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Abstract

Background: Gene expression microarrays have provided many insights into changes in gene expression patterns between
different tissue types, developmental stages, and disease states. Analyses of these data focused primarily measuring the
relative abundance of transcripts of a gene, while treating most or all transcript isoforms as equivalent. Differences in the
selection between transcript isoforms can, however, represent critical changes to either the protein product or the
posttranscriptional regulation of the transcript. Novel analyses on existing microarray data provide fresh insights and new
interpretations into transcriptome-wide changes in expression.

Methodology: A probe-level analysis of existing gene expression arrays revealed differences in mRNA processing, primarily
affecting the 39-untranslated region. Working with the example of microarrays drawn from a transcriptionally silent period
of mouse oocyte development, probe-level analysis (implemented here as rmodel) identified genes whose transcript
isoforms have differing stabilities. Comparison of micorarrays measuring cDNA generated from oligo-dT and random
primers revealed further differences in the polyadenylation status of some transcripts. Additional analysis provided evidence
for sequence-targeted cleavage, including putative targeting sequences, as one mechanism of degradation for several
hundred transcripts in the maturing oocyte.

Conclusions: The capability of probe-level analysis to elicit novel findings from existing expression microarray data was
demonstrated. The characterization of differences in stability between transcript isoforms in maturing mouse oocytes
provided some mechanistic details of degradation. Similar analysis of existing archives of expression microarray data will
likely provide similar discoveries.

Citation: Salisbury J, Hutchison KW, Wigglesworth K, Eppig JJ, Graber JH (2009) Probe-Level Analysis of Expression Microarrays Characterizes Isoform-Specific
Degradation during Mouse Oocyte Maturation. PLoS ONE 4(10): e7479. doi:10.1371/journal.pone.0007479

Editor: Thomas Preiss, Victor Chang Cardiac Research Institute (VCCRI), Australia

Received July 8, 2009; Accepted September 20, 2009; Published October 16, 2009

Copyright: � 2009 Salisbury et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the NSF Grant No. DGE-0221625, NIH/NCRR INBRE Maine contract 2 P20 RR16463-04, NSF contract DBI-0331497, NIH grant
1R01GM077206, NIH grant 1R01HD21970, and the University of Maine Graduate School for Biomedical Sciences. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: joel.graber@jax.org

Introduction

Gene expression microarrays and isoforms
The presence of alternative transcript isoforms can complicate

the interpretation of gene expression microarray data [1,2].

Microarrays commonly measure transcript expression through one

or more short (25–60 nt) oligonucleotide probes that hybridize

specifically to a gene of interest. In microarrays that use multiple

short probes for each transcript, the probes are collectively

referred to as a probeset, and the expression level reported for the

gene is a summarization of the signal reported for each of the

individual probes in the probeset [3]. If the probes that hybridize

to a gene don’t sample all isoforms equally, expression differences

among isoforms can result in excessive variation in summarized

probeset expression values. Accordingly, probeset re-mapping

efforts in recent years have focused on identifying the unique

probes that map to gene regions that are constitutively expressed

across tissues and developmental stages [4]. These updated

probesets have led to improved gene expression interpretation

[4,5,6], however they can mask potentially critical changes in

expression that are manifested as changes in isoform rather than

total transcript abundance.

A majority of mammalian genes can be expressed as alternative

isoforms [7,8], including alternative splicing (AS), alternative

transcription initiation, and alternative polyadenylation (APA).

Isoform differences in the 39-untranslated region (39-UTR) are

significant because 39-UTRs are often home to post-transcription-

al regulatory elements that control degradation, localization, and

translation of the transcript. Transcriptome-wide truncation of 39-

UTR sequences has been identified in developing spermatocytes

[9], proliferating cell lines [10], and cancer cell lines [11].

Conversely, a bias towards elongated 39-UTRs has been found in

ovulated oocytes and zygotes [12], developing embryos [13], and

neurological tissues [14]. Ovaries were also shown to have a bias

toward use of upstream APA sites [14], a feature consistent with

the presence of a large number of transcripts with short 39-UTR
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sequences that are degraded in the transition from GV-oocyte to 2-

cell stage embryo [12]. Regulatory elements in the 39-UTR are

typically targets for miRNAs [15] or RNA-binding proteins [16].

MiRNAs can play multiple roles, suppressing translation directly

or through targeting transcript for degradation through dead-

enylation or endonucleic cleavage [17].

Our fundamental hypothesis was that probe-level analysis of

gene expression microarray data, especially the 39-end targeted

arrays associated with oligo-dT primed cDNA, would reveal

changes in mRNA processing, including differences in polyade-

nylation and transcript stability.

Measuring transcript degradation in the developing
mammalian oocyte

The developing oocyte is transcriptionally silent [18] while over

half of the total mRNA is degraded and/or deadenylated [19].

Changes in the mammalian maternal transcriptome during the

transition from germinal vesicle (GV) to metaphase II (MII)

arrested oocytes provide data that enable assessment of differences

in transcript stability. Oocyte development requires transcript

regulation by small RNAs as demonstrated by Dicer knockout

experiments that reduce miRNAs in the MII oocyte, leading to

arrested development and deregulation of mRNA expression

profiles [20,21]. Previous studies identified the genes whose

transcripts are targeted for degradation [22], but largely ignored

questions of differential stability among the isoforms of a single

gene. We now use this large, defined perturbation of the

transcriptome to demonstrate how probe-level analysis can reveal

differences in stability and processing among isoforms. The

analysis also serendipitously reveals details of processing in genes

with only one isoform.

In this work, we used a probe-level analysis of Affymetrix Mouse

GeneChip 430 version 2 (430v2) microarray data from GV and

MII oocytes to identify differences in the stability among different

transcript isoforms. The analysis was facilitated by a custom re-

annotation of microarray probes focused on grouping together all

probes that target transcripts from a single gene. Our analysis uses

the change in expression at each probe rather than a summarized

value for the probeset and identifies segmentations of the custom

probesets where the GV-MII change in expression differs on either

side of the segmentation point. Comparative analyses using MII

microarrays that were hybridized with either random (MII) or

oligo-dT (MIIpa) primed cDNA enabled differentiation between

transcripts with and without polyA tails. The comparison revealed

evidence of sequence-specific cleavage that left a protected,

deadenylated 59-fragment. Pattern analysis of the putative cleaved

sequences revealed potential targeting patterns. Differential

expression patterns for select genes were validated with quantita-

tive reverse transcriptase PCR (qRT-PCR).

Related work
Recent efforts have described the use of gene expression

microarrays for investigation of differences in transcript isoforms.

PLATA [10] performs analysis of Affymetrix Mouse Exon 1.0 ST

arrays similar to that presented here, however the authors

explicitly designed their Chip Definition File (CDF) for alternative

UTRs based on putative known polyadenylation sites, rather than

testing all possible segmentations. In contrast, rmodel tests all

possible segmentations, allowing identification of novel processing

events such as cleavage and 39-UTR initiated transcription. In

addition, the explicit comparison of oligo-dT and random primed

cDNA from common samples enabled the investigation of the

polyA status of transcripts. A more detailed comparison of rmodel

and PLATA (Supplemental Text S1) revealed that despite the

differences in procedural details, their results are largely equivalent

when tests are performed on the same putative segmentations on

the same microarray data. Several other approaches area also

available targeted at Exon arrays [23,24,25]. FIRMAGene [25]

was designed primarily for investigation of alternative splicing

rather than polyadenylation, and application was only described

for the newer Gene ST 1.0 chips, which use a random cDNA

priming and probes spread throughout the transcript to assess

transcript abundance. The coverage of the ST 1.0 gene chips in

39-terminal exons, and especially in the 39-UTR, is comparatively

limited, making them less well suited to investigation of changes at

the 39-terminus than the earlier oligo-dT primed gene chips, e.g.,

Affymetrix’s Mouse GeneChip 430 version 2 (430v2) or Human

GeneChip HU133 plus 2 (HU133p2).

Results

Extending gene annotations and generating custom
probeset definitions

We created a custom set of extended gene annotations using

data with the goal of unifying all probes that target products of a

given gene, regardless of isoform, into a single probeset. The

extended gene annotations formed the basis for a custom CDF

that was used in our probe-level microarray analysis. Transcript

annotations from multiple sources (Methods) were pooled and

extended using EST-indicated polyadenylation sites drawn from

PACdb [26] (Figure 1) to produce 57,875 distinct transcripts.

These distinct transcripts represent 26,021 non-redundant gene

annotations, of which 14,513 (55%) do not match the annotated

genomic coordinates found in the original tables, and represent

novel annotations resulting from either inclusion of alternative

exon sequence or extension of 59 or 39 UTRs. The original 430v2

probeset definitions provided multiple probesets for a single gene,

typically targeting different isoforms, including mutually exclusive

isoforms. Accordingly, the extended gene annotations do not

necessarily reflect a logical transcription sequence for any given

gene. Instead the new probesets enable comparison of expression

levels within and among the resulting transcripts. Re-mapping and

consolidation of the 496,468 mouse 430v2 array probe sequences

to the NCBI build 37 mouse genome identified 403,718 unique

probes (81% of total), of which 344,849 probes (69% of total)

mapped to an exon or UTR in our extended gene annotations

(Table 1).

Probe level analysis delineates transcript degradation
and deadenylation

The rmodel package identifies processing events as segmentation

points in a plot of the ratio of expression for two samples at each

probe across the entire probeset (Figures 2 and 3). Processing

events can encompass alternate generation of the transcript, e.g.,

AS or APA, or subsequent processing, e.g., degradation or

deadenylation. Rmodel uses standard approaches to background

correction and normalization (Figure 2A) [3,27,28], and finds

segmentations in a plot of the base-2 logarithm of individual probe

expression ratios (Figure 2B). Mapping the relative expression on

the UCSC genome browser (Figure 2C) allows comparison with

known genes. Segmentations are classified as a truncation when

the downstream (39) probes show a relative decrease in intensity

ratio compared to upstream (59), and elongation for the converse.

In transcriptionally silent oocytes, truncation and elongation

events are consistent with relative stabilization of short or long

isoforms, respectively.

The well-characterized regulatory role of deadenylation and

cytoplasmic polyadenylation in oocytes [29] led to the choice of

Oocgenesis Isoform Analysis
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cDNA generated with random primers for the GV and MII oocyte

microarrays (referred to here as GV and MII, GEO Accession

GSE5658 [22]). In contrast, the microarrays from the Dicer-

knockout experiment (referred to as MIIpa and MIIdko) used the

standard oligo-dT primed cDNA [20].

Rmodel can identify any type of change in mRNA processing,

however the bias of 39-end expression microarrays, combined with

the general lack of introns in the 39-UTR leads to a significant bias

towards changes at the 39-end of the resulting transcripts, which

are expected to generate only one segmentation point in the

probeset. Indeed, in the GV-MII comparison, we find (Table 2)

that of 6289 probesets classified as expressed, 5230 (83%) display

no segmentations. Of the remaining 1059, 878 (83%) have

evidence for only a single segmentation, with 659 showing

truncation and 219 elongation. The GV-MIIpa analysis shows

similar bias towards single events (Table 3).

The comparison of GV-MII and GV-MIIpa analysis revealed

significant differences in type of events (Table 4) that are likely a

consequence of polyadenylation status, since transcripts lacking a

polyA tail can be detected by random (MII), but not oligo-dT

(MIIpa) priming. The data support three classes of changes

between GV and MII oocytes: complete degradation, dead-

enylation, and cleavages that produce stable 59-fragments. We

can predict signatures in probeset segmentation patterns for the

different cDNA priming for differences in stability of transcripts

that differ only in use of tandem APA sites in a common terminal

exon (Figure 3). Similar signatures can be predicted (Figure S1) for

alternative terminal exons, 39-UTR initiated transcripts [30], and

genes with a single isoform that are subject to cleavage or

deadenylation.

Complete degradation of a long isoform leads to truncation at a

common site in the GV-MII and GV-MIIpa analyses, such as was

observed in the probeset for Autophagy-related 5 (Atg5,

MGI:1277186) transcripts (Figure 2). Similarly, complete degra-

dation of a short isoform leads to elongation at a common site in

both GV-MII and GV-MIIpa analyses, seen in the probeset for

transcripts of Dicer1 (MGI:2177178, Figure S2). 91 probesets

matched this pattern for degradation of the short isoform, while

132 indicated degradation of the long isoform.

Deadenylation of a transcript prevents detection with oligo-dT

primers, but not random primers. When multiple isoforms are

present and differentially deadenylated, the expected pattern is

segmentation of the GV-MIIpa relative expression plot, but no

change in the GV-MII plot (Figure 3). These data cannot

distinguish between deadenylation and cleavage (described below)

between the polyA tail and the closest hybridization probe,

however deadenylation and cleavage are grouped separately due

to their different signatures. Deadenylation of a short isoform (e.g.,

Ppap2b, MGI:1915166, Figure S3) results in detection of an

elongation in the GV-MIIpa analysis. Conversely, deadenylation of

a long isoform (e.g., Rdh11, MGI:102581, Figure S4) results in

truncation in the GV-MIIpa analysis. 448 probesets matched the

pattern for deadenylation of the long isoform, while 444 indicated

deadenylation of the short isoform (Table 4).

Table 1. Probes used in redesigning probesets for Affymetrix arrays.

Array total aligneda Distinctb mRNAc Probesetsd

Affymetrix Mouse U74 v2 197 993 158 698 131 223 123 532 8 162

Affymetrix Mouse 430 v2 496 468 456 432 403 718 344 849 21 650

Affymetrix Human U95A v2 201 800 185 329 155 252 146 124 8 551

Affymetrix Human U133Av2 247 899 226 893 188 942 177 661 12 678

Affymetrix Human U133 Plus 2 604 258 562 248 484 344 393 924 23 581

Affymetrix Zebrafish 249 742 201 798 173 345 70 900 4 700

anumber of probes successfully aligned to the current NCBI genomes with PASS [36].
bnumber of probes with a single match to the genome of the central 23 nucleotides with 1 or fewer mismatched nucleotide.
cnumber of distinct probes that mapped to an exon or UTR of our expanded gene annotation set.
dtotal number of probesets in our custom CDF.
doi:10.1371/journal.pone.0007479.t001

Figure 1. An example of an EST extended gene annotation is shown for Rab23. Available gene annotations for this gene do not extend to
the distal 39 polyadenylation site. By including this distal region in the extended gene annotation, an additional group of Affymetrix probes are
included in the analysis.
doi:10.1371/journal.pone.0007479.g001
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Figure 2. An ordered (59 to 39) boxplot of probe intensity comparisons indicates differential stability for isoforms of Atg5 in the GV-
MII transition. A. Background corrected and normalized probe intensities are shown for randomly primed cDNA from GV (gray) and randomly
primed MII (orange) samples. The probe-specific differences in hybridization are typically constant among samples, unless portions of the gene are
differentially expressed, as shown here for Atg5. B. The data from part A are transformed to a base2 logarithm of the MII-GV expression ratio for each
probe (red box plots). For comparison, the plot includes the same measurement within biological replicates (blue box plots). A vertical green line
indicates the optimum segmentation point for the Atg5 probeset (determined with rmodel). The apparent increase in hybridization in the 59-end of
the probeset (inconsistent with transcriptional silence) is an artifact of normalization of the microarrays to a constant amount of RNA, and reflects the
gain in abundance as a fraction of total RNA for a stable transcript. C. Display of the plot from part B on the UCSC Genome Browser [49] facilitates
comparison of the GV-MII and GV-MIIpa analyses in conjunction with additional data. Transcript 39-processing sites identified from ESTs are shown as
red vertical bars near the top of each plot. Probes with increased expression at the MII stage (compared to GV stage) are shown in blue, whereas
decreased expression is shown in red. Sequence target regions for qPCR validation are shown in black.
doi:10.1371/journal.pone.0007479.g002
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Cleavage of transcripts resulting in a protected 59-fragment is

indicated by truncation in the GV-MII analysis, without a

corresponding segmentation in the GV-MIIpa analysis. The

simplest cases to interpret are single truncations in the GV-MII

analysis, and either no expression or no segmentation in the GV-

MIIpa analysis. 395 probesets matched this pattern, including the

probeset targeted to transcripts of Ehf (MGI:1270840, Figure S5).

Cleavages are also indicated in 127 probesets with single

truncations in both GV-MII and GV-MIIpa analyses, but at

different positions. The probeset for Myc binding protein (Mycbp,

MGI:1891750) transcripts provides an example of this phenom-

enon (Figure 4). The truncation indicated by the GV-MIIpa

analysis aligns well with the known alternative transcript, and

further indicates that the shorter transcript is stable and retains a

polyA tail. The GV-MII array comparison indicated a truncation

further downstream at a specific narrow region that has neither

EST-evidence of a 39-processing site nor recognizable polyA

signals. The MIIpa-MIIdko comparison supports miRNA process-

ing of the longer Mycbp transcript, as the Dicer knockout partially

stabilizes only the longer transcript (1.5 bits) when compared to

wildtype MII oocytes (Figure 4).

Additional patterns can be identified, but require more complex

models for interpretation. For example, 60 probesets were

characterized with single elongation events in both the GV-MII

Figure 3. Predicted segmentation pattern signatures for various types of differential stability for isoforms that differ by use of tandem
APA sites. Blue lines represent transcripts with tandem APA sites, in polyadenylated (A), deadenylated (no symbol), or cleaved (X) forms. The bar plots
show predictions for the probe segmentation patterns of the log2-foldchange plots, as shown in Figure 2B. Predictions for additional conditions are
available in Figure S1. Abbreviations: dT: oligo-dT primed MII oocyte cDNA compared to random primed GV oocyte cDNA; r: random primed MII oocyte
cDNA compared to random primed GV oocyte cDNA; T: truncation; E: elongation; NC: no segmentation (uniform change); M: multiple events.
doi:10.1371/journal.pone.0007479.g003

Table 2. Distribution of the number of genes with specific
types of processing changes (events) in the probe-level
comparison of GV and MII stage oocytes, using randomly
primed GV oocyte cDNA and randomly primed MII oocyte
cDNA (GV-MII).

0 Ea 1 Ea 2 Ea Total

0 Tb 5230 219 6 5455

1 Tb 659 104 5 768

2 Tb 43 14 4 61

3 Tb 2 3 0 5

Total 5934 340 15 6289

atruncation;
belongation.
doi:10.1371/journal.pone.0007479.t002

Table 3. Distribution of the number of genes with specific
types of processing changes (events) in the probe-level
comparison of GV and MII stage oocytes, using randomly
primed GV oocyte cDNA and oligo-dT primed cDNA (GV-
MIIpa).

0 Ea 1 Ea 2 Ea 3 Ea 4 Ea Total

0 Tb 5338 596 36 3 0 5973

1 Tb 638 171 36 1 1 847

2 Tb 51 34 14 1 0 101

3 Tb 1 0 3 2 1 7

Total 6028 801 90 7 2 6928

atruncation;
belongation.
doi:10.1371/journal.pone.0007479.t003
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and GV-MIIpa analysis, including the probeset for transcripts of

Arf6 (MGI:99435, Figure S6). Arf6 transcripts have a 39-terminal

exon with EST evidence of three distinct clusters of polyadenyl-

ation sites. The GV-MII elongation site matches the first polyA site,

whereas the GV-MIIpa elongation matches the second polyA site.

This combination of events supports a model where transcripts

that terminate at the first polyA site are completely degraded,

transcripts that terminate at the second polyA site are dead-

enylated, and full-length transcripts are stable. Such complex

events defy the easy classification shown above for probesets with

only a single event, however, visualization on a genome browser

with additional data, such as known transcripts and ESTs, can

facilitate interpretation on a gene-by-gene bases. Complete data

for all the GV-MII and GV-MIIpa comparisons are available as a

supplement (http://harlequin.jax.org/rmodel/).

Sequence analysis of putative cleaved transcripts
identifies target patterns

Sequence fragments from the segmentation regions of tran-

scripts classified as cleaved were analyzed with the Gibbs

Sequence Sampler [31] and revealed several prominent sequence

motifs (Figure 5A; Additional results are available in Figure S7).

A survey of miRBase [32] showed that the motif 1 in Figure 5A

is consistent with the miRNA seed regions (reviewed in [33]) of

Mir107 and Mir103-1/2. Both of these miRNAs have evidence of

expression in mouse oocytes [20,21]. Intriguingly, a strong match

to motif 1 is located in the correct in the narrow window identified

for cleavage of the Mycbp transcript (Figure 5B). Sequence

scanning of this region with miRanda [34] identified the motif

position as a target for Mir103-1/2 (MGI:3619058 and

MGI:3619059) and Mir107 (MGI:3619063) miRNAs with binding

energies 221.4 and 220.9 kCal/mol, respectively (Predicted

alignments are shown in Figure 5B).

qRT-PCR validates cleavage/degradation events
Quantitative RT-PCR validated the probeset segmentation

patterns identified by the GV-MII comparisons for Atg5, Cnot2,

Baiap2l1, G6pdx and Mycbp transcripts (Figure 6), a group of genes

Table 4. A comparison of processing events identified in
random and oligo-dT primed cDNA, where each cell
represents the count of probesets that show specific counts
of mRNA processing events in the GV-MII or GV-MIIpa analysis.

NEa NCb 1Tc 1Ed Me GV-MII Total

NEa 14429 754 35 28 2 15048

NCb 170 4003 413 416 228 5230

1Tc 7 388 142 57 65 659

1Ed 2 121 16 60 20 219

Me 1 72 32 35 41 181

GV-MIIpa Total 14409 5338 638 596 356 21337

Rows represent events in the GV-MII comparison; columns represent events in
the GV-MIIpa comparison.
aNE: Not expressed in either tissue;
bNC: No processing difference identified (uniform);
c1T: 1 truncation identified;
d1E: 1 elongation identified;
eM: multiple events identified.
doi:10.1371/journal.pone.0007479.t004

Figure 4. Mycbp has evidence of a protected short isoform and sequence specific cleavage of the long isoform. Probes with increased
hybridization signal at the MII stage (compared to GV stage) are shown in blue, decreased expression is shown in red. Putative transcript 39-
processing sites identified from ESTs are shown as red vertical bars near the top of each plot. Sequence target regions for qPCR validation are shown
in black. The location matched by motif 1, as identified by Gibbs Sampling (Figure 5), is indicated by ({). A. The GV-MII analysis indicates a specific
location of a transcript processing event for the Mycbp gene. B. The GV-MIIpa comparison segmentation coincides with the polyA site of the short
isoform, indicating relative loss of the long isoform. Oligo-dT priming cannot amplify the extended fragment apparent in part (A). C. The MIIpa-MIIdko
analysis shows that loss of Dicer activity partially restores signal from extended 39-UTR (approximately 1.5 bits).
doi:10.1371/journal.pone.0007479.g004
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specifically chosen to validate the truncations that were and were

not consistent with known APA sites.

Microarray predictions are presented as rdiff scores (illustrated

in Figure 2), representing the difference in log2-ratio of signal

upstream and downstream of the at the segmentation point. qRT-

PCR results are presented in an analogous manner. The change in

each portion of the transcript during the GV-MII transition is

measured with a qRT-PCR product, and the difference in the

threshold cycle (DCt) value is analogous to the log2 ratio of

expression. The qRT-PCR change within each transcript is

therefore calculated as DDCt, the difference in the DCt values

between the upstream and downstream products. As shown

(Figure 6) the qRT-PCR values correlated well in both the

classification of processing (truncation) and magnitude of the

difference between expression levels in the 59- and 39-portions of

the transcript.

The genomic regions indicated by the probeset segmentations

for Atg5 and Cnot2 are consistent with EST-supported APA sites

[26], while those for Baiap2l1, G6pdx and Mycbp have no such

evidence. The lack of EST evidence for alternative 39-processing

and the absence of polyA signal and downstream element

sequences are consistent with transcript cleavage events in which

the 59-most region is more stable than the 39-end [35]. Genomic

coordinates and rmodel analysis for Cnot2, Baiap2l1, G6pdx are

available in Figures S8, S9, and S10, respectively.

Discussion

Canonical approaches to microarray analysis have been driven

by the question of differential gene expression as measured by total

transcripts encoded by a given gene. This focus has ultimately led

to a focus on probes that target constitutive portions of transcripts

[4], limiting the exploration of posttranscriptional regulation and/

or selection of alternative isoforms. Although the signature of

alternative isoforms is present in microarray experiments [1,2], it

may be overlooked in the standard summarization analysis of

probes in constitutive regions of a gene. Ideally, a complete gene

expression analysis would investigate change in both the total

transcript level and in the relative abundance of variant isoforms.

We developed and used an extended set of gene annotations in

conjunction with a probe-level microarray analysis program to

detect the differential regulation of transcript isoforms. Given that

Figure 5. A sampling of representative motifs from Gibbs Sampling analysis of the sequence between probes that are separated by
apparent cleavage sites. A. Sequence Logo [50] representations of four representative motifs identified by the Gibbs Sampler [51]. Motif 1 came
from the first pass analysis, while motifs 2–4 came from the second pass analysis (Methods). Additional motifs are available in Figure S7. B. A match of
motif 1 to the Mycbp 39-UTR, also showing putative targe sites for Mir107 and Mir103-1/2, as identified by Miranda [34].
doi:10.1371/journal.pone.0007479.g005

Oocgenesis Isoform Analysis
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GV and MII oocytes are transcriptionally silent, the results

presented here focus on the posttranscriptional fate of the existing

mRNA during the GV-MII oocyte transition. We found that

microarray cDNA preparation methods have a profound impact

on this analysis, in particular demonstrating that the comparison

of microarrays hybridized to random-primed and oligo-dT-primed

cDNA enabled the distinction between transcripts that were

degraded, deadenylated, or cleaved in a sequence specific manner.

Pattern analysis of cleavage events indicated putative targeting

sequences during the GV-MII transition. Our investigation of the

putative cleavage regions (e.g., for the Mycbp transcript) indicates

strong evidence of miRNA directed transcript cleavage.

The number of genes identified here with differential stability

among transcript isoforms in the GV-MII transition is likely an

underestimate. First, the threshold values set for acceptance of

segmentation points were conservative (FDR,0.06 based on

variation within replicates), a choice explicitly made to minimize

false positive results. The ability to identify difference in transcript

isoforms is also explicitly dependent up on the probe coverage on

each individual gene. Our method also required that at least three

probes be present on each site of a segmentation point. Finally,

hybridization probes for the 430v2 were designed based on the

available transcript data at the time, however, new data sets and

improved technologies (e.g., [8,36,37]) have revealed additional,

often extended isoforms not covered by existing probes. Indeed,

updated transcript data for Mycbp (NCBI accession numbers

AK132198 and AK037661 [36]) indicates additional extended

transcript isoforms covering a few thousand nucleotides beyond

the range covered on the 430v2.

Our work highlights the critical role that the method of cDNA

priming can play in determining what transcripts and processing

activities can be measured. A recent report utilized a similar

microarray analysis to compare 39-UTR characteristics in

proliferating and non-proliferating cells [10]. The Mouse Exon

1.0 ST array protocols include cDNA generation with random

primers and cannot distinguish between transcripts with and

without polyA tails, which results in a common microarray pattern

for polyadenylation at an upstream site and cleavage that produces

a protected 59-fragment without a polyA tail. Further experimental

analysis will be required to differentiate between these interesting

alternatives.

While new methods of transcript measurement are rapidly

becoming available [37,38], the usefulness of microarrays in the

study of qualitative transcript biology still has not been fully

explored. New algorithms such as rmodel may be applied to both

novel experiments and retrospectively to existing microarray

experiments. The public repository Gene Expression Omnibus

[39] contains tens of thousands of 39-end targeted expression

microarray datasets (Table 5), many of which have been analyzed

only for assessment of transcript abundance. Revisiting these data

has the potential to provide new insights into mRNA processing

under multiple conditions, while also guiding the choice of tissues

and conditions for new investigations. In addition, since we focus

on changes in signal in different portions of the transcript, the

analytic approaches presented here should be adaptable to new

data types, e.g., mRNA-seq [8,37].

The different transcript isoforms of a gene can exhibit

significant differences in function and regulation, even when the

final protein product is the same. Complete description of gene

expression accordingly requires delineation of the distribution

among isoforms along with total abundance of the transcript.

Existing databases contain much data to address studies of

differences in isoform expression, provided the proper tools are

available. Probe-level analysis of gene expression microarray data

(shown here with rmodel) has the capability to reveal previously

hidden details of transcript isoform usage.

The rmodel source code and extended gene annotations for 11

microarray platforms are available at http://harlequin.jax.org/

rmodel. Additional platforms will be added as resources become

available.

Methods

Extending gene annotations
Merged, expanded gene annotations were generated from

UCSC’s knownGene [40] RefSeq [41], MGI’ representative

transcripts [42], GenBank’s mRNA collection [43] and MGC

gene [44], as extracted from the UCSC genome browser tables

[45]. Putative 39-terminal exons from these genomic projections

were extended downstream into intronic or intergenic regions if

there was EST evidence of extended UTRs in PACdb [26].

Extensions of gene annotations were not permitted to extend

Figure 6. Changes in the proportion of transcripts identified by
microarray analysis were validated by qRT-PCR. Microarray
analysis is plotted as the rdiff score (Figure 2B). qRT-PCR results are
plotted analogously, as DDCt values, the difference between the DCt
values (comparing GV and MII oocyte samples) in the products that
flank the rmodel-predicted segmentation points. A linear fit of the data
is shown. Error bars represent the standard error of three replicate qRT-
PCR experiments.
doi:10.1371/journal.pone.0007479.g006

Table 5. Count of GEO entries for a selection of 39-targeted
microarrays.

Platform Count

Affymetrix GeneChipH Mouse Genome 430 2.0 Array 11 568

Affymetrix U74A version 2 5 599

Affymetrix Human Genome U133 Plus 2.0 26 067

Affymetrix Human Genome U133A 21 454

Affymetrix Human Genome U133B 4 694

doi:10.1371/journal.pone.0007479.t005
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beyond the most 39 transcription stop site plus 5000 nt or into the

next 39 annotated gene.

Custom probeset generation
Probe sequences were obtained from the manufacturer’s web

site http://www.affymetrix.com. In order to asses uniqueness, all

probes were aligned to the mouse C57BL6/J genome build NCBI

Build 37 using PASS [46], as it provided the best tradeoff of speed

and alignment sensitivity, especially for the analysis of near

matches. Under the assumption that mismatches near the end of

the probe are most likely to result in cross-hybridization, the

central 23 nt of each probe was aligned, allowing a single base

mismatch. Probes that matched more than one location in the

genome were removed. Probes likely to be part of a mature

mRNA were selected based on the expanded gene annotations.

Microarray data
Microarray data files for GV and MII datasets [22] were obtained

from the Gene Expression Omnibus [39] (Accession GSE5668).

Oligo-dT primed array data files for the MIIpa and MIIdko datasets

were generously provided by Richard M. Schultz [20].

Identification of differences in mRNA processing with
rmodel

Intensity measures from all chips were background corrected

and normalized using standard methods [3,27,28]. Since normal-

ized probe intensities still display probe-specific effects (Figure 2A),

we compare each individual probe directly between arrays,

working with the logarithm of the ratio of the normalized intensity

(bit scores) for each probe (Figure 2B).

Rmodel was developed as a package for the open-source R-

project. Rmodel divides a probeset into segments that represent the

sequence boundaries of transcribed regions that change by

different amounts when comparing two samples, as expected for

alternative transcript processing events. Processing events can

reflect changes in generation (e.g., APA or AS) or subsequent

processing (e.g., degradation or deadenylation) of transcript

isoforms. To identify segmentation patterns, rmodel considers all

possible subdivisions of a probeset. Subdivisions are evaluated by

walking along each probeset in a 59 to 39 direction, evaluating six

probes at a time. A modified t-test is calculated from the three

probes on either side of the segmentation point, using the median

values of the three replicates for each probe in each sample. An

additional condition was placed on the difference in logratios (rdiff)

between the two sides of the segmentation.

All events reported in this paper are restricted to thresholds of

|t-value|$5.5. To reduce the incidence of false positives that arise

through spuriously low variance in multiple testing [47],

segmentation points were accepted only if |rdiff|$1.0. In addition,

probes were eliminated from consideration if the average

background-corrected normalized intensity was not greater than

100 in at least one of the samples.

False Discovery Rates (FDR [48]) values were estimated as the

ratio of above-threshold segmentations in a null model to above-

threshold segmentations in the true distribution. Two null models

were investigated. The first null model was generated through

analysis of the microarray samples with randomization of the

order of the probes within the customized probesets. An additional

null model was tested using comparisons between replicate arrays

rather than between the samples, without randomization of the

probeset order. The estimated FDR for the GV-MII was 0.03 using

the between replicate null model and 0.33 using the between

sample null model. The estimated FDR for the GV-MII was 0.06

using the between replicate null model and 0.41 using the between

sample null model.

Quantitative RT-PCR validation
Quantitative RT-PCR analysis was used to confirm five

segmentations identified in the GV-MII comparison. We limited

our scope to highly expressed genes, both with and without EST-

supported 39-processing sites. Changes in the transcript isoform

distribution were assayed by relative difference (rdiff) in threshold

cycle scores between 59 and 39 qRT-PCR products.

Full grown oocytes (GV) were collected from 22d B6SJLF1 mice

primed with 5 IUs PMSG (Calbiochem, cat 367222). GV samples

were incubated in M199 w/5%fbs 18 hrs to develop M-phase

oocytes (MII). Triplicate groups of 20 GV and MII oocyte mRNA was

extracted with PicoPure columns (Arcturus, cat. KIT0202) according

to the protocol for use with CapSure HS LCM Caps. Extraction

protocol was modified to begin with entry step B1d and use 100 ul

extraction buffer and ethanol precipitation volumes. Luciferase spike-

in RNA (Promega Cat. L4561) was added as a carrier at the

extraction buffer step (500 ng per reaction) to prevent loss of mRNA.

Optional on column DNase treatment was incorporated as described

in the PicoPure protocol Appendix A using a DNAse set from Qiagen

(cat. 79254). Extracted RNA was immediately used in SuperScript III

reverse transcription reaction (invitrogen, part no. 18080.pps) using

random primers (Promega, cat. c1181).

QuantitativePCR was accomplished using Promega PCR

master mix with SYBR Green 1 (Invitrogen, cat S7563) and

ROX dye as a reference. All samples were tested in triplicate. Two

sets of primers for each gene were designed to produce products

which flank the apparent transcript processing event identified by

microarray analysis (primers used are listed in Table S1). Each

qPCR reaction had the cDNA equivalent of 0.1 oocyte and was

analyzed on a Stratogene mX4000. Initial PCR products were

examined for correct size and quality by ethidium bromide stained

gel electrophoresis. All Cts ranged from 24–32, and post reaction

SYBR green dissociation curves all had single product tempera-

ture distributions with Tm.75C.

A baseline control such as a house keeping gene or spike-in RNA

is necessary when comparing separate samples. The large change in

the oocyte transcriptome during the GV-MII transition led us to use

the Luciferase carrier as an internal control rather than attempting

to identify a stable endogenous housekeeping gene. In addition, the

comparison of interest is between portions of the same transcript,

rather than between different transcripts, making the principal need

for a control verification of the conversion from RNA to cDNA and

amplification. The Luciferase spike in RNA was added to the oocyte

extract before RNA isolation, verifying and validating all steps from

RNA isolation onward. The qRT-PCR results for the Luciferase

RNA are consistent across all samples (Figure S11), with relatively

low Ct threshold values, reflecting the dual nature of the Luciferase

RNA as a spike in and as a RNA carrier. The Luciferase data

confirmed that the RNA extraction, cDNA reaction and qRT-PCR

were successful and consistent.

Sequence analysis
Transcript sequences representing putative cleavage site regions

were analyzed using the Gibbs Sequence sampler [31]. Cleavage

site regions were defined as the sequence between probes that

flanked the processing event, and varied in size depending on probe

placement. To facilitate Gibbs Sampling runs the analysis was

restricted to sequences longer than 60 bp and shorter than 200 bp

and run in randomly selected groups of 200 sequences at a time with

the following command line gibbs -PBernoulli 10 -C 0.01 -i 100 -k

100 -p 50 -S 25 -Y -F -x -r -n. Searches for weaker signals were made
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with an additional run of the Gibbs Sampler after ‘‘near optimal’’

matches from the first round of detection were masked in the input

sequences. Scanning of miRNAs for the Mycbp was accomplished

with miRanda software [34] using program defaults.

Supporting Information

Figure S1 Expected relative hybridization signature patterns for

various types of processing events. Abbreviations: dT: oligo-dT

primed MII oocyte cDNA compared to random primed GV

oocyte cDNA; r: random primed MII oocyte cDNA compared to

random primed GV oocyte cDNA; T: truncation; E: elongation;

NC: no segmentation (uniform change); M: multiple events.

Found at: doi:10.1371/journal.pone.0007479.s001 (0.39 MB TIF)

Figure S2 UCSC Genome browser view of Dicer1

(MGI:2177178), which shows common elongation segmentation

points in the transcripts as identified by GV-MII and GV-MIIpa

analyses, indicating degradation of the shorter isoform.

Found at: doi:10.1371/journal.pone.0007479.s002 (1.74 MB TIF)

Figure S3 UCSC Genome browser view of Ppap2b

(MGI:1915166), which shows a transcript truncation segmentation

point in the GV-MIIpa analysis and no segmentation in the GV-

MIIpa analysis, indicating deadenylation of the longer isoform.

Found at: doi:10.1371/journal.pone.0007479.s003 (2.15 MB TIF)

Figure S4 UCSC Genome browser view of Rdh11

(MGI:102581), which shows a transcript elongation segmentation

point in the GV-MIIpa analysis and no segmentation in the GV-

MIIpa analysis, indicating deadenylation of the shorter isoform.

Found at: doi:10.1371/journal.pone.0007479.s004 (2.35 MB TIF)

Figure S5 UCSC Genome browser view of Ehf (MGI:1270840),

which shows a transcript truncation in the GV-MII analysis and no

segmentation in the GV-MIIpa analysis, indicating a cleavage site.

Found at: doi:10.1371/journal.pone.0007479.s005 (1.96 MB TIF)

Figure S6 UCSC Genome browser view of Arf6 (MGI:99435),

which shows different transcript elongation segmentation points in

the GV-MII and GV-MIIpa analyses, indicating degradation of the

transcripts that end at the first polyA site and deadenylation of the

transcripts that end at the second polyA site (compared to the full

length transcript).

Found at: doi:10.1371/journal.pone.0007479.s006 (2.07 MB TIF)

Figure S7 Representative motifs identified in Gibbs Sampler [2]

analysis of the sequence regions that flank putative cleavage sites.

(A) Sixteen first pass analyses, with a random selection of 200

sequences from the overall set. (B) Sixteen seond-pass analyses, in

which motifs identified in the first pass were masked.

Found at: doi:10.1371/journal.pone.0007479.s007 (1.23 MB TIF)

Figure S8 UCSC Genome Browser view of Cnot2

(MGI:1919318), showing the location of the rmodel predicted

processing event (green line) and the location of the qRT-PCR

products used to validate the processing change.

Found at: doi:10.1371/journal.pone.0007479.s008 (0.66 MB TIF)

Figure S9 UCSC Genome Browser view of Baiap2l1

(MGI:1914148) showing the location of the rmodel predicted

processing event (green line) and the location of the qRT-PCR

products used to validate the processing change.

Found at: doi:10.1371/journal.pone.0007479.s009 (0.72 MB TIF)

Figure S10 UCSC Genome Browser view of G6pdx

(MGI:105979), showing the location of the rmodel predicted

processing event (green line) and the location of the qRT-PCR

products used to validate the processing change.

Found at: doi:10.1371/journal.pone.0007479.s010 (0.82 MB TIF)

Figure S11 qRT-PCR results for the control Luciferase mRNA

that was spiked into the oocyte cell extracts before RNA isolation

and all subsequent steps. Bar heights represent the average Ct

value obtained in three replicates of each sample. Error bars

represent the standard error. The relatively low Ct value reflects

the Luciferase transcript’s dual role as carrier and control.

Found at: doi:10.1371/journal.pone.0007479.s011 (0.17 MB TIF)

Table S1 Primers used in qRT-PCR validation of microarray

results.

Found at: doi:10.1371/journal.pone.0007479.s012 (0.03 MB

DOC)

Text S1

Found at: doi:10.1371/journal.pone.0007479.s013 (0.04 MB

DOC)

Acknowledgments

The authors thank Richard Shultz for providing raw data from oligo-dT

primed microarrays in MII and Dicer-knockout oocytes. The authors also

thank Priyam Singh for extensive debugging of the rmodel software, Carol

Bult for critical review of the manuscript, and Hyuna Yang for advice on

statistical methods.

Author Contributions

Conceived and designed the experiments: JS JHG. Performed the

experiments: JS KW. Analyzed the data: JS KWH JHG. Contributed

reagents/materials/analysis tools: JJE. Wrote the paper: JS KWH JJE

JHG.

References

1. Cui X, Loraine AE (2009) Consistency analysis of redundant probe sets on

affymetrix three-prime expression arrays and applications to differential mRNA
processing. PLoS ONE 4: e4229.

2. D’Mello V, Lee JY, MacDonald CC, Tian B (2006) Alternative mRNA
polyadenylation can potentially affect detection of gene expression by affymetrix

genechip arrays. Appl Bioinformatics 5: 249–253.

3. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003)
Exploration, normalization, and summaries of high density oligonucleotide array

probe level data. Biostatistics 4: 249–264.

4. Dai M, Wang P, Boyd AD, Kostov G, Athey B, et al. (2005) Evolving gene/

transcript definitions significantly alter the interpretation of GeneChip data.

Nucleic Acids Res 33: e175.

5. Sandberg R, Larsson O (2007) Improved precision and accuracy for microarrays

using updated probe set definitions. BMC Bioinformatics 8: 48.

6. Yu H, Wang F, Tu K, Xie L, Li YY, et al. (2007) Transcript-level annotation of

Affymetrix probesets improves the interpretation of gene expression data. BMC
Bioinformatics 8: 194.

7. Kwan T, Benovoy D, Dias C, Gurd S, Provencher C, et al. (2008) Genome-wide

analysis of transcript isoform variation in humans. Nat Genet 40: 225–231.

8. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, et al. (2008)

Alternative isoform regulation in human tissue transcriptomes. Nature.

9. Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, et al. (2007) Systematic

variation in mRNA 39-processing signals during mouse spermatogenesis. Nucleic
Acids Res 35: 234–246.

10. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating

cells express mRNAs with shortened 39 untranslated regions and fewer
microRNA target sites. Science 320: 1643–1647.

11. Mayr C, Bartel DP (2009) Widespread shortening of 39UTRs by alternative
cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:

673–684.

12. Evsikov AV, Graber JH, Brockman JM, Hampl A, Holbrook AE, et al. (2006)

Cracking the egg: molecular dynamics and evolutionary aspects of the transition

from the fully grown oocyte to embryo. Genes Dev 20: 2713–2727.

13. Ji Z, Lee JY, Pan Z, Jiang B, Tian B (2009) Progressive lengthening of 39

untranslated regions of mRNAs by alternative polyadenylation during mouse
embryonic development. Proc Natl Acad Sci U S A 106: 7028–7033.

14. Zhang H, Lee JY, Tian B (2005) Biased alternative polyadenylation in human

tissues. Genome Biol 6: R100.

Oocgenesis Isoform Analysis

PLoS ONE | www.plosone.org 10 October 2009 | Volume 4 | Issue 10 | e7479



15. Majoros WH, Ohler U (2007) Spatial preferences of microRNA targets in 39

untranslated regions. BMC Genomics 8: 152.
16. Pullmann R, Jr., Kim HH, Abdelmohsen K, Lal A, Martindale JL, et al. (2007)

Analysis of turnover and translation regulatory RNA-binding protein expression

through binding to cognate mRNAs. Mol Cell Biol 27: 6265–6278.
17. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, et al. (2009)

Deadenylation is a widespread effect of miRNA regulation. Rna 15: 21–32.
18. Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szollosi MS, et al. (1999)

Differential transcriptional activity associated with chromatin configuration in

fully grown mouse germinal vesicle oocytes. Biol Reprod 60: 580–587.
19. Paynton BV, Rempel R, Bachvarova R (1988) Changes in state of adenylation

and time course of degradation of maternal mRNAs during oocyte maturation
and early embryonic development in the mouse. Dev Biol 129: 304–314.

20. Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, et al. (2007) Critical roles
for Dicer in the female germline. Genes Dev 21: 682–693.

21. Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, et al. (2007) Maternal

microRNAs are essential for mouse zygotic development. Genes Dev 21:
644–648.

22. Su YQ, Sugiura K, Woo Y, Wigglesworth K, Kamdar S, et al. (2007) Selective
degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol

302: 104–117.

23. Bemmo A, Benovoy D, Kwan T, Gaffney D, Jensen R, et al. (2008) Gene
Expression and Isoform Variation Analysis using Affymetrix Exon Arrays. BMC

Genomics 9: 529.
24. Laajala E, Aittokallio T, Lahesmaa R, Elo L (2009) Probe-level estimation

improves the detection of differential splicing in Affymetrix exon array studies.
Genome Biol 10: R77.

25. Robinson MD, Speed TP (2009) Differential splicing using whole-transcript

microarrays. BMC Bioinformatics 10: 156.
26. Brockman JM, Singh P, Liu D, Quinlan S, Salisbury J, et al. (2005) PACdb:

PolyA Cleavage Site and 39-UTR Database. Bioinformatics 21: 3691–3693.
27. Affymetrix (2005) Guide to Probe Logarithmic Intensity Error (PLIER)

Estimation. Santa Clara, CA.

28. Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis.
Bioinformatics 18: 1585–1592.

29. Richter JD (1999) Cytoplasmic polyadenylation in development and beyond.
Microbiol Mol Biol Rev 63: 446–456.

30. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, et al. (2006)
Genome-wide analysis of mammalian promoter architecture and evolution. Nat

Genet 38: 626–635.

31. Thompson W, Rouchka EC, Lawrence CE (2003) Gibbs Recursive Sampler:
finding transcription factor binding sites. Nucleic Acids Res 31: 3580–3585.

32. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006)
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids

Res 34: D140–144.

33. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, et al. (2007)
MicroRNA targeting specificity in mammals: determinants beyond seed pairing.

Mol Cell 27: 91–105.

34. Enright AJ, John B, Gaul U, Tuschl T, Sander C, et al. (2003) MicroRNA

targets in Drosophila. Genome Biol 5: R1.

35. Shen B, Goodman HM (2004) Uridine addition after microRNA-directed

cleavage. Science 306: 997.

36. Kawaji H, Severin J, Lizio M, Waterhouse A, Katayama S, et al. (2009) The

FANTOM web resource: from mammalian transcriptional landscape to its

dynamic regulation. Genome Biol 10: R40.

37. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. (2009) mRNA-Seq

whole-transcriptome analysis of a single cell. Nat Methods 6: 377–382.

38. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of

alternative splicing complexity in the human transcriptome by high-throughput

sequencing. Nat Genet 40: 1413–1415.

39. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI

gene expression and hybridization array data repository. Nucleic Acids Res 30:

207–210.

40. Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, et al. (2006) The UCSC

Known Genes. Bioinformatics 22: 1036–1046.

41. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq):

a curated non-redundant sequence database of genomes, transcripts and

proteins. Nucleic Acids Res 35: D61–65.

42. Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA (2008) The Mouse

Genome Database (MGD): mouse biology and model systems. Nucleic Acids

Res 36: D724–728.

43. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009)

GenBank. Nucleic Acids Res 37: D26–31.

44. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, et al. (2004)

The status, quality, and expansion of the NIH full-length cDNA project: the

Mammalian Gene Collection (MGC). Genome Res 14: 2121–2127.

45. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The

human genome browser at UCSC. Genome Res 12: 996–1006.

46. Campagna D, Albiero A, Bilardi A, Caniato E, Forcato C, et al. (2009) PASS: a

program to align short sequences. Bioinformatics 25: 967–968.

47. Comander J, Natarajan S, Gimbrone MA, Jr., Garcia-Cardena G (2004)

Improving the statistical detection of regulated genes from microarray data using

intensity-based variance estimation. BMC Genomics 5: 17.

48. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical

and powerful approach to multiple testing. Journal of the Royal Statistical

Society Series B/ *85*: 289–300.

49. Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, et al. (2009) The

UCSC Genome Browser Database: update 2009. Nucleic Acids Res 37:

D755–761.

50. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display

consensus sequences. Nucleic Acids Res 18: 6097–6100.

51. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, et al. (1993)

Detecting subtle sequence signals: a Gibbs sampling strategy for multiple

alignment. Science 262: 208–214.

Oocgenesis Isoform Analysis

PLoS ONE | www.plosone.org 11 October 2009 | Volume 4 | Issue 10 | e7479


