S, et al. (2006) Structure

and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 281:

33577–33587.
107. Berthou S, Aebersold DM, Schmidt LS, Stroka D, Heigl C, et al. (2004) The

Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward
different receptor mutated variants. Oncogene 23: 5387–5393.

108. Morotti A, Mila S, Accornero P, Tagliabue E, Ponzetto C (2002) K252a inhibits

the oncogenic properties of Met, the HGF receptor. Oncogene 21: 4885–4893.
109. Nakaigawa N, Weirich G, Schmidt L, Zbar B (2000) Tumorigenesis mediated

by MET mutant M1268T is inhibited by dominant-negative Src. Oncogene
19: 2996–3002.

110. Miller M, Ginalski K, Lesyng B, Nakaigawa N, Schmidt L, et al. (2001)
Structural basis of oncogenic activation caused by point mutations in the kinase

domain of the MET proto-oncogene: modeling studies. Proteins 44: 32–43.

111. Griffith J, Black J, Faerman C, Swenson L, Wynn M, et al. (2004) The
structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol

Cell 13: 169–178.

112. Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, et al. (2004)

Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine

kinase. J Biol Chem 279: 31655–31663.

113. Schiering N, Knapp S, Marconi M, Flocco MM, Cui J, et al. (2003) Crystal

structure of the tyrosine kinase domain of the hepatocyte growth factor receptor

c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci

U S A 100: 12654–12659.

114. Wang W, Marimuthu A, Tsai J, Kumar A, Krupka HI, et al. (2006) Structural

characterization of autoinhibited c-Met kinase produced by coexpression in

bacteria with phosphatase. Proc Natl Acad Sci U S A 103: 3563–3568.

115. Foster R, Griffith R, Ferrao P, Ashman L (2004) Molecular basis of the

constitutive activity and STI571 resistance of Asp816Val mutant KIT receptor

tyrosine kinase. J Mol Graph Model 23: 139–152.

116. Torrent M, Rickert K, Pan BS, Sepp-Lorenzino L (2004) Analysis of the

activating mutations within the activation loop of leukemia targets Flt-3 and

c-Kit based on protein homology modeling. J Mol Graph Model 2004 23:

153–165.
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