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Abstract

Background: Tumor DNA has been shown to be present both in circulating tumor cells in blood and as fragments in the
plasma of metastatic cancer patients. The identification of ultra-rare tumor-specific mutations in blood would be the
ultimate marker to measure efficacy of cancer therapy and/ or early recurrence. Herein we present a method for detecting
microinsertions/deletions/indels (MIDIs) at ultra-high analytical selectivity. MIDIs comprise about 15% of mutations.

Methods and Findings: We describe MIDI-Activated Pyrophosphorolysis (MAP), a method of ultra-high analytical selectivity
for detecting MIDIs. The high analytical selectivity of MAP is putatively due to serial coupling of two rare events:
heteroduplex slippage and mis-pyrophosphorolysis. MAP generally has an analytical selectivity of one mutant molecule per
.1 billion wild type molecules and an analytical sensitivity of one mutant molecule per reaction. The analytical selectivity of
MAP is about 100,000-fold better than that of our previously described method of Pyrophosphorolysis Activated
Polymerization-Allele specific amplification (PAP-A) for detecting MIDIs. The utility of this method is illustrated in two ways.
1) We demonstrate that two EGFR deletions commonly found in lung cancers are not present in tissue from four normal
human lungs (107 copies of gDNA each) or in blood samples from 10 healthy individuals (107 copies of gDNA each). This is
inconsistent, at least at an analytical sensitivity of 1027, with the hypotheses of (a) hypermutation or (b) strong selection of
these growth factor-mutated cells during normal lung development leads to accumulation of pre-neoplastic cells with these
EGFR mutations, which sometimes can lead to lung cancer in late adulthood. Moreover, MAP was used for large scale, high
throughput ‘‘gene pool’’ analysis. No germline or early embryonic somatic mosaic mutation was detected (at a frequency of
.0.3%) for the 15/18 bp EGFR deletion mutations in 6,400 individuals, suggesting that early embryonic EGFR somatic
mutation is very rare, inconsistent with hypermutation or strong selection of these deletions in the embryo. 2) The second
illustration of MAP utility is in personalized monitoring of therapy and early recurrence in cancer. Tumor-specific p53
mutations identified at diagnosis in the plasma of six patients with stage II and III breast cancer were undetectable after
therapy in four women, consistent with clinical remission, and continued to be detected after treatment in two others,
reflecting tumor progression.

Conclusions: MAP has an analytical selectivity of one part per billion for detection of MIDIs and an analytical sensitivity of
one molecule. MAP provides a general tool for monitoring ultra-rare mutations in tissues and blood. As an example, we
show that the personalized cancer signature in six out of six patients with non-metastatic breast cancer can be detected and
that levels over time are correlated with the clinical course of disease.
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Introduction

The ability to detect exceedingly rare somatic mutations

associated with cancers will help elucidate mechanisms of

carcinogenesis and monitor early recurrent cancer in personalized

medicine. Spontaneous mutation frequency is as low as 161028 and

2.161026 in human normal and cancerous tissues, respectively [1].

The analytical selectivity (see Terminology in Methods) of

conventional sequencing or massively parallel DNA pyrosequen-

cing is currently one part in ten or one part in 100, respectively

[2]. Previous analytic methods generally have analytical selectiv-

ities of 102–103, with the exception of BEAMing and MutEx/

ACB-PCR for a limited subset of restriction sites [3,4]. Recently,

Pao and Ladanyi [5] compared 13 methods for detecting the
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common 15 bp epidermal growth factor receptor (EGFR) deletion

in lung cancers (including Loop-hybrid mobility shift assay,

Cycleave PCR, PCR-RFLP and length analysis, MALDI-TOF

MS–based genotyping, PNA-LNA PCR clamp, Scorptions

ARMS, Mutant-enriched PCR). Of these, the most sensitive

method, SMart Amplification Process, SMAP [6], had an

analytical selectivity of 1 in 103.

Pyrophosphorolysis-Activated Polymerization -Allele specific

amplification (PAP-A) is a sensitive and selective method for

DNA amplification to detect ultra rare mutations [7]. The method

utilizes allele-specific oligonucleotides that are blocked at the 39

end by a dideoxy nucleotide. These ‘‘sleeping beauties’’ are inert

until activated on their cognate template by the ‘‘kiss’’ of

pyrophosphorolysis, allowing extension to occur. PAP-A has a

potential analytical selectivity of 3.361011 because false positives

can occur only if two independent rare events occur in series:

mismatch pyrophosphorolysis and misincorporation (mis-polymer-

ization) at the first polymerized nucleotide (Fig. S1A). PAP-A has

an actual analytical selectivity of 104,105 because of polymerase

misincorporation within the extension product from the opposite

primer (bypass reaction) [7].

Bi-directional PAP-A (Bi-PAP-A) was developed to eliminate the

bypass reaction, and thereby increase analytical selectivity, by

using two blocked primers that overlap at one base [8,9] (Fig.

S1B). It has an analytical selectivity of .16107 for certain single-

base substitutions (G.C, C.G, A.T, or T.G). However, the

high baseline frequency of the deaminated cytosine and 8-oxo-

guanidine in genomic DNA limits the analytical selectivity of C.T

or G.T by Bi-PAP-A assays to .104 and .105, respectively.

When PAP-A primers are designed to detect microinsertions/

deletions/indels (MIDIs), the observed analytical selectivity is less

than one part in 105 for reasons that are unclear (Fig. S1C).

Therefore, we developed MIDI-Activated Pyrophosphorolysis

(MAP), a method with a MIDI analytical selectivity that is

generally 100,000 fold greater ($16109) than in PAP-A. MAP is a

seemingly simple modification of PAP-A in which the blocked

oligonucleotides (‘‘sleeping beauties’’) have multiple mismatches to

the wild type sequence. In MAP, false positives arise by the serial

coupling of a heteroduplex slippage event followed by pyropho-

sphorolysis of mismatched heteroduplexes. Unlike PAP-A, there is

no requirement for misincorporation.

We illustrate the utility of MAP for addressing biological questions

by: i) testing the hypothesis that the common 15 and 18 bp

microdeletions in the EGFR gene in non-small cell lung cancers

derive from pre-neoplastic mutations selected during lung develop-

ment [10] and ii) monitoring of therapy and early recurrence

by detecting personalized cancer mutation signatures in the blood

of women with stage II and III breast cancers. Herein, we

demonstrate that analysis of plasma can reliably detect cancer

mutation signatures in six women with stage II and III breast cancer.

Methods

Terminology
MIDI. Microinsertion, deletion or indel; an insertion, deletion

or indel that results in a gain or loss of 1 to 50 nucleotides [11].

Pyrophosphorolysis. The removal of the 39 terminal

nucleotide by DNA polymerase in the presence of

pyrophosphate (PPi) to generate the nucleotide triphosphate.

Pyrophosphorolysis is the reverse of DNA polymerization.

MAP. MIDI- activated pyrophosphorolysis.

PAP. Pyrophosphorolysis-activated polymerization. Variants

of PAP include allele-specific PAP (PAP-A) and bi-directional PAP

(bi-PAP-A) [7].

Sleeping Beauties (P*). An oligonucleotide with a blocked

39 terminus that is not directly extendable but is activable by

pyrophosphorolysis [7] (see Fig.S1A).

Analytical Sensitivity. The minimum copy number of a

template that generates a detectable product when P* matches the

mutant template. It is determined by serial dilution of the mutant

DNA molecules.

Analytical Specificity. The maximum copy number of the

mismatched template that does not result in a detectable product

when P* mismatches the wild-type template. It is determined by

serial dilution of the wild-type molecules.

Analytical Selectivity. The ratio of analytical specificity to

analytical sensitivity.

Indel. A mutation resulting in a co-localized insertion and

deletion with a net gain or loss of nucleotides.

Tandem-base mutation (TBM). A mutation that results in

base changes at adjacent nucleotides [12,13].

Doublet. A mutant containing two nonadjacent mutations

[14].

Primer design and synthesis of P*
Standard primers were designed to amplify wild type or mutant

segments with Oligo 5 software (National Biosciences) (Table S1).

MAP primers. A pair of primers with similar Tm values,

each about 30 bases in length and separated by a 50,300 bp

sequence segment, was designed for each MAP assay to detect

rare deletions. Each P* primer was modified by adding

a dideoxynucleotide at the 39 terminus as described previously

[15]. The mutation-specific primer mismatched the wild type

sequence at two to six bases, but matched the mutant sequence at

these positions (Fig. 1A). For detecting a mutation in plasma, the

size of the amplicon should be ,100 bp because plasma DNA is

highly degraded.

Primers for site-directed mutagenesis. To generate

mutant templates to use as positive controls, a mutation-specific

primer is composed of 45-mers of mutant sequence with 10–15

nucleotides complementary to wild-type sequence at the 39 termini

for annealing to the wild-type template [16].

Preparation of templates for MAP for testing analytical
specificity and analytical sensitivity

Normal genomic DNA was isolated from blood in healthy

relatives of patients with hemophilia by Puregene Genomic DNA

Purification Kit (Gentra Systems, USA) and corresponding wild

type segments of EGFR (NM_005228.3) and EGFR2

(NM_001005862.1) were amplified. Mutant genomic DNAs were

isolated from lung tumors that had been sectioned and

microdissected as described previously[17]. Standard extraction

protocols were optimized for low levels of DNA. Carrier nucleic

acids are utilized to avoid losses due to absorption.

Four DNAs with different EGFR mutations [two with the

common deletions (c.2235_2249del15 and c.2240_2257del18),

one with a tandem base mutation (TBM; see Terminology in

Methods) and one with a doublet] were amplified with standard

primers. The artificial 14 bp deletion in exon3 in the human

EGFR gene was generated by site-directed mutagenesis PCR to use

in ‘‘control’’ assays. The assays for the rat EGFR (NM_031507.1)

15/18 bp deletions and EGFR2 (NM_017003.2) 15 bp deletion

were designed based on the homologous region in human EGFR

(Table S1).

The above PCR products were cloned with TOPO TA Cloning

kit (Invitrogen Life Technologies). Plasmid DNA with the inserted

amplicon was confirmed by sequencing in both directions.

Plasmids containing the wild-type sequence served as the template

Cancer Mutation Signatures
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for the analytical specificity test. Plasmids containing mutant

sequence served as the template for the analytical sensitivity test.

The other positive templates with a length of 100 bp were

synthesized by Sigma Company. Wild type and mutant DNAs

were cloned sequentially and separately to avoid cross contami-

nation. An analytical sensitivity assay was performed by adding a

series of dilutions of 100, 10, 4, 2, 1, 0.5, 0.25 copies of subcloned

mutant DNA (human or rat) or synthesized oligonucleotides.

Analytical specificity was determined by adding a series of

dilutions of 1010, 109, 108, 107, 106, 105, 104 copies of

correspondingly subcloned wild-type DNA (human or rat).

MAP reaction
The MAP reaction mixtures consist of 50 mM Tris-HCl

(pH: 7.8, 25uC), 16 mM (NH4)2SO4, 1mM DTT, 1.5 mM

MgCl2, 90 mM PPi, 100 mM P*, 4%DMSO, 25 mM dNTP, 4 U

Figure 1. A: MAP: Introducing multiple oligonucleotide mismatch into the 39 end of a mutation-specific blocked primer. An example
of a deletion mutant sequence (the common EGFR 15 bp deletion) is shown below the wild-type sequence (deleted sequence in brackets, red letters).
The last three bases (39) of a mutation-specific 39 blocked primer (upstream) are complementary to the three bases (caa) just before the 59 end of the
deletion; the primer mismatches the wild-type sequence at the three bases (agc) at the 39 end of the deleted region. Asterisks indicate the 39
dideoxynucleotide of the blocked primers. The ‘‘X’’ represents mismatch between the mutant-specific primer and wild-type sequence. B: Serial
coupling of two errors underlies the ultra-high analytical selectivity of PAP and MAP. PAP-A or Bi-PAP-A and MAP derive their high
analytical selectivity from serial coupling of two events, but the events differ. The practical analytical specificity for PAP-A and Bi-PAP-A is limited by
side reactions such as misincorporation from the extended generic PAP primer or the presence of DNA damage products such as deaminated
cytosine or 8-oxo guanidine. In contrast, false positives in MAP require the serial coupling of DNA slippage and mis-pyrophosphorolysis within this
distorted DNA structure.
doi:10.1371/journal.pone.0007220.g001
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KlenTaq S in a total volume of 50 ml in addition to 100 ng mouse

gDNA carrier. The cycling conditions were 94uC for 20 seconds,

60uC for 30 seconds, 64uC for 30 seconds, 68uC for 30 seconds,

72uC for 30 seconds, for a total of 50–55 cycles. In addition, 94uC
for 2 minutes was used for the initial denaturation and 72uC for 7

minutes for the last extension. Reaction products (5 ml) were

electrophoresesed through a standard 2% or 4% agarose gel with

ethidium bromide. The gel was photographed under UV light by a

CCD camera. The products were also submitted for sequencing

for confirmation of the mutation (data not shown). Hot-start MAP

was performed with Mag Hotbead (KK Biomed Corporation, Salt

Lake City, Utah) to elevate the analytical selectivity of the reaction.

Control for contamination and inhibition
In order to avoid PCR contamination [18,19], reagents were

divided into aliquots and reactions were set up in a SterilGard II

hood. Seven parallel negative controls without a DNA template

were assayed to rule out the possibility of contamination of the

highly sensitive MAP assays. Mushroom DNA was extracted and

then amplified simultaneously to test for contamination during

DNA extraction.

To exclude the possibility of an inhibitor in the tested DNA, two

positive controls containing the same amount of tested DNA were

spiked with 10 or 4 copies of the mutant, and were amplified

simultaneously to confirm that one mutant molecule can be

amplified in the presence of 1.7–3.3 mg DNA (0.5–16106 copies of

genome). The QIAamp DNA mini-kit was chosen due to its ability

to remove inhibitors.

Quantitative MAP based on Poisson distribution
Multiple parallel reactions (10–20) are performed per sample.

Some of the parallel reactions may be negative because of no

mutant template. Every positive reaction is regarded as being

derived from one or more copies of mutant templates. Based on

Poisson distribution, the expected average number of mutant

templates per reaction is estimated using a formula (Poisson

distribution) f(0) = e2x, where x is the average number of mutants

per reaction [7]. The mutation frequency is calculated as the

number of mutants (the average number of mutants 6 the total

number of reactions) divided by the approximate total number of

copies of genomic DNA contained in the 10–20 reactions per

sample or per ml plasma.

Reconstruction experiments
The human EGFR 15 bp deletion served as a model to

investigate the relationship between the number of mismatched

nucleotides and MAP analytical selectivity. To determine

analytical sensitivity and analytical specificity, reconstruction

experiments were conducted with 3.3 mg mouse genomic DNA

(16106 copies of genomic molecules with or without spiked mutant

DNA). We previously demonstrated that analytical sensitivities

were similar in reconstruction experiments in the presence of 3.3

mg of human genomic DNA from cells containing the mutation of

interest [9].

Detection of EGFR deletions in normal human lung by
MAP

Anonymized human lung tissues were obtained utilizing City of

Hope IRB protocol 01200 for discard samples to be used in methods

development and research. All four of the autopsy lung samples

were obtained from patients with leukemia. DNA from blood

samples from ten healthy relatives of patients with hemophilia,

previously used for a different study, was also tested under the

approved IRB 01200 discard sample protocol. The EGFR 15 and

18 bp deletions in exon19, a 14 bp artificial deletion in exon 3, and

an EGFR2 15 bp homologous deletion were analyzed in the normal

lung tissue and blood by MAP. Twelve or twenty-two parallel

amplifications, containing a combined total of 107 molecules of

genomic DNA, were conducted simultaneously with analytical

sensitivity assays, positive controls, and multiple negative controls.

Detection of EGFR deletions in normal rat lung by MAP
For rat tissues (Fisher), the 15 and 18 bp deletions in the rat

EGFR gene homologous to the human EGFR gene were analyzed

in normal lung and liver tissues from 5 adults. The homologous

15 bp deletion in EGFR2 exon 20 was used as a control in rat lung

and liver tissues, as well as an artificial 15 bp deletion in EGFR2

exon19. The primers used are shown in Table S1.

Somatic mosaicism of the EGFR 15/18 bp deletions
tested by ‘‘gene pool’’ analysis

DNA samples from leukocytes of 400 healthy individuals were

pooled together as a group with an aggregated concentration of

200 ng/ml. MAP was utilized to detect the EGFR gene 15/18 bp

deletions in 16 such groups, for a total of 6,400 individuals. Four ml

of DNA per group was used in MAP assays; e.g., mosaics at a

frequency of 1 in 300 cells were tested (2 ng DNA/individual).

Monitoring of early recurrence of breast cancer by cancer
signature mutation

Blood samples (15 ml) were collected from six patients with

breast cancer and tested at intervals over a number of time points,

including before therapy, before and after three cycles of adjuvant

chemotherapy, just prior to surgery, and at 3, 6, 9, and 12 months’

follow-up after surgery. Each patient was tested at 3 to 9 different

time points over this period and followed in total for an average of

about 11 months (range 8–17 months). Each patient is a

participant in a City of Hope Cancer Center IRB-approved

clinical trial, protocol 05015; all patients signed an informed

consent for the use of their samples.

Plasma was separated from fresh or previously frozen blood by

centrifugation. The amount of plasma obtained from frozen blood

after removal of blood cells is equivalent to half the amount obtained

from fresh blood. DNA from 1–3 ml plasma was extracted by

QIAamp DNA Micro kit (Qiagen Inc.) with an addition of carrier

RNA. DNA from blood cells was extracted by QIAamp Blood DNA

Maxi Kit (Qiagen Inc.). The mutation test was performed on 16107

copies of genomic DNA from blood cells (about 1 ml blood).

Results

MAP increases analytical selectivity 100,000-fold
The common 15 bp or 18 bp deletions in the epidermal growth

factor receptor (EGFR) gene, commonly found in 5–20% of

patients with non-small cell lung cancers [10], were chosen as

models to explore the analytical sensitivity and analytical

selectivity of MAP. In MAP, both downstream and upstream

primers are blocked with a dideoxynucleotide (P*) and separated

by 50 to 300 bp. The mutation-specific primers match the mutant

and overlap the deletion junction so that two or more nucleotides

mismatch the wild type sequence (Fig. 1A). When mutant-specific

primers for the 15 bp deletion contain multiple mismatches (2–5

bases) with the wild-type template, the analytical selectivity of the

assay is .109 (Fig. 2B–D, Table S2) and 100,000-fold greater than

that observed in PAP-A, which contains only one base mismatch

at the 39 end (analytical selectivity #104) (Fig. 2A).

Cancer Mutation Signatures
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MAP analytical selectivity is related to the number of
mismatched nucleotides

The analytical sensitivity of detection in the MAP assay is one

molecule for all assays (Fig. 2B–G). The Poisson nature of the

serial dilution profiles (see Methods) supports the accuracy of

copy number quantitation; e.g., sometimes 1 copy number does

not amplify, whereas K or J copy number does. Figure 2

provides an example of this. MAP can reproducibly amplify single

molecules to ,200 ng product in the presence of carrier genomic

DNA or RNA by an estimated four trillion-fold without nesting.

This yield is at least 100-fold better than routine PCR, presumably

because the MAP primers are inert until activated and extended

on their cognate template.

The analytical selectivity of one, two, three, five, seven, eight and

nine mismatched nucleotides was tested (Fig. 2A–G, Table S2).

Analytical selectivity is optimal with mismatches of 2 to 5

nucleotides (Fig. 2B–D). Analytical selectivity decreased dramati-

cally with 7 or more mismatches. Since activation of P* can be

inhibited even by single base mismatches up to 15 nucleotides from

the 39 end [15], it was hypothesized that the loss of analytical

selectivity is due to the ability of trace amounts of unblocked

oligonucleotides to artificially create the deletions by looping out the

15 nucleotides in wild-type DNA with increasing frequency as the

heteroduplex of primer and loop-containing wild-type template is

stabilized by longer strings of matching nucleotides beyond the

deletion site (Fig. S2). Consistent with this hypothesis, i) hot-start

MAP increased the analytical selectivity of the eight nucleotide

mismatches from .104 to .106 (data not shown); and ii) sequence

analyses indicate that the false positives with a PAP-A assay for a

15 bp deletion were due to one base misincorporation (Fig. S2 A)

while the false positives with MAP were consistent with slipped

heteroduplexes and mismatch pyrophosphorolysis (Fig. S2 B–D).

MAP assay analytical selectivities generally are .109 and
analytical sensitivities are one molecule

The MAP analysis of other deletions in the EGFR, EGFR2 and

p53 genes in human or rat demonstrated analytical selectivities

.108–109 when P* mismatched the wild type sequences by 3–5

Figure 2. MAP analytical selectivity is related to the number of mismatched nucleotides using the EGFR 15 bp deletion as a model.
The analytical selectivity of MAP is higher than 16109 when the number of mismatched nucleotides is 2–5, but sharply lower when the number of
mismatched nucleotides is 7 or more. Analytical Sensitivity: Mutant DNA is serially diluted to 100, 10, 4, 2, 1, 1/2, 1/4 copies of template. The analytical
sensitivity of the reaction is the minimum copy number of a mutant DNA that generates a detectable product when the primer matches the mutant
template. The absence of a signal at one copy and the presence of a signal at K or J copy are consistent with the Poisson distribution of expected
signal resulting from dilution of DNA. Analytical Specificity: Wild type DNA is serially diluted from 1010 to 103 copies. The analytical specificity of the
reaction is the maximum copy number of the mismatched (wt) template that does not result in a detectable product when the primer mismatches
the wild-type template. Analytical selectivity is the ratio of analytical specificity to analytical sensitivity. Negative controls do not contain targeted
DNA. M: FX174 DNA/HaeIII Marker.
doi:10.1371/journal.pone.0007220.g002
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nucleotides (Fig. 3, Table S3). Four assays with 4–5 mismatches

had analytical selectivities .109 and one assay with six mismatches

had an analytical selectivity .108. MAP was also demonstrated to

detect four additional types of mutations with multiple base

mismatches with respect to the wild type sequence. The analytical

selectivity of MAP was .1010 for an insertion, .109 for a tandem

base mutation and for two indels, and .108 for a doublet (two

single base substitutions separated by 5 bases) (Fig. 4, Table S3).

A significant fraction of doublets, those closely clustered, can be

assayed with high analytical selectivity by MAP [14]. For the

EGFR doublet mutation at 2574 T.G and 2580 A.T, the

analytical selectivity is 108. This reflects the inhibition of P*

activation by a mismatch six bases downstream from the 39 end,

consistent with previous data that mismatches far away from the 39

end substantially inhibit the activation of P* [15]. Altogether, 15

MAP assays with 2–6 bp mismatches provided an analytical

selectivity .108–1010 and an analytical sensitivity of one molecule

to detect MIDIs (Tables S2, S3).

Proof of Principle: Direct analysis of in-vivo tissue
mutagenesis – EGFR 15 and 18 bp deletions are not
found in 86107 normal human lung cells

Until now, specialized genetic constructs such as Big Blue mice

or selective medium that can identify mutations in limited cell

types have been required for direct examination of in vivo

mutagenesis in tissues. MAP assays can allow MIDIs to be

analyzed directly in the species of interest. In an illustrative

application, we tested as a hypothesis of interest that the EGFR 15/

18 bp deletions found in 5–20% of non-small cell lung cancers

might have arisen during the development of normal lung tissue

and been enriched due to a selective replication advantage [10].

The common 15/18 bp EGFR deletions were not observed in a

total of 86107 genomes from normal human adult lung (4 normal

lung samples 6107 copies of gDNA per sample 62 assays for each

lung) or in a total of 26108 genomes from the blood of normal

individuals (10 blood samples 6107 copies of gDNA per sample

62 assays for each blood sample) (Fig. S3, Table S4). The

analogous EGFR2 gene 15 bp deletion in exon19 and an artificial

14 bp deletion in EGFR exon 3 were not detected in a total of

1.46108 genomes (10 blood samples 6107 copies of gDNA per

sample +4 lung samples 6107 copies of gDNA per sample).

Controls spiked with each of these two deletion mutations

demonstrated that one mutant molecule can be detected in 1.7–

3.3 mg gDNA (0.5–16106 genomes) and that the samples lacked

inhibitors at the concentrations of genome utilized. No false

positives were detected in multiple negative controls (no template

DNA; mushroom DNA) showing that no contamination occurs

during PCR set-up or DNA extraction.

Proof of Principle: Direct analysis of in-vivo tissue
mutagenesis – EGFR 15 and 18 bp deletions are not
found in 56107 normal rat lung cells

Recently, EGFR mutations in the kinase domain (exons 18–21)

were also found in 14% of lung adenomas/adenocarcinomas from

FEN1 mutant knock-in mice [20]. For the rat, MAP assays were

developed for the EGFR 15 and 18 bp deletions homologous to

those found in human. The EGFR 15 and 18 bp deletions in rat

were not found in 107 genomes from 5 normal rat lungs (56107

cells, in total) and livers, nor was a 15 bp deletion in rat EGFR2

(homologous to the rat EGFR 15 bp deletion region) (Table S4).

Figure 3. MAP detects deletions in human DNA with an analytical selectivity .108. Four assays were established to test the MAP analytical
sensitivity and analytical specificity (labeled by copy number). The analytical sensitivities of each assay are one copy and analytical specificities are
.16108 copy. From top to bottom panels, primer mismatches with the wild type template were 4, 4, 4 and 6 nucleotides, respectively. The presence
of a signal at a mean of one copy of the mutant template is predicted to be 63% based on the Poisson distribution due to random sampling,
consistent with the absence of signal in some reactions with one copy of mutant template.
doi:10.1371/journal.pone.0007220.g003
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Proof of principle: High throughput population screening
for germline and early embryonic cancer syndrome
mutations

A family with a germline missense mutation in EGFR has a

dramatic lung cancer phenotype [21]. An individual mosaic for an

EGFR mutation may be at increased risk for lung cancer. If the

EGFR deletions were hotspots of mutations by a novel mechanism,

they may be predisposed to occur early in embryogenesis. Such

individuals might be at an increased risk for lung cancer, but the

mutation would not be detected by conventional screening

methods.

Sixty-four hundred unrelated control DNA samples (86.8%

European Caucasians, 4.3% Hispanics, 2.2% Asians, 2% Blacks,

2% Mestiza Columbian, 0.8% American-Indians, and 1.9% of

unknown ethnicity) available in the laboratory were analyzed with

MAP for the two common 15/18 bp deletions [22]. Samples were

diluted to 200 ng/ml. These samples were pooled into groups of

400 individuals. 800 ng of genomic DNA were analyzed per pool

(600 genomes per individual). No germline or mosaic mutation for

any of the tested EGFR mutations was found in ‘‘gene pool’’

analysis with MAP (Fig. S4).

Proof of Principle: Personalized monitoring of disease
recurrence or therapy in the plasma and cellular
components of blood – Cancer mutation signatures
detected in six patients with non-metastatic breast
cancer

MAP may be used for monitoring of therapy or recurrence of

cancer in the cellular and plasma compartments of blood by using

the mutation signature of the tumor. Analysis of tumor biopsy

tissues from a woman with stage II breast cancer who underwent

three cycles of neoadjuvant chemotherapy with doxorubicin,

docetaxel, and cyclophosphamide (TAC) revealed a 3 bp somatic

insertion in the p53 gene (c.720_721insAGT, p.240dupS). A MAP

assay was designed to determine whether the 3 bp insertion could

be detected as a personalized marker for the tumor. The analytical

sensitivity was one molecule and the analytical selectivity .161010

(Fig. 4A). The cellular compartment of blood was analyzed as an

indicator of circulating tumor cells and the plasma was analyzed as

an indicator of apoptotic/necrotic cancer-shedding membrane-

encapsulated short DNA fragments in the circulation [23,24].The

mutation frequency was estimated at about 4 molecules per milliliter

of plasma at pretreatment and within 24 hours after first treatment.

After completion of neoadjuvant therapy, breast preserving surgery

failed to demonstrate any pathological evidence of remaining

tumor. The tumor-specific mutation became undetectable prior to

the second cycle of neoadjuvant chemotherapy and remained

undetectable at nine subsequent time-points spanning12 months of

follow-up (Fig. 5, Table 1), consistent with the absence of clinical

recurrence. The MAP assay was reproducible. Three independent

DNA extractions and assays yielded the same results. The MAP

assays were performed without knowledge of the clinical phenotype:

Stage II disease, about 3.5 cm of tumor pre-therapy (Table 1), good

response to neoadjuvant chemotherapy and continued remission at

13 months post diagnosis.

Another patient, who had stage III inflammatory breast cancer,

was found to harbor a 2 bp deletion (c.165_166delTG) within the

p53 gene. The three blood samples available revealed the cancer

signature in both the blood and cellular compartments (Table 1).

Figure 4. MAP detects insertions and complex mutations with an analytical selectivity .108. The analytical selectivity of MAP for
detecting an insertion in the p53 gene (A) and complex mutations in the EGFR gene (B–E) is greater than 16108 in five different assays. In each assay,
the primer contained 2–4 mismatches with the wild type sequence. The mutations detected were the following: P53 gene: (A) Duplication:
c.720_721insAGT; EGFR gene: (B) Tandem-base mutation: c.2154G.T, 2155G.T; (C) 2–18 Indel: c.2239–2258delinsCA; (D) 5–17 Indel: c.2237–
2253delins TTGCT; (E) Doublet: c.2574T.G, c.2580A.T.
doi:10.1371/journal.pone.0007220.g004
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Approximately 200 copies of the mutation signature were estimated

per ml of plasma and persisted at 3 weeks after surgery and at the 3

month follow-up. Despite the large tumor load, there was very little

mutation signature in the cellular compartment compared to the

plasma compartment (Table 1). Indeed, some or all of the mutation

signature in the cellular compartment may reflect contamination

from plasma, i.e., about 1% plasma contamination in the buffy coat

fraction could account for the cellular compartment values seen.

Pathologic assessment of the patient’s mastectomy specimen

following neoadjuvant therapy revealed that virtually the entire

breast mass consisted of malignant cells, indicating minimal

response to neoadjuvant therapy. Shortly after surgery, metastases

were found. The patient died of progressive disease.

In addition to these two patients, four others with stage II or III

breast cancer had tumor-specific p53 mutations identified and

MAP assays developed for their analysis in blood (Table 2,

Supplementary Fig.S5). In total, four of the six patients (ID # 1, 3,

4, 6) had detectable levels of tumor-specific mutation in plasma at

diagnosis, but the levels fell to zero after therapy resulting in

clinical remission. However, the cancer mutation signature was

present, even after therapy, in all samples from two other patients

(ID # 2 and 5), reflecting tumor progression.

Discussion

MAP, a highly sensitive assay for ultra-rare mutations, enhances

the detection of MIDIs by using multiple oligonucleotide

mismatches, enabling detection generally at one part in a billion.

False positives seem to arise by the extremely rare serial coupling

of two events: slipped heteroduplex formation and mis-pyropho-

sphorolysis within a distorted heteroduplex. The practical outcome

is robust and routine detection of ultra-rare MIDIs and complex

mutations with an analytical selectivity generally .109 and an

analytical sensitivity that is generally one molecule. MAP was

found to be methodologically robust when utilized i) to detect

EGFR mutations in lung tissue or ii) to detect p53 breast cancer

signatures in plasma and the cellular compartments of blood or iii)

to screen for mosaicism for common EGFR mutations in a large

population.

Three methods now provide a complete ultra-rare mutation

detection platform: classic PAP-A for any type of mutation, Bi-

PAP-A for single base substitutions, and MAP for MIDIs. A

summary of the three methods, including their analytical

selectivities and the types of mutations for which they are most

useful, is shown in Table S5.

MAP Assay: Limitations
The MAP assay is by far the most sensitive assay described thus

far for detecting MIDIs. In the analytical specificity assays,

however, there are technical limitations in using human genomic

DNA. For example, 109 copies of human genomic DNA is

equivalent to 3,300 mg DNA, which requires a large amount of

tissue. Addition of this quantity of DNA is not feasible for a typical

Figure 5. Cancer signature mutation was identified in 0.5 ml plasma at pretreatment and within 24 hours of initial chemotherapy in
a patient with non-metastatic breast cancer. The MAP analytical sensitivity is demonstrated to be one copy. The positive controls (10+ and 4+)
show no inhibitor when 10 or 4 copies of mutant templates are added to plasma DNA derived from A. Blood samples were obtained at the following
times: A, B: at pretreatment and within 24 hours after cycle 1 chemotherapy. C, D: at pretreatment and within 24 hours after cycle 2 chemotherapy. E,
F: at pretreatment and within 24 hours after cycle 3 chemotherapy. G, H: at midtreatment and within 3 weeks after surgery. Lane I is a control assay
using crab gDNA extracted simultaneously with plasma to rule out contamination occurring during DNA extraction. For each time point, multiple
duplicate reactions were performed (see Table 1). Only two reactions per time point are shown in this Figure.
doi:10.1371/journal.pone.0007220.g005
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reaction mixture of 25–50 ml. To avoid this problem, we

constructed a plasmid (4,5 kb) containing a 300,400 bp

segment identical to the human genomic DNA region of interest;

the copy number for the wild-type sequence can now be elevated

to 1011 per ml along with 106 copies of total wild type genomic

DNA. At least 109 copies of genomic DNA is a preferable

Table 1. Cancer mutation signature can be reproducibly detected in blood in patients with stage II or III breast cancer.

Plasma Cellular fraction

Time-pointsa Course Days

Plasma
Volume
(ml)

Mutation
signature per
reactionc

Mutation
frequency (per
ml plasma)

Blood volume
ml (molecules
DNA)

Mutation
signature per
reaction

Mutation
frequency
(per ml blood)

Case-1b

1 pre-treatment 0 3 7/11 (1.01)d 3.7 1 (16107) 0/20 0

2 cycle 1(post) 1 3 9/13 (1.18)d 5.1 1 (16107) 0/20 0

3 cycle 2 (pre) 18 3 0/13 0 1 (16107) 0/20 0

4 cycle 2 (post) 19 3 0/13 0

5 cycle 3 (pre) 39 3 0/13 0

6 cycle 3 (post) 40 3 0/13 0

7 mid treatment 60 3 0/13 0

8 3 weeks after surgery 128 3 0/13 0

9 3 month F/U 218 1 0/2e 0

10 6 month F/U 308 1 0/4e 0

11 9 month F/U 398 1 0/2e 0

12 12 month F/U 488 1 0/2e 0 1 (16107) 0/20 0

Case-2b

1 pre-treatment 0 0.01 2/10(0.223)d 223 1 (16107) 2/20(0.105)d 2.1

2 3 weeks after surgery 138 0.01 2/10(0.223) 200 1 (16107) 5/20(0.288) 5.8

3 3 month F/U 228 0.01 1/10(0.105) 105 1 (16107) 2/20(0.105) 2.1

a: Blood samples 1–8 and 10 in case-1 and 1–3 in case-2 were frozen, thawed, and centrifuged. DNA was extracted from the cell pellet and from the supernatant, which
contained plasma and lysed red cells. Blood cells for time points 9, 11, and 12 were centrifuged when fresh and the plasma was removed.
b: The patient (case-1 with c.720_721insAGT in p53 gene) remained disease free at the end of follow-up. The other patient (case-2 with c.165_166delTG in p53 gene)
died of progressive disease.
c: The number of positive signals appearing in the total number of MAP reactions per time point.
d: The expected average number of mutants per reaction is estimated using a formula (the frequency of zero mutants per reaction = e2x, where x is the average number
of mutants per reaction), assuming that: the mutant distributes in the reaction according to a Poisson distribution; if one or more mutants are in the reaction, the
amplification is positive; and if zero mutants are in the reaction, it is negative.
e: Follow-up assays were performed with 1 ml plasma instead of 3 ml, as in the earlier assays. Fewer reactions were run, perhaps decreasing the analytical sensitivity of
the measurement.
doi:10.1371/journal.pone.0007220.t001

Table 2. The correlation of the copy number of cancer mutation signature and tumor load at diagnosis.

Patient ID Stage Size by RECIST criteria p53 gene mutation

Copy number of
mutation signature
per ml plasma

Copy number of mutation
signature in cellular
compartment per ml blood

1 a Stage II R: 3.5 cm c. 720_721insAGT 4 b 0

2 a Stage III R 12 cm mass and 4 cm lymph in
inflammatory breast cancer

c. 165_166delTG 223 2

3 Stage III 5.5 cm L breast/multiple nodes c. 642_643delTA 10 b 0

4 Stage III L 2 cm and 2.8 cm lymph node and
inflammatory breast cancer

c. 581T.G 9 b 3

5 Stage III L 6.5 cm cancer and 2.8 cm lymph node
in axilla with several others

c.216_217insC 600 NA

6 Stage III L 6.6 cm cumulative (multifocal) with 1.8
cm lymph node and other nodes

c. 723delC 6 b NA

aAdditional information about patients 1 & 2 is described in Table 1 (Cases 1 & 2).
bThe cancer mutation signature decreased to 0 per ml plasma during therapy resulting in clinical remission.
cAbbreviations: NA- not available; L- left breast; R- right breast.
doi:10.1371/journal.pone.0007220.t002
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reconstruction experiment, but it is not technically feasible.

However we note that certain human sequences are present

within these reconstruction experiments at 1012 copies without

interference with PAP analytical selectivity.

Hypothesis to explain the high frequency of the three
common EGFR somatic mutations observed in lung
cancer

The approximately four trillion cells in adult lung contain

essentially every possible mutation; depending on the base pair,

frequencies typically range from 1027–10210. Our hypothesis

states that the three EGFR mutations commonly seen in lung

cancer (L858R and the 15 bp and 18 bp deletions), which

comprise .80% of all EGFR mutations seen in lung cancer,

occur due to selection of cells with these mutations during lung

development, resulting in greatly increased frequencies of these

mutations compared to similar types of non-selected mutations in

EGFR and other genes.

MAP in lung DNA: EGFR mutants are not detected by
MAP in normal human or rat lung cells

The EGFR (exon 19) 15 bp or 18 bp microdeletions are

commonly found in 5–20% of patients with non-small cell lung

cancers [10]. As lung cancer accounts for about 1/3 of all cancer

deaths, these deletions are involved in about 1.5–6% of all lethal

cancer events. Neither the mutation mechanism nor the

mechanism of oncogenesis of these frequent mutations is

understood.

The sequence context of these deletions does not suggest an

endogenous hotspot [25]. These deletions could be a mutation

signature from some as yet unknown mutagenic agent. Alterna-

tively, these somatic deletions could be rare events that occur early

in lung development and that are then enriched due to a selective

advantage, as observed in other systems [10,26,27]. The above

hypotheses would predict that these deletions are potential cancer

driver mutations rather than passenger mutations, and that

normal lung may contain these deletions at some low frequency.

Neither of the EGFR microdeletion mutations was detected in a

total of 86107 genomic DNA copies in four normal human lungs

or in a total of 26108 genomes in blood samples from 10 healthy

patients, suggesting that the hypotheses are incorrect, at least at

the mutation frequencies tested. Homologous deletions in similar

copy numbers of genomic DNA from five normal rat lungs were

also not detected. Additionally, no germline or mosaic mutation

for any of the tested EGFR mutations was found in ‘‘gene pool’’

analysis with MAP. The data indicate that these deletions are

unlikely to occur during embryogenesis or lung development.

These results do not support the hypothesis of mutational

mosaicism, followed by enrichment by selection.

Note that the hypothesis could still be correct if the frequency of

the deletions was 10210 and the enrichment was 500-fold, such that

the mutations would be below the detection threshold of the

experiment. The analytical selectivity of MAP would allow these

hypotheses to be tested further by analyzing larger amounts of

sample. Most pediatric leukemias are initiated in utero [26,28]; it still

remains possible that certain adult tumors could be initiated in utero.

MAP in blood from women with breast cancer:
Personalized tumor-specific cancer signatures are
detected in six of six patients with non-metastatic breast
cancer and their levels reflect disease course

Among several reported studies in colorectal cancer, lung

cancer, and ovarian cancer patients, a tumor-specific p53 mutation

was detected in an average of 40%, 75%, and 26%, respectively, of

the corresponding plasma samples (Table 3, Table S6). In the

present study, the detection of p53 tumor-specific mutations in

plasma DNA samples from 100% of patients (6/6) with non-

metastatic breast cancer is significantly higher than those observed

in colorectal cancer (p = 0.006) and ovarian cancer (p = 0.007).

However, the plasma levels of the lung cancer tumor signature

seem generally higher, as about 75% were detected by SSCP or

sequencing.

The levels of plasma mutation signature depend on the rate

at which tumor necrosis and apoptosis occur, the rate at which

protected DNA fragments are generated, and the rate at which

these are cleared from the circulation. Patient- or tumor-

specific differences are possible, complicating the relationship

between tumor mass and the molecules of the cancer signature.

For a given tumor in a given patient, the tumor signal in blood

may be proportional to tumor burden, unless drug therapy

confounds the risk of tumor apoptosis/necrosis. Future studies

with careful quantitation of tumor mass are needed to clarify

these issues.

To detect the cancer signature in 107 genomes (3.3 mg genomic

DNA per tube x 10 tubes) requires an analytical selectivity of 108

or 109 if the false positive rates are to be kept at 10% or 1%,

respectively. The MAP assay is exquisitely selective for MIDIs and

other complex mutations. In the study herein, the level of mutant

p53 molecules (within a background of wild type p53 molecules) in

four of the six plasma samples was very low (Table 2) and would

not be detectable by most of the common methods of analysis.

Within the limits of sample size and unidimensional estimates of

tumor sizes, the signal corresponds very roughly to the ratio of

tumor load to body weight, as might be expected if plasma

shedding due to apoptosis/necrosis was roughly similar to normal

cells. Among the six patients in this study, initial plasma cancer

mutation signature levels per ml varied 150-fold. The variation is

not well correlated with tumor size, e.g., 100-fold variation in

plasma levels occurs in two tumors of 6.5 centimeters in one

dimension. However, the standard measure of tumor size, which is

used for the RECIST criteria [29], is one dimensional and may

well not reflect tumor volume accurately. A tumor-specific

mutation signature was detected in the initial plasma samples

from all patients, but in the cellular compartment of blood in only

two patients, one of whom subsequently developed metastatic

disease (Patient 2). It remains to be determined whether detectable

cellular cancer mutation signature is an indicator of particularly

poor prognosis.

Caveats to the correlation of the tumor-specific signal in

plasma or the cellular compartment of blood with the actual

tumor burden in the patient are (i) the possible underestimation

of the tumor burden if the somatic tumor mutation is present

only in some regions of the tumor and (ii) overestimation of the

tumor burden if occasional somatic mosaicism occurs in normal

tissue. Analysis of three to four tumor-specific somatic mutations

will be helpful to rule out signal deriving partially from non-

neoplastic cells or from somatic mutations present in only a

subset of the neoplasm. However, microdissection and sequenc-

ing of breast cancer samples suggest that p53 mutations are

generally, if not virtually always, clonal within breast cancer

[30,31].

Personalized Monitoring for early recurrence in cancer
Personalized monitoring for tumor response in the neoadjuvant

and advanced setting, as well as for detection of early recurrence,

may help optimize treatment by assessing the tumor signature in

the cellular and plasma components of blood over time. Such
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monitoring may alleviate both under-treatment and over-treat-

ment, especially in the adjuvant setting. It may allow response to

therapy to be assessed and semi-quantitated in a manner superior

to that achievable by imaging. Bi-PAP-A and especially MAP

provide the technology for routinely accessing ultra rare mutations

in the cellular and plasma components of blood. While it is

possible that confounders of the measurement may limit its clinical

utility, the tools are now available to make the clinical

measurements. Such monitoring could be of help for treating a

variety of adult and pediatric tumors. For example, in childhood

cancers such as Ewing’s sarcoma and rhabdomyoscarcoma,

aggressive therapy can cure about 70% of patients, while toxicity

claims another 10% and recurrence the remaining 20%. Roughly

1/3 of patients are appropriately treated and the remaining

patients are either over-treated or under-treated.

MAP in population screening: Screening to identify
individuals with germline or mosaic mutations
predisposing to disease

Preventive medicine promises to reduce the cost of healthcare.

Below, we suggest that a national investment in generating pools of

DNA from millions of individuals could provide a national DNA

resource for effective mass population screening. We conclude that

MAP, PAP and Bi-PAP-A may utilize this resource to facilitate

cost-effective preventive medicine, e.g., see below.

MAP and PAP are synergistic. A duplex MAP assay for the

common 15 and 18 bp deletions was performed as proof of

principle of the multiplexing potential of MAP assays (data not

shown). PAP assays have previously been shown to multiplex with

sufficient rigor for dosage analysis [35]. MAP and Bi-PAP-A have

the potential to screen for a cocktail of mutations in large

populations for which early embryonic mutations (mosaicism) as

well as germline mutations could be detected. Since P* primers

generally do not form primer dimers in solution, highly

multiplexed PAP reactions for hundreds or even thousands of

specific mutations may be possible in solution. Additionally,

microarrays may facilitate multiplexed amplification. Bi-PAP-A

and MAP assays can work synergistically within one cocktail to

detect point mutations and deletions/insertions/indels with ultra

high analytical selectivity.

We present proof of principle that MAP/PAP cocktails have the

potential for highly efficient screening for mosaicism. Inheritance

of germline mutations in more than 2,800 genes cause document-

ed genetic disease (see OMIM database: http://www.ncbi.nlm.

nih.gov/omim/). Milder forms of these diseases can occur in

mosaic individuals who have experienced a relevant mutation very

early in embryogenesis. As illustrated by our analysis of two

common mutations in the EGFR gene, we screened 800 ng of

genomic DNA per pool (600 genomes per individual) in a pool of

400 individuals. Since a single cell contains 6.6 pg DNA (2

genomes), a mosaic mutation in an individual at a frequency of 1

in 300 cells could be detected. By scaling up the volume by 10-fold,

4,000 individuals can reasonably be screened in one reaction to

detect a mosaicism frequency of 1 in 300 cells. Only 250 such

Table 3. Summary of p53 mutations detected in plasma of cancer patients with non-metastatic disease a.

Studyb # patients with tumor mutation # patients with plasma mutation % mutations (plasma/ tumor)

Colorectal cancer

Hibi ’98 10 7 c 70% c

Mayall ’98 3 2 67%

Wang ’04 31 9 c 29% c

Bazan ’06 19 7 37%

Total CRC 63 25 40%

Lung cancer

Andriani ’04 26 19 73%

Gonzalez ’00 6 5 83%

Total lung cancer 32 24 75%

Ovarian cancer

Otsuka ’04 12 2 17%

Swisher ’05 60 17 d 28% d

Total ovarian cancer 72 19 26%

aThe literature was reviewed for English language publications that provided the following information: (1) tumor stage: only non-metastatic tumors, Stages I-III, were
included (for colorectal cancer, modified Dukes Stages A–C); (2) the number of tumor samples with identified p53 mutations; (3) the number of corresponding plasma
DNA samples that were positive for the same personalized p53 mutation detected in the tumor. The literature review included publications cited within Fleischhacker
and Schmidt (2007).

bReferences:
Andriani F et al. (2004).Int J Cancer 108: 91–96.
Bazan V et al. (2006).Ann Oncol 17 Suppl 7: vii84–vii90.
Gonzalez R et al. (2000).Ann Oncol 11: 1097–1104.
Hibi K et al. (1998).Cancer Res 58: 1405–1407.
Mayall F et al.(1998). J Clin Pathol 51: 611–613.
Otsuka J et al. (2004). Int J Gynecol Cancer 14: 459–464.
Swisher EM et al. (2005). Am J Obstet Gynecol 193: 662–667.
Wang Q et al. (2003). Int J Cancer 106: 923–929.
cMutations were detected in serum, rather than plasma.
dMutations were detected in serum or plasma.
doi:10.1371/journal.pone.0007220.t003
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reactions would be required to screen 1 million individuals.

Further scaling up to test 40,000 individuals in a single reaction

could screen 10 million in 250 reactions.

A cocktail of Bi-PAP-A and MAP could be used to screen for

known super hotspots of mutation, i.e. the super hotspots causing

achondroplasia, Apert syndrome, and DMD [32,33,34]. Achon-

droplasia and Apert syndrome, which are dominant, severe,

highly penetrant diseases, are caused by only one or a few

mutations for the overwhelming majority of patients. Individuals

who are mosaic for these mutations may be mildly affected and at

high risk for having offspring with the severe disease. If individuals

with the above germline or somatic mutations were detected at a

frequency of even 1 in 200,000, five such individuals could be

detected per million individuals screened for an incremental cost

of developing and performing the PAP assays of just a few

thousand dollars.

MAP for screening plasma in individuals for early
detection of cancers

Personalized detection of early onset cancer and/or early

cancer recurrence is an area of active investigation. A panel of 21

p53 gene mutation assays (MAP or Bi-PAP-A) may detect the

mutational signature in ,30% of breast cancers, based on an

examination of data from the IARC TP53 database (www-

p53.iarc.fr). Analysis of 10 ml of plasma may be expected to

detect one gram of solid tumors and possibly smaller tumor

burdens. This assay might involve one multiplexed amplification

[35].

For lung and pancreatic cancer, which account for about 35%

of cancer deaths, PAP-based screening may be helpful, as no well

accepted and cost effective screen for early tumors is available.

The screening test would be developed to detect common somatic

mutations found in a large percentage of these cancers. Normally

these tumors are discovered at late stages and associated with

poor prognosis. If the levels of mutation signature found in our

sample of six breast cancers are typical, analysis of 10-fold more

plasma (20 ml of blood) should detect the presence of tumors less

than 1 gram. If the mutation signature increases in subsequent

measurements, a search for the cancer may be cost effective in

high-risk populations. MAP analysis of breast cancer suggests

that roughly one gram of tumor is associated with about one

molecule of tumor mutation signature in the plasma compart-

ment of blood. However, the rate of false positives, which can

result from occasional non-tumor mosaicism for one of the

mutations in the cocktail, would need to be determined in an

epidemiological trial.

The demonstration that EGFR deletions are not detected in

normal lung and blood, coupled with the demonstration that

remnants of presumptive apoptotic, necrotic cancer cells can be

detected in early stage cancer, lead to the possibility that the

common EGFR mutations could be used to detect the presence of

early lung cancer in high-risk populations. A cocktail of MAP

assays for the common 15/18 bp deletions, together with a Bi-

PAP-A assay for the common L858R mutation, could detect about

70–80% of EGFR mutations constituting about 10% of total lung

cancers [10,36]. It remains for future epidemiological studies to

determine if a MAP-based screen is cost effective for detecting

early stage lung cancers when .90% could be surgically cured

[37,38,39]. By identifying the EGFR 15/18 bp deletions in blood,

the ultra high analytical selectivity of MAP could potentially be

applied to early lung cancer detection or possibly facilitate more

rational chemotherapy delivery by monitoring the efficacy of

therapy or predicting recurrence.

Conclusion
The analytical selectivity of MAP (generally one per billion)

and analytical sensitivity of MAP (generally one molecule with a

mutation) is demonstrated. Proof of principle is presented for

three types of clinical applications. MAP was found to be

methodologically robust when utilized i) to detect EGFR

mutations in lung tissue; ii) to detect p53 breast cancer signatures

in plasma and the cellular compartments of blood; or iii) to

screen for mosaicism for common EGFR mutations in a large

population.

Note. While this manuscript was in process, Diehl et al [40]

reported that the cancer mutation signature over the course of

disease in colorectal cancer patients (16 stage IV, 1 stage II, 1 stage

III) can be quantitatively detected. Although the method that was

used (BEAMing) [3] may not be as selective as MAP, the study

confirms the feasibility of personalized monitoring of cancer

therapy and recurrence.
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Found at: doi:10.1371/journal.pone.0007220.s001 (0.03 MB
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Figure S1 Schematic of the potential analytical specificities of

PAP-A and Bi-PAP-A A: PAP-A: When a P* oligonucleotide is

annealed to its complementary template, the 39 terminal blocker

can be removed by pyrophosphorolysis in the presence of

pyrophosphate. The activated oligonucleotide can be extended

by DNA polymerization (Left panel, specific amplification). Non-

specific amplification (Non-specific, right panel, type I error) may

occur at a frequency of 1025, but it is not an efficient template for

subsequent cycles. Significant non-specific amplification (Non-

specific, right panel, type II error) requires mismatch pyropho-

sphorolysis followed by misincorporation by the DNA polymerase,

an event with a frequency estimated to be 3.3610211. B: Bi-PAP-

A, point mutation: Panel B shows Bi-PAP-A detection of a point

mutation (T.A). The two P* overlap at their 39 termini by one

nucleotide to eliminate polymerase misincorporation (T.A; error

rate: ,1025) at the mutation position during the opposite primer

extension (the bypass reaction). C: Bi-PAP-A, deletion: When Bi-

PAP-A strategy was applied to detect the EGFR 15 bp deletion, the

downstream and upstream mutant-specific blocked primers are

complementary at three nucleotides at the 39 end of primers and

may form primer dimers (acting as mutant templates) resulting in

false positives due to .1012 molecules of the primers (2.5 mM)

within the reaction.

Cancer Mutation Signatures

PLoS ONE | www.plosone.org 12 September 2009 | Volume 4 | Issue 9 | e7220



Found at: doi:10.1371/journal.pone.0007220.s007 (0.05 MB

DOC)

Figure S2 Sequence analyses of false positive products show the

two mechanisms limiting the PAP-A and MAP analytical

specificity. A: False positive is a wild type sequence with one

misincorporation (C.A) during the downstream primer extension;

Sequence analysis shows a segment of size and sequence expected

from wild type DNA with the predicted one misincorporation at

the 39 end of the deleted region (Arrow). B: False positive from two

base mismatch primers is due to slippage of 31 bp upstream; C–D:

8 or 9 bases at the 39 end of P* match with wild-type template with

a loop out of 15 bp segment resulting in a false positive.

Found at: doi:10.1371/journal.pone.0007220.s008 (0.03 MB PPT)

Figure S3 No detection of the EGFR 15 bp deletion in human

lung by MAP in 4 normal lung samples and mushroom control.

The common EGFR 15 bp deletion (sample ID1-4) was not found

in normal lung from 16107 copies (0.56106 copies/tube 620) of

human lung tissues. The first two lanes in every sample and

mushroom DNA are positive controls spiked with 10 and 4 copies

of mutant templates, respectively. A,T lanes indicate 20 parallel

DNA reactions from the same sample containing 0.56106 copies

genomes per tube. The first row shows analytical sensitivity assays

and negative control assays performed simultaneously. The last

row shows mushroom DNA control to monitor the contamination

during DNA extraction.

Found at: doi:10.1371/journal.pone.0007220.s009 (0.26 MB PPT)

Figure S4 No detection of mosaicism in a ‘‘gene pool’’ analysis

of the EGFR 15/18 bp deletions in 6,400 individuals. The

possibility of somatic mosaicism in 6400 control individuals was

tested in leukocyte DNA. Sixteen pools, each containing DNA

from 400 individuals at an aggregated concentration of 200 ng/ml,

were analyzed by MAP for the EGFR 15/18 bp deletions. A series

of analytical sensitivity controls and negative controls are shown

for each deletion mutation. The first two lanes following the DNA

size marker M (WX174 DNA/HaeIII) contain positive controls

spiked with 4 and 2 copies of mutant templates, respectively. Lanes

A–P contain the 16 pooled samples, each with DNA from 400

individuals. Somatic mosaicism for the EGFR 15 bp or 18 bp

deletions was not detected in any sample.

Found at: doi:10.1371/journal.pone.0007220.s010 (0.32 MB PPT)

Figure S5 Real-Time MAP shows a linear relationship in case-5

(also see Table 2). DNA from Patient #5 (see Table 2) with a p53

gene mutation (c.216_217insC) was analyzed by real-time PCR on

the BioRad RQ5 instrument. Real-time MAP shows a linear

relationship between MAP cycle number and the log of the

starting quantity (from 1 to ,10,000 copies) (R2 = 0.992).

Found at: doi:10.1371/journal.pone.0007220.s011 (0.12 MB PPT)
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