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Abstract

Somites are transient segments formed in a rostro-caudal progression during vertebrate development. In chick embryos,
segmentation of a new pair of somites occurs every 90 minutes and involves a mesenchyme-to-epithelium transition of cells
from the presomitic mesoderm. Little is known about the cellular rearrangements involved, and, although it is known that
the fibronectin extracellular matrix is required, its actual role remains elusive. Using 3D and 4D imaging of somite formation
we discovered that somitogenesis consists of a complex choreography of individual cell movements. Epithelialization starts
medially with the formation of a transient epithelium of cuboidal cells, followed by cell elongation and reorganization into a
pseudostratified epithelium of spindle-shaped epitheloid cells. Mesenchymal cells are then recruited to this medial
epithelium through accretion, a phenomenon that spreads to all sides, except the lateral side of the forming somite, which
epithelializes by cell elongation and intercalation. Surprisingly, an important contribution to the somite epithelium also
comes from the continuous egression of mesenchymal cells from the core into the epithelium via its apical side. Inhibition
of fibronectin matrix assembly first slows down the rate, and then halts somite formation, without affecting pseudopodial
activity or cell body movements. Rather, cell elongation, centripetal alignment, N-cadherin polarization and egression are
impaired, showing that the fibronectin matrix plays a role in polarizing and guiding the exploratory behavior of somitic cells.
To our knowledge, this is the first 4D in vivo recording of a full mesenchyme-to-epithelium transition. This approach brought
new insights into this event and highlighted the importance of the extracellular matrix as a guiding cue during
morphogenesis.
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Introduction

Imaging morphogenesis in live embryos and tissues has revealed

that cells are much more dynamic than previously thought,

changing their shape and behavior in ways that our interpretation

of successive static images of developmental stages could not have

predicted [1–5]. Analysis of cell behavior in vivo has caused a

revival of the concept that morphogenesis is generated through the

modulation of mechanical properties of cells, affecting their shape

and relationship with the surroundings [6–9]. The extracellular

matrix (ECM) surrounding cells in vivo is a key regulator of their

shape, differentiation state and motile behavior [10–12]. Cell

engagement of the ECM through integrins (or other receptors), in

turn affects the mechanical state of the cytoskeleton and often also

translates the mechanical forces of the ECM into chemical signals

intracellularly [7,13–15]. Furthermore, cell-ECM engagement is

known to modulate cell-cell adhesion, another important player in

the regulation of morphogenesis [16]. Thus, to fully understand

morphogenesis in vivo we must know how cells behave during

morphogenetic events and how they interact with, and are

influenced by the surrounding ECM.

Metamerization of the vertebrate axial musculoskeletal, nervous

and circulatory systems is established during development as a

result of the transformation of a mass of mesenchymal cells, which

make up the presomitic mesoderm (PSM), into a series of epithelial

somites located on both sides of the neural tube [17,18]. Somites

are formed in a periodic fashion (every 90 minutes in the chick)

emerging from the rostral end of the PSM as spheres of epithelial

cells organized centripetally around a mesenchymal somitocoel

[19–21]. Much is known about the molecular mechanisms which

define the periodic positioning of somitic boundaries as well as the

rostro-caudal polarity of somites [22–24]. However, almost

nothing is known about how cell shape and behavior are altered

as the mesenchymal PSM transforms into epithelial somites.

A fibronectin (FN) matrix surrounds the PSM and recently

formed somites [25,26] and inactivation of the FN gene (Fn1) in

the mouse prevents somitogenesis [27,28]. More recently, the

importance of FN in somitogenesis has also been established in

zebrafish [29,30], Xenopus laevis [31,32] and chick [33]. We have

demonstrated that in chick, the FN matrix surrounding the PSM is

generated through collaboration between ectoderm and PSM: the

ectoderm produces FN which is then assembled by integrin a5b1
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expressed by PSM cells. Furthermore, when FN matrix assembly is

blocked, somitogenesis fails [33]. These results explain the

requirement of ectoderm for morphological somite formation

[34,35] and demonstrate that FN needs to be assembled into a

matrix in order to support somitogenesis. However, in spite of

these recent advances, we still do not know how the FN matrix

affects the transformation of mesenchymal PSM cells into

epithelial somitic cells.

To better understand somite morphogenesis in vivo, and how a

mesenchyme-to-epithelium transition occurs in the embryo, we

have improved procedures for 3D imaging both live and fixed

chick embryos. We first obtained detailed images of fixed embryos

revealing the cellular organization of the PSM and early somites as

well as the 3D organization of the surrounding ECM. We then

used two-photon live imaging to obtain 3D videos (4D images) of

cell dynamics during somite formation. Our results show that PSM

cells are highly dynamic, exhibiting constant protrusive activity

and cell body movements, and that somite epithelialization

involves the progressive organization of these dynamic cells into

an aster-like arrangement, a process that takes much longer than

the 90 minute interval of each new boundary formation. This

reveals and also clarifies the nature and sequence of events in a

surprisingly complex morphogenetic process, involving two

distinct stages of epithelialization and multiple concurrent cell

movements, some of which had not been previously described as

contributing to somitogenesis. Perturbation of de novo FN matrix

assembly does not inhibit the dynamic behavior of PSM cells but

impairs cell elongation and alignment, N-cadherin polarization

and egression of cells from the somitocoel into the epithelium.

These results provide new insights into the complexity of the

mesenchyme-to-epithelium transition underlying somitogenesis

and demonstrate how a FN matrix is essential to guide dynamic

cells into an epithelial structure.

Materials and Methods

Embryos and immunohistochemistry
Fertilized chicken eggs were incubated at 38uC until the stages

of interest. Embryos and explants were fixed overnight in 4%

paraformaldehyde in phosphate buffered saline (PBS) at 4uC,

permeabilized with 1% Triton-X100, and incubated overnight

with antibodies and dyes diluted in 1% bovine serum albumin

(BSA) in PBS. The following antibodies were used: anti-FN (1:400;

Sigma), anti-laminin (1:100, Sigma), anti N-cadherin (clone 32,

1:100, BD Biosciences), and the appropriate Alexa Fluor-

conjugated secondary antibodies (Molecular Probes). Embryos

and explants were treated with ribonuclease A (10 mg/ml, Sigma)

and counterstained using ToPro3 (1:500, Molecular Probes),

slowly dehydrated in methanol and cleared with methylsalicylate

(Sigma). Somite nomenclature follows that of Pourquié and Tam

[36] where the forming somite is defined as somite 0 (s0), formed

somites rostral to it are sI, sII and so forth, and prospective somites

(PSM caudal to s0) are defined as s-I, s-II and so on.

Embryo preparation and culture for live-imaging
Stage HH4-5 [37] embryos were microinjected in ovo over the

anterior primitive streak, with the PCAAGS-GFP vector [38] at a

low concentration (0.8–1.4 mg/ml) which, after electroporation,

resulted in a mosaic of GFP-positive and GFP-negative cells which

facilitated the identification of individual cells within the tissues of

interest. An Electro Square Porator ECM830 (BTX Genomics

Inc) was used to deliver three to five 25–50 ms 9V pulses, spaced

350 msec, applying a sharpened tungsten anode under the embryo

and a platinum wire cathode above the PSM-prospective territory

[39]. After re-incubating overnight, normally developing GFP-

expressing embryos were collected with vitelline membranes using

a paper ring (Whatman #1) and cleaned in warmed Hanks

Balanced Salt Solution (Sigma). Embryos were then mounted

ventral-side down over a 0.4 mm pore size Transwell-collagen-

coated membrane (Costar, Life Sciences) which was placed on

35 mm diameter #1.5 glass-bottom Petri dishes (World Precision

Instruments). The mounted embryo was bathed with Medium 199

(Sigma) with 5% fetal bovine serum and 10% chick serum (culture

medium M199) as previously described [40] and the Petri dish

placed on a heated stage insert (PECON Tempcontrol 37) inside a

custom built microscope incubator box assuring that the embryo,

objective and stage were kept at 37–38uC during time-lapse image

recording.

Confocal and two-photon image acquisition
Images of fixed and immunostained embryos and explants were

acquired on either a Leica SPE or a Zeiss LSM 510 confocal

system. Stacks of optical sections spanning the thickness of the

rostral-most PSM and recently formed somites were acquired

using a 20x/0.7NA dry or a 40x/1.4NA oil-immersion objectives.

3D images of live embryos were acquired using a Zeiss LSM 510

NLO system coupled to a Ti:Sa IR pulsed laser, pumped by a 5W

Verdi laser, and tuned for 880 nm. PSMs of live embryos were

scanned dorso-ventrally (approximately 120 mm) using a 20x

0.7NA objective, repeated every 10 minutes for a period of 6–

8 hours; bright-field images were acquired simultaneously.

Inhibition of FN fibrillogenesis
A 70 kDa amino-terminal FN fragment (100 mg/ml; Sigma) was

used to inhibit FN matrix assembly [41] as in [33]. For live

imaging, embryos were first cultured under the microscope in

M199 medium until they formed one somite pair (to ensure

normal development) after which the medium was replaced with

new warmed M199 containing either the 70 kDa fragment, or

BSA (100 mg/ml; Sigma) as a control. In another set of

experiments, embryo explants were cultured for 6 hours over a

Millipore filter floating on M199 medium [40], containing the 70

kDa fragment (or BSA in controls), after which they were labeled

and processed for confocal microscopy as already described.

Image analysis and quantifications
Z-stacks of confocal and two-photon images were processed and

converted using ImageJ (http://rsb.info.nih.gov/ij) and the

LOCI’s Bio-Formats plugin (http://www.loci.wisc.edu/ome/

formats.html), before 3D reconstructions and analysis using Amira

v4.1.2 (Visage Imaging, Inc.) and Imaris v5.7.2 (Bitplane, Inc)

softwares. The z-depth was rescaled to compensate for refractive

index mismatch (by 1.33x in the case of live embryos or by 1.52x

in fixed embryos when imaged with dry lenses) and embryo drift

was corrected in Amira by 3D reconstructing each time-point 3D

stack and repositioning it so that the center of the first formed

somite remained stationary.

The Amira software was used to obtain 3D surface reconstruc-

tions of PSMs, somites and their somitocoels (by manual

segmentation and iso-surfacing of volumes), as well as volume

renderings of the 3D distribution of FN, laminin and N-cadherin.

3D coordinates of the somitocoel centroid, basal and apical ends of

rostral and caudal somite cells were used to calculate the cell

length ( = Euclidean distance between the cell’s apical and basal

ends), and centripetal alignment of fusiform epitheloid cells ( =

angle formed between the somitocoel’s centroid, and the cell’s

basal [vertex] and apical ends; Figure S1A). These measurements

were done at two time points in each embryo (n = 3; n = 20 cells/
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embryo [10 rostral and 10 caudal]) and differences between s0 and

sII stages as well as between rostral and caudal cells were evaluated

using a repeated measures ANOVA. Differences between

treatments (i.e. control versus 70 kDa fragment-treated (n = 3

embryos; n = 20 cells/embryo [10 rostral and 10 caudal])) were

evaluated using a nested ANOVA, where the effects on rostral and

caudal cells were evaluated separately.

Cell densities in somitocoel and somite epithelium were

estimated from the nuclear labeling within the manually

segmented volumes (see above) by calculating the average grey

intensity per mm3 and further normalizing to the average intensity

of the neural tube at the same axial level. Only somites fully

separated from the PSM ($ sI) were measured and because an

ANOVA revealed no significant differences between somites

within each treatment, we pooled the different somites to an

average per explant for each parameter measured, and evaluated

differences between treatments (i.e. control versus 70 kDa fragment-

treated) using a t-test.

Timing of somite formation and staging were determined by

analyzing bright-field image sequences in ImageJ and scoring the

appearance of new clefts. Using the 4D images in the Amira

software we scored the number of pseudopodia formed by cells of

control and 70 kDa fragment-treated embryos and using the

Imaris software we manually tracked cell-body movements in 3D,

and calculated track lengths and net displacement (distance

between initial and final position; Figure S1B) of caudal versus

rostral cells of control and 70 kDa fragment-treated embryos (n = 3

per treatment; 20 cells per embryo); measurements per treatment

were pooled and differences evaluated using a t-test. We also

determined the fate of PSM cells that were initially either

peripheral or in the core and calculated the percentage that

became elongated and centripetally aligned (i.e. epitheloid) at the

end of the video, in control versus 70 kDa fragment-treated

embryos.

All quantifications are summarized in Table S1. Statistical

analysis was performed using JMP!In V4.0 (SAS institute) or

Statistica 8.0 (StatSoft).

Results

Somite formation involves two stages of epithelialization
and contact with a FN matrix

To better understand how cells are organized as somites form,

we used N-cadherin immunolabeling and ToPro3 nuclear staining

to study cell morphology and polarization in the rostral PSM and

newly formed somites. At the level of s-II and s-I, medial

peripheral PSM cells are cuboidal (Figure 1A), with round basal

nuclei (Figure 1B) and apically polarized N-cadherin (Figure 1A).

We define this layer of medial cuboidal cells with the basal side

facing outwards as the first stage of somite epithelialization. At the

s0 level and further rostrally, medial cells are spindle-shaped

(Figure 1A), their nuclei are oval and not aligned basally

(Figure 1C), N-cadherin is restricted apically (Figure 1A), and

thick basal tapering extensions connect these cells to surrounding

tissues (Figure 1D). We define this pseudostratified layer of

polarized epithelial cells with basal protrusive activity as the

second stage of epithelialization. Other cells in the rostral PSM are

polygonal, widely spaced, do not present a noticeable orientation

or epithelial organization, and N-cadherin is homogeneously

distributed on their surface (Figure 1A).

Eventually, all peripheral cells in a mature somite reach the

second stage of epithelialization, but not simultaneously on all

sides. In s0, cells in rostral and lateral sides are still non-polarized,

unaligned and polygonal, while on all other sides, the peripheral

cells have polarized N-cadherin, are spindle-shaped and aligned

centripetally (Figure 1A, 1E, 1E9, 1G and 1G9; Video S1).

Consequently, a 3D reconstruction of the apical N-cadherin

staining reveals a ‘‘3D adhesion basket’’ opened rostrally and

laterally (Figure 1F, 1F9 and 1F0).

The PSM is surrounded by an extracellular matrix containing

FN [26,33] and laminin [26]. Laminin immunoreactivity appears

as discrete spots distributed homogeneously over the rostral-most

PSM and newly formed somite (Figure 1H). This indicates that the

laminin matrix is still in early stages of assembly [42–44] and only

forms a continuous basement membrane later. In contrast, a dense

fibrillar FN matrix surrounds the rostral PSM (Figure 1H and 1I;

Video S2), and numerous FN fibrils penetrate the tissue (Figure 1J

and 1J9). Cables of FN fibrils often align along pseudopodia (data

not shown) and are especially frequent at the forming inter-somitic

cleft (Figure 1J and 1J9; Video S2), suggesting that cells exert

traction forces or use the FN matrix for structural support. We

conclude that FN is the likely ECM ligand for the basal protrusions

of PSM cells during somite formation.

The pseudostratified somite epithelium arises through a
dynamic process initiated medially

The data from fixed embryos showed that the mesenchyme-to-

epithelium transition underlying somite formation appears to

occur progressively around the somite. To analyze this phenom-

enon in vivo, we obtained 4D images centered on PSM level s-II

over time, until this area assembled as a new somite and reached

sII (Figure 2; Video S3). Interestingly, during the whole period,

cells displayed highly dynamic protrusive and motile activities

(Figure 2B and 2B9), even after becoming incorporated into the

epithelium (Video S3 and Table S1). Close analysis of the videos

allowed us to discriminate a number of different morphogenetic

movements underlying somite epithelialization: i) Medial cuboidal

cells elongate and become spindle-shaped (Figure 2A and Video

S3, blue cell). ii) Mesenchymal cells adjacent to these medial

spindle-shaped cells attach ‘‘one-by-one’’ to their basal ends and

‘‘zip’’ along their surface, becoming elongated and centripetally

aligned (Figure 2A and Video S3, red cells), a process best

described as cell accretion. Accretion first spreads to the ventral

and dorsal PSM side, then to the caudal side of s0 (compare

Figure 2A+3h with 2A+4h), only reaching the rostral side in late

s0/sI (compare Figure 2A+4h with 2A+5h). iii) Epithelialization of

the lateral side occurs last ($sI; compare Figure 2A+5h with

2A+6h) and involves yet another mechanism: cells from the

lateral-most PSM and the core elongate, intercalate and condense

into an epithelium (Figure 2A and Video S3, yellow cells). This

movement seems to be responsible for the medio-lateral narrowing

and dorso-ventral thickening of the prospective somite and its

detachment from the intermediate mesoderm (Figure 1E and E9).

Throughout the image recording period we also observed a fourth

type of morphogenetic movement: iv) Egression of cells from the

center of the PSM/somites (Figure 2A and Video S3, green cell)

outwards into the forming epithelium. Ingression from the

epithelium to the core also occurred, but was less frequent, hence

the somitocoel became progressively smaller (Figure 2, black

dotted contours). Core cells egress by extending protrusions which

penetrate the apical cell-cell adhesions, and then undergoing

amoeboid movements that translocate the cell body into the

epithelium where cells become spindle-shaped and centripetally

aligned (Figure 2A and Video S3 green cell). Furthermore, v) we

recorded cells ‘‘jumping’’ from one prospective somite to another

as previously described by [1]. The fact that cells freely switch

between periphery and core, and between adjacent somite

Chick Somitogenesis In Vivo
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Figure 1. Cell organization, polarization and matrix organization in rostral PSM and epithelial somites (see also Videos S1 and S2).
A) Coronal confocal section of chick embryo PSM immunostained for N-cadherin showing s-II, s-I and s0. Different cell shapes can be recognized:
mesenchymal polygonal cells (blue), medial cuboidal cells (red) which are aligned forming a cuboidal epitheloid layer (between arrowheads) and
elongated spindle-shaped cells (yellow). Red cells in s-I have started elongating and yellow cells in s0 are spindle-shaped. B and C) Coronal confocal
sections of a chick embryo PSM stained for DNA showing a detail of the medial epithelium at the level of s-I (B) where cell nuclei are round and
basally aligned (red dots), and at level sI (C), where they are oval-shaped and non-aligned basally as in a pseudostratified epithelium (green dots). D)
Coronal confocal section of a chick embryo PSM stained for N-cadherin, showing in detail the extension of pseudopodia that connect the PSM cells to

Chick Somitogenesis In Vivo
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territories suggests that either cell fate choices are flexible, or that

differently committed cells sort according to their fate.

We conclude that somite formation is a complex process

involving a combination of multiple morphogenetic movements

that occur continuously over a period of at least 6 hours, without

noticeable periodic changes of cell behavior every 90 minutes.

Furthermore, the somitic epithelium is clearly not a ‘‘convention-

al’’ epithelium, as its cells retain many characteristics of

mesenchymal cells. Hence, we will refer to these cells as epitheloid

rather than epithelial cells.

Inhibition of FN matrix assembly impairs PSM cell
elongation and alignment without affecting cell
dynamics

We have previously shown that somitogenesis is impaired when

embryo explants are cultured with the 70 kDa N-terminal FN

fragment [33], known to inhibit the incorporation and assembly of

endogenous FN molecules into fibrils [41]. As our live imaging

data demonstrates that somitogenesis involves extensive cell

movements and basal protrusive activity towards the surrounding

FN matrix, we analyzed the effect of perturbing FN matrix

assembly on PSM cell behavior.

Embryos cultured in medium with BSA (control, Figure 3A)

form three or four somites in 6 hours, and an even fibrillar

network of FN matrix can be observed (Figure 3C). In contrast,

embryos cultured with the 70 kDa FN fragment (Figure 3B) form

only one or two somites and the FN matrix has numerous large

holes interspersed with dense agglomerates of FN (Figure 3D).

Analysis of bright-field image sequences of live-imaged control

embryos (n = 3) showed that new somitic clefts form every 80–87

minutes (Figure 3A and 3E), as expected. In contrast, fragment-

treated embryos (n = 4) took 145 minutes to form the first somite

pair and only two out of four embryos gave rise to a second somite

pair, which formed in 150 minutes (Figure 3B and 3E). Thus the

disruption of the FN matrix first delays and then effectively halts

the formation of new somites.

Analysis of cell movements in 4D images of treated embryos

showed that, despite the perturbation of the FN matrix, the medial

wall of cuboidal epitheloid cells forms and the movements of

accretion, egression and condensation still occur (Video S4). In

control and fragment-treated embryos (n = 3; 20 cells/embryo

each) cell bodies moved an average distance of 39.6 mm/37.6 mm

every 90 minutes, for a net displacement of only 4.8 mm/5.5 mm,

respectively (Table S1). This demonstrates the dynamic nature of

cells within the rostral PSM and shows that this dynamic behavior

is not affected when FN matrix assembly is perturbed (P = 0.1468

and P = 0.1582, respectively). Although the 4D images do not

permit resolution of fine filopodial protrusions, we scored the

formation of pseudopodia and found that embryos treated with the

70 kDa fragment formed the same number of pseudopodia as

control embryos (Table S1) showing that the dynamic behavior is

preserved. Despite this, the PSM cells of the fragment-treated

embryos never formed the expected aster-like arrangement of

control somites (compare Figure 2A+6h with Figure 3B9), most

likely due to a defect in cell organization (Figure 3B0).

To test this, we measured the alignment and lengths of PSM/

somitic cells. In control embryos, cells that were at s-II level at time

0 h had been incorporated in sII after 6 hours of culture (Figure 3A),

while in fragment-treated embryos (n = 3) these cells only reached a

s0-like organization which we designate ‘‘s0’’ (Figure 3B and 3F).

Notably, both rostral and caudal cells from control sII are

significantly more elongated and aligned than the equivalent cells

from the ‘‘s0’’ (Figure 3F). Thus the FN matrix plays a crucial role in

cell elongation and alignment during somitogenesis.

We next assessed whether the elongation and alignment of cells

in ‘‘s0’’ is equivalent to an s0. Normally, in a forming somite, the

caudal side epithelializes before the rostral one (Figure 1; [45].

Comparing cell elongation and alignment in s0 versus ‘‘s0’’ reveals

no differences rostrally, but caudal ‘‘s0’’ cells are significantly less

elongated and less aligned than in s0 (Figure 3F). This

demonstrates that ‘‘s0’’ somites are not just delayed, but that the

epithelialization of their caudal walls also is greatly impaired.

We conclude that an intact FN matrix is not essential for the

pseudopodial or motile behavior of PSM cells, but is required to

orient their dynamic behavior and guide them into an aster-like

arrangement.

FN matrix plays a crucial role in N-cadherin polarization
during somitogenesis

In order to assess whether perturbing the FN matrix also affects

the apical polarization of N-cadherin, embryo explants were

cultured for 6 hours with BSA (n = 4; Figure 4A) or the 70 kDa FN

fragment (n = 6; Figure 4D) and immunostained for N-cadherin.

Analysis of our results showed that in control explants, s0 cells

have started to polarize their N-cadherin apically (Figure 4A9) and

sIII cells are elongated, aligned and have apically polarized N-

cadherin (Figure 4A9). In contrast, in fragment-treated explants

(n = 6; Figure 4D), the axial equivalent to s0 of controls have an ‘‘s-

III’’ morphology and do not show any sign of epithelialization

(Figure 4D9). The axial equivalent to control sIII cells have only

reached an ‘‘s0’’ morphology with cuboidal medial cells and

present only a slight apical enrichment of N-cadherin (Figure 4D0).

3D reconstruction of the N-cadherin labeling further confirms the

differences between control and 70 kDa fragment-treated explants.

The s0 in control embryos has a ‘‘3D adhesion basket’’ opened

their surroundings. E) 3D surface reconstruction of the rostral PSM and sI showing a dorsal (E) and medial view (E9). Transparent surface represents
the epithelium and in dark gray the mesenchymal core. The s0 somite is still inserted in the ‘‘socket-like’’ PSM [1], but indentations (arrowheads)
reveal where the inter-somitic cleft will soon appear. The rostral and lateral sides of s0 are still mesenchymal. As a result of cell rearrangements
between s-II and sI, the PSM narrows medio-laterally and thickens dorso-ventrally (dotted lines in E and E9). F) 3D surface reconstruction (white
transparent surface) of s0 somite viewed medially (F), rostrally (F9) and dorsally (F0), showing a volume reconstruction of N-cadherin immunostaining
(green) inside. N-cadherin is enriched in the medial, dorsal, ventral and caudal sides, and less so in rostral and lateral sides. Thus the N-cadherin-
staining forms a 3D ‘‘adhesion basket’’ in s0. G) 3D surface reconstruction (white transparent surface) of s0 somite viewed dorsally (G) and medially
(G9) showing representative cells in the epithelial layer inside, also surface reconstructed (multiple colors). Rostral and lateral cells are elongated but
not yet oriented centripetally (dotted circles), while cells in other sides are already aligned. See also Video S1. H) Projection of tangential confocal
coronal sections FN-positive fibrils (green) extending away from somite surface, and demonstrating a patchy pattern of laminin immunoreactivity
(red). I) 3D volume reconstruction of FN matrix organization (green) surrounding the rostral PSM including s-I and s0 (brown surface) and sI (blue
surface). Rostral is to the right and medial to the top. Cables of FN connect the PSM and sI to surrounding tissues (arrowheads). J) Rostral view of FN
matrix in a 3D volume reconstructed transversal slab of PSM as shown in I (black plane) at the level of the forming cleft between s-I and s0. Dorsal is
upwards, medial is to the right. Cables of FN penetrate inwards into the interior of the somite (yellow arrows), along the lateral surface of epitheloid
cells, and between somites, into the nascent cleft. Tissues are represented in light blue. J’ is a detail of panel J, showing the cables of FN penetrating
the intersomitic cleft. The tissues have been digitally removed to show only the FN matrix (green).
doi:10.1371/journal.pone.0007429.g001
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rostrally and laterally (Figure 4B) and in sII it has formed a ball

(Figure 4C). In contrast, the two equivalent tissues in fragment-

treated explants have no obvious apical polarization of N-cadherin

(‘‘s-II’’; Figure 4E) or have a defective ‘‘3D adhesion’’ basket with

the caudal side opened (‘‘s0’’; Figure 4F). Thus in addition to cell

elongation and alignment abnormalities (Figure 3F), the cells of

fragment-treated explants also show impaired N-cadherin polar-

ization which in ‘‘s0’’ is most severe caudally.

We further noticed that perturbing the FN matrix also affects

somites that were already formed before culture. In control

Figure 2. Morphogenetic movements during somite formation in chick embryos (see also Video S3). A) Panels represent seven time-
points (spaced 1 hour) of a 4D two-photon imaging sequence (each is a 3D reconstructed 30 mm coronal ‘‘slab’’ through the somite’s equator (rostral
is to the top, medial to the left) of embryos expressing a mosaic of GFP-positive and negative cells. Thin horizontal arrows point to areas where
intersomitic boundaries form. Five cells were traced (outlined in color) to depict different morphogenetic movements: i) Cuboidal medial cells
elongate and become spindle-shaped (blue). ii) Some cells are recruited to the medial epithelium via accretion (red) and undergo a change in shape
and orientation to conform to the orientation of medial elongated cells. iii) Lateral PSM cells and core mesenchymal cells (both yellow) converge and
elongate. iv) Core cells egress (green) into the epithelium, becoming spindle-shaped and centripetally aligned. In the last panel (A+6h) the initial
positions of the cells (A+0h) are drawn with dotted lines, and colored arrows represent the overall morphogenetic movements. The size of the
mesenchymal region, i.e. the somitocoel (black dotted lines) becomes progressively smaller during these 6 hours. B) Detailed view of time-points 3:50
(B) and 4:00 (B9) showing pseudopodia retracting (orange arrowheads) and new ones forming (green arrowheads), similar to the tapering extension
observed in fixed embryos (see Figure 1D and last segment of Video S3). Furthermore, massive cytoplasm movements inside cells are also visible
(asterisks; where green marks cytoplasm translocations; see also Video S3). These movements occurred throughout the image recording period
indicating that the dynamic behavior was retained even after cells became epitheloid.
doi:10.1371/journal.pone.0007429.g002
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Figure 3. Inhibiting FN matrix assembly impairs somite formation by affecting cell elongation and alignment. A and B) Bright-field
images showing equivalent halves of embryos cultured for 6 hours either under control (BSA) conditions (A) or with the 70 kDa FN fragment (B). The
control embryo formed three complete somites (sI-sIII) and an advanced s0 (A), while the 70 kDa fragment-treated embryo formed only one somite
(marked ‘‘sI’’) and an incipient ‘‘s0’’ (B). B9 is a two-photon section showing an ‘‘sI’’ of a GFP-electroporated and 70 kDa fragment-treated embryo
showing impaired cell elongation and alignment (see also Video S4), particularly in the caudal side (B0; compare with Figure 2A+6h). C and D) FN
matrix covering the dorsal surface of the PSM at equivalent axial positions of control explants (s0, C) and explants treated with the 70kDa fragment
(‘‘s-II’’, D). Ectoderm-associated FN was digitally removed to show only the PSM FN matrix. Explants treated with the 70 kDa fragment (D) show
numerous large holes in the FN matrix (red arrows) interspersed with dense agglomerates of FN (green arrows), contrasting with the more uniform
fibrillar matrix of control explants (C). E) Timing of intersomitic cleft formation as determined from analysis of bright-field time-lapse image
sequences. Control embryos (n = 3) formed three new somites in approximately 4 hours, while experimental embryos (n = 4) took almost 5 hours to
form either one (n = 2) or two (n = 2) new somites. F) Graphical representation of cell lengths and centripetal angles of rostral (n = 10 cells/embryo)
versus caudal (n = 10 cells/embryo) somitic cells in control embryos at mid-culture (s0, n = 3), experimental embryos at 6 hours (‘‘s0’’, n = 3) and
control embryos at 6 hours (sII, n = 3). Comparing cells in ‘‘s0’’ with the equivalent cells of control embryos, which had matured to sII stage, showed
that caudal cells were significantly less elongated and aligned (P,0.001) in the ‘‘s0’’, and so were rostral cells (P = 0.004 and P,0.001, respectively).
Comparing cells in ‘‘s0’’ to cells of control s0 revealed significant differences in caudal cell elongation (P,0.001) and alignment (P = 0.007) whereas no
differences in those parameters were detected rostrally (P = 0.643 and P = 0.368, respectively). Error bars represent 95% confidence intervals. Asterisks
represent significant differences of ‘‘s0’’ when compared to sII (bottom asterisk) or s0 (upper asterisk).
doi:10.1371/journal.pone.0007429.g003
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Figure 4. N-cadherin fails to polarize apically when FN fibrillogenesis is inhibited. Bright field (A, D), coronal confocal sections (A9, A0, A09,
D9, D0, D90) of control (A) and 70 kDa FN fragment-treated (D) explants cultured for 6 hours, immunostained for N-cadherin (green) and labeled for
DNA (red) and 3D surface reconstruction with N-cadherin labeling (green in B,C,E,F) of selected volumes. A) Control explants form four new somites.
In s0 (A9), medial cells are starting to elongate and to polarize their N-cadherin apically. In sIII (A0) and sV (A09), cells have become centripetally
aligned, with oval-shaped nuclei and apically restricted N-cadherin immunoreactivity. B–C) Lateral view of N-cadherin labeling shows a ‘‘3D adhesion
basket’’ in s0 (B). By sIII (C) the N-cadherin labeling has become more apically restricted and has closed rostrally and laterally thus forming a ball. D) 70
kDa fragment-treated explants form one or two somites; the depicted embryo formed one (‘‘sI’’) and has an advanced ‘‘s0’’. The tissue at the same
axial level as A9 (‘‘s-III’’, D9) shows no sign of epithelialization or cell elongation. Medial cells in the forming somites of 70kDa fragment-treated
explants (‘‘s0’’, D0; axially equivalent to A0) show incipient elongation and N-cadherin polarization. Cells of somites that had formed before culture
(‘‘sII’’, D09) are less polarized and less elongated than cells at the equivalent axial level in control explants (sV). E–F) Lateral view of N-cadherin labeling
in 70kDa fragment-treated explants show dispersed N-cadherin localization in the ‘‘s-III’’ (axial equivalent to B). The ‘‘s0’’ (axial equivalent to C) depicts
a more intense labeling in the rostral portion, resulting in an ‘‘adhesion basket’’ that is opened caudally.
doi:10.1371/journal.pone.0007429.g004
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explants, sI cells progressed to sV during the 6 hour culture and

were elongated, centripetally aligned with apically restricted N-

cadherin (Figure 4A09). Cells at sI level in 70 kDa fragment-treated

explants, did not develop into a typical sV (Figure 4A09), but remain

less elongated and display less polarized N-cadherin immunoreac-

tivity (Figure 4D09). In fact, these cells were even less elongated and

less polarized than cells in a control sIII (Figure 4A0). This shows

that the FN matrix not only promotes cell elongation and

polarization during the formation of new somites, but is also crucial

to maintain the epithelial state of already formed somites.

Egression of core cells into the somite epithelium
requires an intact FN matrix

We noticed that in embryos cultured with the 70 kDa fragment,

somites have unusually large somitocoels, suggesting a possible

defect in the recruitment of core cells into the epithelium. To

address this, we started by tracking individual cells in the 4D

images. In control embryos (n = 3), 95% of tracked core cells

(n = 35/37 cells) from s-II became epitheloid after 6–8 hours,

while in experimental embryos (n = 3) only 29% of tracked core

cells (n = 10/35 cells) became part of the epithelium (Table S1),

suggesting a defect in the egression of cells from the core to the

periphery. To further quantify this phenomenon, we measured the

volumes of somites formed and their somitocoels during a 6 hour

culture period in control (n = 4) and 70 kDa fragment-treated

(n = 6) explants (Figure 5A and 5B). Total volume of somites does

not differ significantly, but in 70 kDa fragment-treated explants

the somitocoels are significantly larger, representing 13.2% of the

total volume of the somite, in contrast to only 6.5% in control

explants (Figure 5C; Table S1). Furthermore, in control embryos,

somitocoel cell density is lower than that of the surrounding

epithelium while in fragment-treated embryos it is as high as in the

epithelium (Figure 5D). This strongly suggests that the ability of

core cells to egress into, and become part of the somitic epithelium

is seriously hampered when FN fibrillogenesis is inhibited.

Discussion

Somite epithelialization is a complex and continuous
event

The chick PSM segments every 90 minutes, giving rise to a new

somite. This periodicity is achieved through a molecular

segmentation clock, evidenced by oscillations of gene expression

in the PSM, which is the hallmark of somitogenesis [23,24]. Here

we used 3D live imaging of the full chick PSM in a mosaic of GFP-

labeled and non-labeled cells to study the cellular transformations

involved in somite formation. Surprisingly, our time-lapse images

revealed that the epithelialization of the forming somite does not

occur in a periodic fashion every 90 minutes. Rather, a continuous

series of events, spanning a period of at least 6 hours, bring about

the assembly of cells into the epithelial somite, which only becomes

complete as it reaches stage sII.

Figure 5. Inhibition of FN fibrillogenesis impairs egression of cells from the somitocoel to the somite epithelium. A–B) Representative
examples of 3D surface reconstructions of somites (blue; dorsal cap digitally removed) and their somitocoels (purple) formed in embryo explants at
the end of 6 hours of culture with BSA (n = 4; A) or with 70 kDa fragment (n = 6; B). Three of the six explants treated with the fragment formed two
somites as depicted in B; the remaining ones formed only one somite. C) Quantification of somite and somitocoel volumes and cell densities
(fluorescence intensity of DNA labeling). Only somites fully separated from the PSM ($ sI) were measured. Since an ANOVA revealed no significant
differences between somites formed during the 6 hour culture period within each treatment, we pooled the measurements of the different somites
to an average per explant (C). There is no significant difference (P = 0.129) in somite volume between control and fragment-treated explants, but
somitocoels of fragment-treated explants are significantly larger (P,0.0001). D) Quantification of cell density in the whole somites shows no
difference (P = 0.990) between control and 70 kDa fragment-treated explants. However, the cell density ratio (somitocoel/epithelial portion) is
significantly higher (P = 0.043) in somites of 70 kDa fragment-treated explants. Bars represent 95% confidence intervals.
doi:10.1371/journal.pone.0007429.g005
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Our data show that somitogenesis involves two distinct

epithelialization events. Although it has previously been reported

that the chick PSM shows signs of precocious epithelialization

[18,46,47] and that the somitic epithelium is pseudostratified

[19,21], it has gone largely unnoticed that these two epithelia are

morphologically distinct and that the cuboidal epithelium of the

rostral PSM is characteristic of its medial cells.

The transformation of the mesenchymal chick PSM into

epitheloid cells starts medially with the formation of the cuboidal

epithelium. These cells later elongate into a pseudostratified

arrangement and while doing so, they recruit adjacent cells by

accretion (Figure 6A). It has been shown that medial PSM cells

form somites autonomously, whereas lateral PSM cells require the

presence of medial ones [48]. By showing that both steps of

epithelialization start medially and that these medial cells recruit

adjacent cells into the forming epithelium, our images provide

evidence that reinforces the idea that medial cells have an

organizing function during somitogenesis. Although accretion has

not previously been identified for somitogenesis, it is known to

occur, for example during notochord development [49,50] and

primordial germ cell cluster formation [51].

The lateral side of the chick somite epithelializes last when

lateral mesenchymal cells rearrange by intercalating and elongat-

ing into a centripetal arrangement (Figure 6A), reminiscent of the

convergence and extension movements of dorsal mesoderm cells in

amphibian embryos [52].

Finally, egression of cells from the forming somitocoel is an

unexpectedly large contributor to the somitic epithelium

(Figure 6A). In fact, core cells are as likely to end up in the

peripheral epitheloid layer as peripheral cells. The observation

that an epithelium can assemble from mesenchymal cells egressing

into it from the apical side and aligning along the existing

epitheloid cells is unexpected and few other examples exist [53].

High-resolution time-lapse imaging of situations where an

epithelium assembles from a group of mesenchymal cells (e.g.

vasculogenesis; condensation of the metanephric mesenchyme

during kidney development) should clarify whether this mecha-

nism is a general feature of mesenchyme-to-epithelium transitions.

Figure 6. Model of morphological somite formation and morphogenetic movements. A) Schematic representation of a ‘‘hypothetical’’
coronal slice representing stages of somite formation. Medial is up and rostral to the right. The different morphogenetic movements that contribute
to the assembly of the somite epithelium are represented: Medial cells first become cuboidal with basal nuclei (dark green cells), then these cells
elongate and recruit other cells to the epitheloid layer via accretion (red cells); accretion spreads ventrally and dorsally (not shown), and eventually to
the caudal and rostral side. Simultaneously, cells egress from the core into the epitheloid layer (green cells), and, finally, at the lateral side of the
somite, cells elongate, intercalate and condense (yellow cells). In s0, the rostral and lateral sides epithelialization is only completed after the somite
separates from the PSM. The FN matrix is depicted in green. A9 depicts how the accretion and condensation ‘‘spread’’ through the whole somite to
complete the ‘‘spherical’’ ball of epitheloid cells. B) When the assembly of the FN matrix is disrupted, PSM cells (especially caudal cells) do not polarize
or orient centripetally and core cells fail to egress into the epithelium.
doi:10.1371/journal.pone.0007429.g006
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The assembly of the somitic epithelium is a dynamic process

and the dynamic behavior of its cells continues after the somite

forms. The constant translocations of cell bodies within the

epitheloid layer may be a response to continuous cell recruitment

into this epithelium through egression, which gives it the

pseudostratified appearance. Pseudostratification seems to be

typical of embryonic epithelia which rest on FN-rich and

laminin-sparse matrices [8] as is the case of rostral PSM and

early somites. We conclude that the somitic epithelium is clearly

not a conventional epithelium, neither morphologically nor

behaviorally, as its cells retain several mesenchymal characteristics.

Future live imaging studies should address whether pseudostrat-

ification in embryonic epithelia represents a structural organiza-

tion per se or whether it simply reflects that these embryonic

epitheloid tissues are formed by cells which are highly dynamic

and in transit (as is the case of somite cells which later disperse and

move on to give rise to different tissues of the adult organism).

The FN matrix orients PSM cells into an aster-like somite
conformation

Our previous studies revealed that the FN matrix of the PSM is

the product of a collaboration between ectoderm and PSM, where

ectoderm provides the bulk of the FN protein, and the PSM cells

assemble this FN into a fibrillar matrix [33]. Furthermore, the 70

kDa FN fragment inhibits somitogenesis [33] by halting de novo FN

fibrillogenesis [41,54,55]. Here we show that culture of embryo

explants in the presence of the 70 kDa FN fragment for 6 hours

causes a disruption in the FN matrix, as evidenced by large holes

and areas with apparently collapsed fibrils. A similar effect is seen

in cultured cells where an already assembled matrix is progres-

sively lost if FN molecules are not continuously added to it [56].

Thus, young FN matrices are in a constant turnover and inhibiting

FN matrix assembly gradually leads to a net loss of matrix [56].

Observing cell behavior in 3D time-lapse images of live embryos

cultured in the presence of the 70 kDa FN fragment gave us the

unique opportunity to determine what aspects of somitogenesis fail

as the surrounding FN matrix weakens over time.

The dynamic behavior of PSM cells suggests that they are

continuously sensing and adjusting to the surroundings (other tissues

and the ECM). Our results show that the inhibition of FN matrix

assembly does not affect PSM cell movements and pseudopodial

activity, but perturbs N-cadherin polarization, cell elongation,

centripetal alignment and egression (Figure 6B). This suggests that

the FN matrix normally serves as a cue that orients the dynamic

behavior of PSM cells, polarizes the cell-cell adhesions to the apical

side and serves as a basal anchoring point essential for cell

elongation and alignment. FN matrices are crucial in inducing cell

elongation and polarization in young embryonic epithelia before

they mature and assemble their laminin-containing basement

membranes [57–59]. Furthermore, FN matrices also induce cell

elongation and orient protrusive activity during dorsal mesoderm

development in Xenopus [60]. Many studies have also provided

evidence of cross-talk between FN signaling and cadherins [16]. For

example, a basal FN matrix polarizes N-cadherin to the apical

domain of zebrafish myocardial cells [58] and downregulates E-

cadherin basally in cleft cells of branching epithelia [57].

Furthermore, in Xenopus mesoderm, b1 integrin signaling modulates

C-cadherin adhesiveness to the ‘‘correct’’ level to permit tissue

rearrangements [61]. In fact, the presence of FN around the rostral

PSM correlates with an increase in cell-cell adhesion between PSM

cells [62–64]. Thus a FN matrix is important both as a basal

orienting cue and in polarizing cell-cell adhesion to the apical side in

several developing systems. These basal and apical attachments are

essential for creating and maintaining the tensile strength that

supports cell elongation and cell body movements, and in turn may

also modulate the cytoskeleton and intracellular signaling pathways

thereby controlling cell shape and differentiation [7]. Moreover, we

also saw a loss of N-cadherin polarization and cell elongation in

somites that were already formed before the addition of the 70 kDa

FN fragment. Therefore, cues from a basal FN matrix seem to be

crucial, not only to induce, but also to maintain somite cell

polarization and elongation.

Egression is significantly impaired when FN matrix assembly is

perturbed, demonstrating that an intact FN matrix is required to

support and direct cell egression. FN matrices are flexible and elastic

and are extensively modifiable by cell traction forces [65–67]. The

presence of cables of FN penetrating the somite epithelium indicates

that somitocoel cells may pull on the matrix to bring themselves into

their final position. We propose that without the presence of a strong

and continuous matrix, many cells fail to egress and remain in the

somitocoel, resulting in fewer cells in the epithelium.

The FN matrix aids somitic cleft formation
It has previously been hypothesized that somite epithelialization

starts at the rostral border of s0 continuing in the caudal direction

and finishing at the caudal border as it separates from the PSM

[1]. However, more recent observations suggested that, in the

chick embryo, the caudal part of s0 epithelializes first [45,68]. Our

analysis of cell shape and orientation, cell movements and the

organization of the N-cadherin ‘‘3D adhesion basket’’ in s0

provide a formal demonstration that the caudal wall indeed

epithelializes well before the rostral one (Figure 6A).

Work in recent years has established that cleft formation

involves a cross-talk between cells caudal and rostral to the

forming cleft, whereby cells caudal to the prospective boundary

(rostral side of s-I) instruct cells rostral to the boundary (caudal side

of s0) to epithelialize [68]. The transcription factor Mesp2/Meso-1

expressed in the cells caudal to the prospective boundary

upregulates EphA4 expression in these cells [46,69]. Subsequent

binding between EphA4 and EphrinB2 present on the cells rostral

to the boundary, induces a signaling event that downregulates the

activity of the GTPase Cdc42, leading to cell epithelialization [69].

Interestingly, these authors demonstrate that EphrinB2 signaling

not only downregulates Cdc42 activity, but also acts through yet

another unknown mechanism to promote cleft formation. Here we

show that the inhibition of FN fibrillogenesis dramatically affects

the caudal side of the somite, indicating that FN plays a crucial

role in its epithelialization. EphrinB1 and EphrinB2 reverse

signaling have been shown to increase the affinity of b1 integrins

for FN, stimulating cell attachment and motility on a FN matrix

[70,71]. Thus, during somite boundary formation, EphrinB2

signaling may increase integrin engagement to the FN matrix in a

cell autonomous manner. Consequently, accreting caudal s0 cells

would bring the external FN matrix into the forming cleft with

them, a process also seen during cleft formation in salivary gland

branching morphogenesis [4]. Newly synthesized FN is then

assembled to fill in the space between the gland bud surface and

the cells at the leading edge of the cleft, thus stabilizing the cleft

further [4]. Itga5 mRNA is expressed in newly formed somites and

Fn1 mRNA is expressed in their caudal half [33], indicating that

newly assembled FN may play the same role in the somitic clefts.

Therefore we propose that EphrinB2 signaling would promote

epithelialization in two complementary ways: (1) by lowering the

activity of Cdc42 promoting epithelialization [69] and (2) by

stimulating the binding of caudal s0 cells to the FN matrix which,

in turn, induces N-cadherin polarization, cell elongation and

centripetal alignment. In agreement with this, Ephrin-B2a and Fn1
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have been shown to collaborate in somite cleft formation and

maintenance in zebrafish [29].

Conclusion
Here we present data indicating that during chick somite

formation the FN matrix acts as a fibrillar network that spatially

orients the highly dynamic mesenchymal PSM cells, bringing them

into the aster-like arrangement of spindle-shaped cells character-

istic of the epithelial somite. We propose that it does so by

inducing the polarization of N-cadherin to the apical domain of

PSM cells, thus reinforcing cell-cell adhesions, and by serving as a

basal anchoring scaffold, giving PSM cells a second point of

attachment essential for acquiring the tensile strength necessary for

elongation and orientation in 3D. We further propose that when

EphrinB2 reverse signaling induces the somitic cleft, caudal s0 cells

adhere strongly to the FN matrix, accreting cells pull the

superficial FN matrix into the cleft and then new somite-derived

FN is assembled to fill in the cleft, stabilizing it. Finally, it is

tempting to speculate that the progressive accumulation of FN in

the cleft promotes the alignment and polarization of the cells in the

rostral side of the following somite. In this scenario, a fibrillar FN

network is absolutely crucial to package cells into a somite.

Supporting Information

Figure S1 Cell shape and movement measurements. A)

Diagram representing the cell’s length (distance a-b) and

centripetal alignment angle (a; note that the smaller the angle,

the better aligned a cell is). ‘‘a’’ represents cell’s apical end, ‘‘b’’ the

cell’s basal end, and ‘‘c’’ is the somitocoel’s centroid. See materials

and methods for more details. B) 3D reconstruction of tracks of

cells whose cell body movement was used to the calculate full track

length (magenta line) and net cell body displacement (white

vector). Rostral is to the right and lateral to the top. Bright-yellow

spheres represent the position of the cell bodies of tracked cells in

the last time-point. GFP-expressing cells are 3D reconstructed in

transparent light green.

Found at: doi:10.1371/journal.pone.0007429.s001 (1.35 MB TIF)

Table S1 Effect of inhibiting FN matrix assembly on PSM cell

protrusive and motile activity, elongation and alignment, and

probability of egressing. Values presented are averages 695%

confidence intervals.

Found at: doi:10.1371/journal.pone.0007429.s002 (0.07 MB

DOC)

Video S1 3D surface reconstruction of an s0 stage somite and of

cells in the epithelial layer showing their typical shape and

orientation. The somite is oriented rostral towards the right, dorsal

upwards. Cells in rostral wall are not centripetally oriented.

During the second 3D rotation, the surface of reconstructed cells

changes color to show apical accumulation of N-cadherin (green).

Cells that are well oriented have most N-cadherin accumulated on

the apical end, i.e. towards the interior of the somite. For more

details refer to Figure 1 of the manuscript.

Found at: doi:10.1371/journal.pone.0007429.s003 (5.50 MB

MOV)

Video S2 Organization of the FN matrix in the nascent somite.

The video is an animation showing all sides of the 3D reconstruction

of fibronectin (green) matrix organized around somite sI (blue), s0

(dark brown) and s-I (light brown). Rostral is to the right. The

‘‘outward cables’’ of FN are clearly seen radiating from the surface

of the somites in formation. In the middle of the Video only s0 is

depicted, to show how the fibronectin matrix is organized on all

sides; the medial wall is less well covered with fibronectin than the

dorsal and ventral walls. The caudal and cranial walls of s0 are not

yet covered with FN. In the last segment of the video, the surface of

the PSM and sI somite are removed to show only the FN, and the

‘‘inward cables’’ penetrating the PSM, especially in the prospective

cleft. For more details refer to Figure 1.

Found at: doi:10.1371/journal.pone.0007429.s004 (10.22 MB

MOV)

Video S3 Multiphoton 4D image sequence of GFP expressing-

cells in chick embryo PSM showing cell movements during somite

formation. First segment of the video shows a portion of the PSM

of a chick embryo (rostral is upwards, medial is to the left). In the

beginning only one somite is formed, but at the end of 6 hours four

new somites have formed. After zooming into a single somite the

details of individual cell movements are shown. Several different

morphogenetic stereotypical movements are identified in cells with

different colors. Blue represents elongation of a medial cell, red cell

accretion in the rostral and caudal walls, green egression, and

yellow mesenchymal elongation and intercalation in the lateral

wall. In the end, a zoom of a forming intersomitic cleft shows the

continuous extension and retraction of pseudopodia. For more

details refer to Figure 2 of the manuscript.

Found at: doi:10.1371/journal.pone.0007429.s005 (8.03 MB

MOV)

Video S4 Effect of treatment with 70kDa FN fragment on rate of

somite formation and cell movements The video starts by showing

two side-by-side bright-field image sequences of a control (BSA;

upper panel) and 70kDa treated embryo (bottom panel), to

compare rates of somite formation. FN matrix assembly disruption

slows down and eventually halts somite formation and prevents

cells from organizing into an aster of spindle-shaped centripetally

aligned cells. In the last segment of the Video formation of

pseudopodia is shown in ‘‘freezed-frames’’, demonstrating that

pseudopodial activity is not affected by the inhibition of FN

fibrillogenesis. For more details refer to Figure 3 of the manuscript.

Found at: doi:10.1371/journal.pone.0007429.s006 (9.37 MB

MOV)
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