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Abstract

Background: Migration between local populations plays an important role in evolution - influencing local adaptation,
speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a
stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated
migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large
population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration.

Methodology/Principal Findings: We derive an exact equation for directional evolution, essentially a stochastic Price
equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional
change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact
of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed -
overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways,
one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration
is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an
equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be
incorporated into models with a single migration parameter.

Conclusions/Significance: As has previously been shown with selection, the role of migration in evolution is determined by
the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic
migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory.
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Introduction

Migration is both an ecological and an evolutionary process.

Recognition of its importance in evolution goes back at least to

Wright [1] and Haldane [2]. Because the pattern of migration

influences the very structure of a population, it plays an important

role in theories of speciation [3–5], extinction [6], kin selection

[7–9], and the consequences of multilevel selection [10].

Any truly general theory of evolution must thus include

migration. Unfortunately, migration presents some substantial

challenges to modelers. First, unlike mutation, which can

reasonably be treated as a weak process, migration rates in nature

can be very high. This limits the applicability of certain

mathematical methods, such as diffusion theory, that require that

directional forces be weak.

Second, migration involves two very different processes: immigra-

tion and emigration. There is no single, biologically obvious, way in

which these two processes will be related to one another; immigration

and emigration may be positively correlated, negatively correlated, or

independent [11], depending on environmental circumstances.

The standard way to deal with such complications in modeling

evolution, as in most of science, is to make simplifying assumptions -

such as that migration is symmetrical (immigration and emigration

balance one another), that migration rates are low, or that migration

is a deterministic (rather than a stochastic) process. Relaxing some

assumptions generally requires making others. For example,

Kawecki and Holt [12] model asymmetric migration, but use a

deterministic model to achieve analytical tractability. Kirkpatrick

and Barton [13] and Lundy and Possingham [14] develop stochastic

models, but must assume that migration rates are low.

Given the complexity of evolution with migration, some authors

have turned to simulation models [15–17]. These have the

advantage of allowing for stochasticity combined with strong

directional forces, and have been used with some success to study

the factors influencing species range and the maintenance of

variation. Simulations, however, generally require other simplify-

ing assumptions, such as specification of the form of the

distribution of fitness values (e.g. poisson, normal, etc.) and the

exact form of the function mapping phenotype to fitness (often

assumed to be gaussian). We refer to these as ‘‘simplifying’’

assumptions because their purpose is to simplify the mathematics -

nobody thinks that they are exactly true in most cases.

Though all scientific theories start with assumptions, some

require no simplifying assumptions. The Price equation [18] and
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some of its variants [19–22], are based only on assumptions that

we believe to be true, such as that organisms live in populations,

have measurable phenotypes, and produce descendants. We might

call assumptions such as these ‘‘scientific axioms’’ to distinguish

them from the simplifying assumptions encountered in model

building.

The exact equations discussed above have a limitation, though -

they are deterministic. Evolution is an inherently stochastic

process; we can not know with certainty how many descendants

an individual will leave or what they will look like until after

reproduction has taken place. The Price equation and its

deterministic variants are thus exact only in hindsight, after

evolutionary change has occured.

Recently, a stochastic version of the Price equation was derived

[23] that treats individual fitness and offspring phenotype as

random variables, meaning that each individual has a distribution

of possible numbers of offspring and another distribution of

possible offspring phenotypes. This equation gives an exact

description of the expected evolutionary change over the coming

generation in a closed population. To date, though, we have no

general stochastic evolutionary theory that incorporates migration

while making only axiomatic assumptions.

In this paper, we present a general equation, requiring no

simplifying assumptions, for directional evolutionary change in a

population subject to migration. This result generalizes the stochastic

Price equation [23] by introducing immigration and emigration as

distinct stochastic processes. Using this result, we show that the

interactions between selection, emigration, and immigration, leads to

previously unrecognised evolutionary processes.

In particular, we show that the role of migration in evolution is

strongly influenced by the entire distribution of immigration and

emigration rates, not just the mean values. Previous authors

[24,25] have shown that the variance in immigration rates

influences expected allele frequencies in models without selection.

We extend this result to cases with selection, and show that

increasing the symmetrical variation in immigration rates reduces

the evolutionary impact of migration relative to selection. One

consequence of this is that, since there will nearly always be some

variation in immigration rates, classical models that treat

migration as a single parameter (with zero variance) will

consistently overestimate the influence of immigration relative to

local selection, and thus underestimate the potential for local

adaptation and speciation.

We also show that there is an evolutionary force acting to

increase the frequency, within a local population, of those

strategies for which fitness is negatively correlated with migration

rate. This means that a strategy may increase in frequency within a

local population even if it confers a lower expected fitness than do

other strategies, if it causes individuals to distribute reproduction

so as to produce the most offspring when there are few

immigrants.

These evolutionary processes are invisible to most classical

models of evolution, which treat migration as a parameter rather

than as a random variable. In order to incorporate some of the

stochastic processes that we describe into classical models, we

derive an ‘‘effective migration rate’’ that extends those used

previously [25] and that allows the distribution of immigration and

emigration rates to be incorporated into models with a single

migration parameter.

Results

We consider an open subpopulation, or deme. All individuals

currently in the deme are referred to as residents, and those that

arrive from outside the deme in the subsequent interval are

referred to as immigrants. An ‘‘individual’’ may be any biological

unit that has some measurable phenotype and can leave

descendants - including organisms, mated pairs, haplotypes,

alleles, etc. The fitness of an individual, designated by w, is the

number of descendants that it has after a chosen interval. We use

the term ‘‘descendant’’ broadly, to include the individual at a

future time, its offspring, grand-offspring, etc. Including an

individual as one of it’s own descendants allows us to apply our

results to cases of overlapping generations [20]. In general,

descendants need not be the same type of biological unit as their

ancestor; we need only be able to measure the same phenotype in

both. When ancestors and descendants are of different types, it is

often useful to define the phenotype as an average value. If, for

example, ancestors are mated pairs of organisms, descendants are

individual organisms, and we wish to study body size, then we

define the phenotype as average body size, which is just the

midparent value (as used in quantitative genetics) in the ancestors

and individual size in the descendants. The time interval that we

choose to look over is arbitrary. In many cases, it will be

convenient to look over a single generation, but we could in

principle choose a shorter or longer interval. Individual fitness,

descendant phenotype, number of immigrants, immigrant pheno-

type, and whether or not an individual emigrates, are all treated as

random variables, not as parameters [23]. Table 1 lists the

notation used in this paper.

Throughout this paper, we use the term ‘‘migration’’ to refer to

any movement of individuals into or out of a specified population.

When the units that we are following are individual organisms,

then this use of ‘‘migration’’ is synonymous with ‘‘dispersal’’, as

Table 1. Symbols and Notation.

Symbol Meaning

N Population size

w Phenotype of an individual

d wo Mean phenotype of an individual’s non-emigrating offspring

d d d wo
{w

w Fitness of an individual

s Emigration variable. s~0 if an individual emigrates and s~1 if it
stays

R Per capita deme growth rate

dV Contribution of individual resident to per capita deme growth

j Number of immigrants, and their descendants, divided by deme
size

[ Number of emigrants divided by deme size

J Contribution of immigrants to per capita deme growth

c Difference between mean immigrant phenotype and mean
resident phenotype

H({w) Harmonic mean of {w

X or Ave(X ) Average value of X across some set of individuals

bAA or E(A) Expected value of random variable A

2X
� �� �

Frequency variance in the value of X across some set of individuals

SS2ATT Probability variance in random variable A

X ,Y½ �½ � Frequency covariance, over a set of objects, between the values
of X and Y

SSA,BTT Probability covariance between random variables A and B

doi:10.1371/journal.pone.0007130.t001
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used in many ecological models. When the units that we are

following are allele copies, then ‘‘migration’’ is synonymous with

‘‘gene flow’’, as used in population genetic models.

Immigration is captured by the random variable j, which

measures the number of immigrants arriving during the chosen

time interval, along with their non-emigrating descendants,

divided by the current deme size (N). (We could as well simply

define j in terms of the number of descendants of immigrants,

since we count an individual as one of its own descendants.)

Emigration is captured by the random variable s. For a given

descendant, s~1 if that descendant stays in the deme and s~0 if it

emigrates. For individual i, �ssi is the average value of s among i’s
descendants. The total number of descendants that an individual

has after the specified time is its fitness, denoted w, so the total

number of descendants that stay in the deme is w�ss. Per capita

deme growth is denoted R, and is given by:

R~w�sszj: ð1Þ

In an open deme, where there is both emigration and

immigration, the contribution of resident i to deme growth is

denoted dVi, and is defined as

dVi~
wi�ssi

R

����R=0

� �
: ð2Þ

Similarly, the contribution of immigrants to deme growth,

denoted J, is given by:

J~
j

R

����R=0

� �
: ð3Þ

Since all future members of the population must be descended

either from current members or immigrants, it must be the case

that:

dVzJ~1: ð4Þ

We can confirm Equation 4 simply by adding the average of

Equation 2 to Equation 3.

For reasons discussed below, we need only refer to the mean

phenotype of immigrants, which we denote
{
wI . The difference

between the mean phenotype of immigrants and that of residents

is represented by c~
{
wI{

{
w.

We denote the mean phenotype of individual i’s descendants as

wo
i . Not all of these descendants will remain in the deme, though,

so what we are interested in is dwo
i - the mean phenotype of i’s non

emigrating descendants. The phenotypic difference between these

non emigrating descendants and their ancestor, individual i, is

denoted ddi~
dwo

i {wi.

With the exception of w and
{
w, the terms defined above are all

random variables, they will thus each have an associated

distribution, and we will be dealing with the means, variances,

and covariances of these distributions. Because we are dealing with

evolution, though, we will also have to refer to the means,

variances, and covariances of values within the population of

organisms that we are studying. In the following discussion, it is

essential to distinguish between operations over individuals in the

deme (or some other finite group of objects) and operations over

random variables. To make this distinction clear, we will use �aa to

represent the average value of a among a group of individuals, andbaa to represent the expected value of random variable a. Similarly,

a,b½ �½ � will represent the covariance between a and b within a

population, and SSa,bTT will denote the covariance between

random variables a and b across all possible outcomes. We will

refer to operations over individuals in a population as ‘‘frequency’’

operations. For example, the covariance term in the Price

equation ( w,bww½ �½ � in our notation) is the ‘‘frequency covariance’’

between phenotype and expected fitness. Operations over random

variables will be referred to as ‘‘probability’’ operations. We

discuss this distinction in more detail in the Methods section.

The general equation
Using the notation described above, the expected change in

mean phenotype within a deme, over some (arbitrary) time

interval, is given by (see Methods for derivation):

c
DwDw~ cdwodwo,d bVVh ih i

zSSd wo,dVTTzbddzSSc,JTTzbJJ bcc{bdd

� �
:ð5Þ

We can rewrite Equation 5 in terms of individual phenotypes (w)

by noting that dwo~wzd d. This yields:

c
DwDw~ w,d bVVh ih i

z bdddd,d bVVh ih i
zSSdd,dVTTzbddzSSc,JTT

zbJJ bcc{bdd

� �
:

ð6Þ

As noted, we may choose any time interval over which to

calculate
c
DwDw. Our choice of this interval, though, will influence the

values of dV and J, since these measure the contributions of

individual resident reproduction and immigration to deme growth

over the chosen interval.

(The fact that we are using single terms for immigration rate

and mean immigrant phenotype does not preclude the possibility

that immigrants could come from different places, since j and c
are calculated by summing over all sources of immigrants. There

may be cases, though, where it would be biologically informative

to distinguish between immigrants from different sources - such as

when we wish to distinguish between individuals coming from

nearby patches and those from distant populations. The subsection

‘‘Distinguishing between multiple immigrant populations’’, in the

‘‘Methods’’ section, briefly explains how to modify Equation 5 to

explicitly distinguish different immigrant populations.)

The different terms in Equation 6 correspond to different sets of

evolutionary processes that influence directional evolutionary

change. Below, we briefly describe each of these terms before

focusing in detail on a few of them in the Discussion.

w,d bVVh ih i
- This term contains selection, as well as directional

stochastic effects [23]. However, because dV is a function of both

emigration and immigration, as well as fitness, this term also

captures the evolutionary consequences of the relationship

between an individual’s phenotype and the probability that it or

its offspring will emigrate. We will expand and discuss this term in

a later section.bdddd,d bVVh ih i
- The covariance, across individuals in the deme,

between the expected contribution to deme growth and the

phenotypic difference between non-emigrating descendants and

their parents. This term will be non zero if, for example, those
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individuals who are expected to make the greatest contribution to

deme growth (highest d bVV) are also the ones who’s offspring are

expected to differ most from themselves (high d). This also

captures cases in which the individuals with higher than average
d bVV tend to have offspring for whom the probability of staying in

the deme is most strongly related to their (the offspring’s)

phenotype.

SSdd,dVTT - Average across the deme of the covariance, within

an individual, between the phenotype of that individual’s non-

emigrating descendants (dd) and that individual’s contribution to

deme growth (dV). This term will be non-zero when, for example,

the number of descendants that an individual produces has a

direct effect on the phenotype of those descendants (as in cases of a

tradeoff between clutch size and offspring size [26]), or on their

probability of emigrating.bdd - The expected average phenotypic difference between those

descendants that stay in the deme and the phenotype of their

parents. This includes any processes that cause offspring to differ

from their parents (e.g. mutation, recombination, etc), as well as

any uniform effect of phenotype on emigration (such as when the

larger offspring are more likely to emigrate, regardless of the

parents’ phenotype).

SSc,JTT - Covariance, across all possible outcomes, between

mean immigrant phenotype and the contribution of immigrants to

deme growth. This will be non-zero when, for example,

immigrants are expected to differ most from natives (high bcc) at

those times when the immigration rate is high.

bJJ bcc{bdd

� �
- The expected contribution of immigrants to deme

growth multiplied by the expected difference between immigrant

phenotype and the phenotype of natives that do not emigrate. We

will discuss the consequences of this term in a later section.

Each of these terms contains much more biology than is

apparent at first glance. This is because dV and J are ratios of

correlated random variables, the expectations of these thus contain

all of the joint moments of those variables. These moments can be

examined by expanding the main terms.

The term d bVV is the expected contribution of an individual

resident to deme growth. In order to see what biology underlies

this term, we can expand it (see Methods for the general equation)

to get:

d bVV~
cw�ssw�ss

H Rð Þ{
SSw�ss,RTTbRR2

z
SSw�ss, 2RTTbRR3

{
SSw�ss, 3RTTbRR4

� � � : ð7Þ

Here, H Rð Þ is the harmonic mean of R, and SSw�ss,nRTT
is the nz1ð Þst

mixed central moment defined by

E w�ss{cw�ssw�ss
� �

R{bRR� �nh i
. We can expand bJJ in a similar way:

bJJ~
bjj

H Rð Þ{
SSj,RTTbRR2

z
SSj, 2RTTbRR3

{
SSj, 3RTTbRR4

� � � : ð8Þ

Here, it is useful to define a term to capture the overall

emigration rate. We thus define ~w 1{�ssð Þ as the average per

capita rate of emigration from the deme. We can now write

R~jz{w{ . Using this fact to expand the second term on the

righthand side of Equation 8, we can write bJJ (writing only out to

the second order terms) as:

bJJ& bjj
H(R)

{
SS2jTTbRR2

{
SS{w,jTTbRR2

z
SS ,jTTbRR2

: ð9Þ

Equation 9 shows that the evolutionary impacts of immigration

are influenced not only by the mean immigration rate (bjj), but also

by the variance in j as well as by how immigration rate covaries

with within deme reproduction ({w) and with emigration ( ).

Equation 9 includes only second order moments (variances and

covariances) because it represents only the first two terms in

Equation 8. The subsequent terms in Equation 8 contain the

higher moments of j as well as the nonlinear relations between

immigration, emigration, and within deme reproduction (captured

by the higher mixed moments). In subsequent sections, we will

discuss some of the evolutionary consequences of the relations

shown in Equation 9.

Discussion

Equations 5 and 6, which are equivalent, encompass all factors,

both deterministic and stochastic, that contribute to change in

mean phenotype in an open population (one subject to

immigration or emigration). If migration is eliminated, then

Equation 5 becomes Equation 1 in Rice 2008. These equations

assume only a population of things, with measurable phenotypes,

that leave descendants. Equations 5 and 6 are thus essentially two

versions of a stochastic Price equation with migration. The

‘‘individuals’’ in the local population may be alleles, haplotypes,

organisms, groups, or any other biological unit to which we can

assign a phenotype and identify descendants. As with the Price

equation, ancestors and descendants need not be the same kind of

biological unit, so, for example, ancestors may be diploid

individuals and descendants may be haplotypes. Furthermore,

an individual can count itself at a later time as a descendant,

allowing for overlapping generations.

In a closed population, �ss~1 (no emigration), j~0 (no

immigration), so R~{w and dV becomes simply V~ w
w
j�ww=0

� �
[23]. A number of authors have identified the expected value of

this term, bVV or ‘‘expected relative fitness’’, as playing an important

role in directional evolution [23,27,28]. Equation 6 shows that in

an open population (where there is a possibility of emigration or

immigration), d bVV plays the equivalent role. In other words, what

matters is not an individual’s fitness relative to the average fitness

in the deme, but rather the number of descendants of that

individual who remain in the deme (w�ss) relative to the per capita

growth rate of the deme (R), which includes immigrants. (Note

that ‘‘per capita’’ here refers simply to the value divided by the

initial deme size). If d bVViw1, then the descendants of individual i

are expected to comprise an increasing proportion of the deme. All

probabilities are calculated conditional on R=0, which is

equivalent to saying that the local population does not go extinct.

This condition is important because d bVV and bJJ are undefined if R

can equal zero. Conditioning on R=0 also makes biological sense,

since
c
DwDw should be undefined when the population goes extinct.

Note that in most natural populations, the probability of a local

population going extinct in a given generation is sufficiently low

that conditioning on R=0 does not appreciably change the

calculations.

In a closed population, the average relative fitness must be one

(V~1), since all individuals in the future are descended from

current members of the population. This is not the case in an open

population, since some future population members are immi-
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grants. We thus have a second term, J, that measures the

contribution of immigrants to deme growth (Equation 3).

Equations 7 and 9 show that, potentially, all of the moments of

the distributions of fitness, immigration, and emigration, contrib-

ute to evolutionary change. Below, we discuss a few of the

consequences of these moments for evolution. First, we give a brief

intuitive explanation as to why it is important to consider the

entire distributions of some variables, but not others, when

calculating the change in mean phenotype.

Evolution is influenced by the entire distributions of
immigration, emigration, and fitness

To illustrate why we must sometimes consider the entire

distribution of some parameter just to calculate the change in

mean phenotype, consider the most well studied case: fitness. A

number of studies have shown that when per capita population

growth rate is treated as a random variable, rather than a fixed

parameter, then directional evolution is influenced not only by the

expected fitness of each phenotype, but also by the variance and

other moments [23,28–33]. This follows from the fact that, in a

closed population, change in mean phenotype is inversely

proportional to mean population fitness ({w). To see why this

matters, consider a trait, w1, that confers high variance in fitness on

individuals who express it. The fitness of w1 individuals tends to

covary with {w more strongly than does the fitness of individuals

with lower variance in w. Thus, when w1 individuals are doing

well, {w also tends to be high, so the increase in the frequency of w1

is relatively small. By contrast, when w1 individuals happen to be

doing poorly, {w tends to be small, so the decrease in the frequency

of w1 is relatively large. The frequency of w1 thus takes larger steps

when decreasing than when increasing. The trait w1 may thus be

expected to decrease in frequency relative to an alternate trait, w0,

that confers a low variance in fitness, even if the expected fitness of

w1 individuals is slightly higher than the expected fitness of w0

individuals. If offspring have the same phenotype as their parents

(heritability = 1), then what determines which trait will increase is

not expected fitness (or the geometric mean fitness [23]), but rather

the expected relative fitness conditional on the population not

going extinct, bVV~E w
w
j�ww=0

� �
[23,27,28]. (If offspring may differ

from their parents, such that d is a random variable, then bVV alone

is insufficient to determine
c
DwDw [23]).

In an open population or deme, change in mean phenotype is

inversely proportional to R, rather than to {w. Since immigration

and emigration rates contribute to R (by Equation 1) the variance

and other moments of these terms now influence evolution for the

same reason that variation in fitness does. For example (as

elaborated below), if variation in immigration rates contributes

substantially to variation in deme growth rate (R), then during

times of high immigration, R tends to be large, reducing the

magnitude of change and thus reducing the impact of immigra-

tion.

Terms that measure only the phenotypes (but not numbers) of

individuals, such as w, c, and d, do not contribute to R. We thus

need consider only the mean values of these variables in

calculating the expected change in mean phenotype.

The relation between migration and selection
The effects of selection within a deme are contained in the term

w,d bVVh ih i
. The expected contribution of individual residents to

deme growth, d bVV, contains all of the moments of the individual’s

fitness distribution. Expanding d bVV (Equation 7) shows that

individual fitness (w) never appears by itself. Instead, w is always

multiplied by �ss, the proportion of an individual’s descendants that

remain in the deme. Selection is thus captured by the covariance

of w with cw�ssw�ss. We can break up cw�ssw�ss to yield:

cw�ssw�ss~bwwb�ss�sszSSw,�ssTT: ð10Þ

Substituting Equation 10 into Equations 1, 2, and 7, we get:

w,d bVVh ih i
~

w,bwwb�ss�ss� �� �
H Rð Þ z

w,SSw,�ssTT½ �½ �
H Rð Þ {

w,SSw�ss,w�ssTT½ �½ �bRR2

{
w,SSw�ss,jTT½ �½ �bRR2

z � � � :
ð11Þ

If there is no correlation between propensity to emigrate and

phenotype, then increasing emigration (reducing �ss) will reduce the

value of w,bwwb�ss�ss� �� �
. If there were no immigration, then this would not

reduce the expected selection differential because R would be

reduced to the same degree (Equation 7). (Random emigration

might even increase the expected selection differential if the

variance in R increased [23]). With immigration, though, R may

remain large even if b�ss�ss is small. In such cases, random emigration

will reduce the efficacy of selection.

Any covariance between emigration and phenotype, on the

other hand, essentially behaves like selection. In particular, if the

offspring of parents that are poorly adapted to their local

conditions (have relatively low bww) are also those most likely to

emigrate (low �ss) (e.g. small individuals are selected against and their

offspring are particularly likely to emigrate), then this can amplify

the value of w,d bVVh ih i
, thus amplifying expected directional change.

Note that this is expected if the most poorly adapted individuals (as

measured by low bww) are the most likely to emigrate.

The term SSw,�ssTT is the covariance, within an individual,

between that individual’s fitness and the proportion of its

descendants that will remain in the deme. This term will be

non-zero when, for example, producing more offspring has the

direct effect of increasing the chances that any one of them will

emigrate. By contrast, cases in which the proclivity to emigrate is

related to expected fitness, or to parental phenotype, are captured

by bd dd d,d bVVh ih i
.

Whenever the probability of emigration is influenced by local

population density, it is likely that SSw,�ssTT=0. A number of

studies have demonstrated density dependent emigration [34].

These include examples of both positive density dependent

emigration, in which case SSw,�ssTTv0 [35–38], and negative

density dependence in emigration, in which case SSw,�ssTTw0
[39,40].

A more direct influence on SSw,�ssTT would be a causal

relationship between the number of siblings that an individual

has (independent of local population density) and that individual’s

probability of emigrating. A number of theoretical models of kin

selection predict such a relationship as a consequence of

competition between siblings [7,8,41,42], and experimental studies

have confirmed that the number of local relatives can have an

effect on emigration probability, independently of population

density [43–45].

The third term on the righthand side of Equation 11, containing

w,SSw�ss,w�ssTT½ �½ �, captures the tendency of populations to be pulled

towards phenotypes with minimum variance in w�ss. This is the

equivalent, in an open population, of the ‘‘even moment effect’’
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described in Rice [23]. The biology behind this is the same as the

case for a closed population in which phenotypes differ in the

variances of their fitness distributions (discussed in an earlier section).

Finally, the term w,SSw�ss,jTT½ �½ � in Equation 11 shows that

evolution within a deme is influenced by how distributions of w�ss
for different phenotypes covary with immigration rate. The fact

that this term is negative means that, all else held equal, the

phenotype for which w�ss is most strongly negatively correlated

with immigration rate (i.e. produces the most non emigrating

descendants when there are few immigrants) should increase in

frequency.

This leads to a seemingly paradoxical prediction: In a popul-

ation with weak selection favoring one phenotype over another,

introducing immigrants in such a way that the rate of immigration

is negatively correlated with the fitness of the less fit phenotype

(and independent of the most fit phenotype) could actually cause

the expected direction of evolution to reverse, towards increasing

frequency of the less fit phenotype, and away from both the more

fit phenotype and the mean phenotype of the immigrants. Figure 1

shows an example of a simple case in which this happens.

This is an example of what Rice [23] called a ‘‘directional

stochastic effect’’. It results from the fact that the phenotype with the

most negative value of SSw�ss,jTT produces the most descendants at

times when the potential for increase in frequency is high (since R is

relatively low). This effect, by itself, is unlikely to lead to fixation of

the less fit phenotype (in the example in Figure 1B, the point at whichc
DwDw~0 is near w~0:525). However, by shifting the distribution of

strategies within a deme towards those that contribute to deme

growth most when immigration is low, this process could influence

population dynamics by reducing fluctuations in R.

Variance in immigration rates
Equation 9 shows that increasing the variance in immigration

rate (SS2jTT) reduces the overall impact of immigration. This

phenomenon has been noted previously in models of allele

frequency change (Nagylaki 1979) and allelic diversity (Whitlock

1992). Equation 9 shows that this is a consequence of the impact of

immigration on deme growth. When the number of immigrants

entering the population is high, R also tends to be high (by

Equation 1), so overall change in mean phenotype is reduced

relative to times in which the number of immigrants is relatively

low. This explains why increasing the variance in immigration rate

(j) reduces the impact of immigration relative to selection within

the deme; when SS2jTT is large, immigration rate covaries

strongly with R.

Figure 2 shows the results of individual based simulations that

illustrate the effect of SS2jTT on the direction of evolution. In the

example shown, selection within the deme favors individuals with

a high value of w, but immigrants have a low value of w. For this

system, the expected change in mean phenotype is negative

(migration predominates) when the variance in the immigration

rate j is small, but becomes positive (selection predominating) as

we increase SS2jTT. The relation is very nearly linear, as expected

from Equation 9; however, the relation will ultimately be

nonlinear because of the effects of higher moments of j, but these

do not become apparent until the variance is quite large.

The fact that the impact of migration on phenotypic change is a

decreasing function of SS2jTT means that the distribution of

migration rates has a strong effect on the potential for local

adaptation. This is illustrated in Figure 3, which shows the effects

of changing SS2jTT in an island-continent model. In the examples

shown, selection on the island favors individuals with phenotype

w~1, while immigrants from the continent all have w~0. The

curves in Figures 3A and 3B show the expected change in mean

phenotype (
c
DwDw) on the island as a function of the current mean

phenotype on the island. Each curve is for a different value of

SS2jTT, with bjj held constant. the point where the curve of
c
DwDw

crosses zero is the expected equilibrium mean phenotype for the

island.

Figure 1. The consequences of a negative correlation between fitness and immigration rate. A) shows the fitness distributions for two
phenotypes in a closed population. In the simple case of two individuals, one with w~0 and one with w~1 (so w~0:5), the slightly higher expected
fitness of w~0 individuals causes the expected change in mean phenotype to be negative. B) shows the situation with variable immigration (and no
emigration). Immigration rate is independent of the fitness of w~0 individuals, but negatively correlated with the fitness of w~1 individuals. Though
the mean phenotype of immigrants is lower than the mean phenotype in the deme, and selection in the deme favors a lower phenotypic value, mean
phenotype is expected to increase in this case because of the fact that w~1 individuals do best at those times when low immigration leads to low
deme growth rate. The same pattern holds in a deme of size N when w~0:5, individuals with a particular phenotypic value always do well or poorly
together, and the number of immigrants fluctuates between 0 and N .
doi:10.1371/journal.pone.0007130.g001
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Figure 3A shows that increasing the variance in immigration

rates, keeping the expected rate constant, can have a substantial

effect on the degree of local adaptation in the island population. In

that example, a steady influx of two individuals per generation

keeps the mean phenotype on the island quite close to that of the

continent. The same average immigration rate, but resulting from

irregular pulses of immigrants, allows for substantial local

adaptation on the island.

In a case such as this, with two competing strategies (such as two

alleles), selection becomes weak near the boundaries because of the

reduction in phenotypic variance. Figure 3B shows, though, that

the island can still get very close to fixation of the strategy favored

there, so long as the variance in immigration is high.

The relation between immigration and native
reproduction

As the above discussion implies, the evolutionary impact of

immigration is strongly influenced by the proportional contribu-

tion of immigrants to deme growth. It is thus not surprising to find

the term {SSj,{wTT in Equation 9. If the covariance between

immigration rate and native reproduction is positive, then this will

reduce the evolutionary impact of immigrants, since they will tend

to arrive during periods of high R. We might expect this scenario

when immigration is driven by resource based habitat selection,

since periods of high {w within a deme will tend to be periods of

high resource availability within that deme, attracting many

immigrants.

The relation between immigration and emigration
It is important to note that immigration and emigration may

show any pattern of covariation even if, over time, migration is

‘‘balanced’’ in the sense that the average immigration rate equals

the average emigration rate. A common assumption in population

genetic models is that immigration and emigration are exactly

balanced within each generation, meaning that every emigrant is

immediately replaced by an immigrant. This assumption has the

effect of imposing a strong positive covariance between j and .

While such strict symmetry is possible, there is no biological reason

to expect it to be common. We thus consider the evolutionary

consequences of different possible relationships between immigra-

tion and emigration.

No correlation between immigration and emigration
If immigration and emigration are uncorrelated, then

SS ,jTT~0. We expect this in cases in which migration is

influenced by environmental or social factors that vary indepen-

dently in different demes. Note that it is also appropriate to treat

immigration and emigration as independent either when emigra-

tion does not happen, as when we are studying the dynamics of a

sink in a source-sink model [46,47], or when emigration is simply

irrelevant to the question being asked. This last condition applies

to models that focus on the probability that two randomly chosen

gene copies are identical by descent [25,47,48].

It is likely that in many natural systems, there will be some

association between immigration and emigration rates. In such

Figure 2. The influence of the variance in immigration rates, SS2jTT, on the expected change in mean phenotype. In this example,
selection favors w~1 (the fitness distributions are shown in the inset figure) while immigrants have w~0. The dots in the main figure represent the
means of 10,000 runs of an individual based simulation with the same expected immigration rate (bjj~0:28) but different variances in j. In each case,
the initial deme size was 50, and emigration was independent of both immigration and phenotype.
doi:10.1371/journal.pone.0007130.g002
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cases, the nature of the association has a strong effect on the

importance of migration as an evolutionary force.

Positive correlation between immigration and
emigration

If Immigration and emigration are positively correlated

(S ,jTTw0), then the contribution of variable migration to

variation in deme size is small, since times in which many

individuals are entering the deme are also times in which many

natives are leaving. This would be the case if deme size were

strictly regulated, such that each individual that leaves is

immediately replaced by a new immigrant. Strictly symmetric

migration of this sort is assumed in many population genetics

models, in which all migration is collapsed into a single parameter

(often designated m) that measures the average proportion of the

population replaced by migrants each generation. In such models,

j~ , so SS ,jTT~SS2jTT, and the second and fourth terms on

the righthand side of Equation 9 cancel one another out.

Though the assumption of strictly symmetric migration is

usually made for the sake of mathematical simplicity, there are

likely to be environmental conditions that produce a positive

association between immigration and emigration, though we

expect that these will usually have a correlation less than 1. One

example would be a case in which individuals can migrate between

local populations only at specific times, such as periods of low sea

level at which previously isolated islands are connected. More

generally, if the ability or inclination of individuals to migrate is

influenced by an environmental factor that varies in time but, at

Figure 3. The relation between variance in immigration, SS2jTT, selection, and
c
DwDw in an island-continent model. The colored lines

represent
c
DwDw on the island as a function of current mean island phenotype for different variances in immigration rate (each colored dot represents

the mean of 10,000 runs of an individual based simulation). Selection on the island favors w~1 (inset figures). wimmigrant~0, bjj~0:04, and N~50.

Colored ‘‘|’’ symbols mark the values of mean island phenotype at which
c
DwDw~0. A) Relatively weak selection on the island. B) Stronger selection on

the island.
doi:10.1371/journal.pone.0007130.g003
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any one time, influences all demes in the same way, then we expect

that SS ,jTTw0.

The evolutionary consequences of a positive association

between immigration and emigration will be an increase, relative

to the case of SS ,jTT~0, in the impact of immigration relative to

selection within a deme. This follows from the fact that, if

SS ,jTTw0, then the fourth term on the righthand side of

Equation 9 is of the same sign as (bcc{bdd), which measures the

difference between the mean phenotype of immigrants and that of

natives that remain in the deme. For example, if w is body size, and

immigrants are on average larger than natives who stay in the

deme, then bcc{bdd

� �
w0 and SS ,jTT bcc{bdd

� �
will shift the

population more towards the phenotype of immigrants.

Negative correlation between immigration and
emigration

A negative correlation between immigration and emigration

(SS ,jTTv0) would be expected in a population of habitat

selectors in which the principle reason for migration is differential

patch quality. When a particular patch (corresponding to a deme)

is particularly rich in resources, then individuals from other

patches are expected to move in and natives are expected to stay

put.

A negative relation between j and will reduce the impact of

migration relative to selection. In such cases, periods of high

immigration are also periods in which many natives stay in the

deme, meaning that selection is particularly effective at such times

as well.

Effective migration rate
As the above discussion shows, the distributions of immigration

and emigration, and their joint distributions with resident fitness,

can have a strong effect on phenotypic evolution. These stochastic

evolutionary processes are often not considered, though, in models

of character evolution. Even the effect of variance in immigration,

which has been noted previously [24,25], is often neglected in

evolutionary models involving migration (for models that do

consider the variance in immigration, see [14] and [49].)

One place where stochastic migration and fitness are likely to be

important is in the study of speciation. Figure 2 shows that

changing the variance in immigration rates, keeping the mean

constant, can substantially change the potential for local

adaptation. A number of models of sympatric and parapatric

speciation have shown that migration has a strong effect on the

chances that complete reproductive isolation will arise between

demes [3,50–52], but these have treated migration as a parameter,

rather than a random variable, and have not considered the joint

distribution of migration and selection within a deme.

One way to introduce stochastic migration into such models,

without rebuilding them from scratch, is to use an ‘‘effective’’

migration rate, me. If a local population can fluctuate in size but is

not expected to increase or decrease too fast (bRR&1), migration

rates are low, and the probability of an individual emigrating is

independent of its phenotype, then we can approximate the

effective migration rate as:

me~bjj{SS2jTT{SS{w,jTTzSS ,jTT: ð12Þ

Equation 12 is an effective migration rate because it measures

the evolutionary impact of migration, taking into account the

impact of immigration and emigration on deme growth. If there is

strict symmetrical migration within each generation (j~ so

SSj, TT~SS2jTT), and mean fitness within the deme is

independent of migration rate (SS{w,jTT~0), then me~bjj~m.

Considering the terms on the righthand side of Equation 12, the

term that has the greatest potential to significantly alter the value

of me is SS{w,jTT; this is because, when migration rates are low (an

assumption of Equation 12), the mean and variance of {w will

generally be much larger than the corresponding values for j and

. Figure 4 illustrates this point. In the example illustrated, there is

substantial proportional fluctuation in immigration rates, but

because the mean rate is very small, the actual value of the

variance in j is much smaller than the mean. By contrast, though

the fluctuations in within deme reproduction ({w) are not drastic,

the fact that the mean is near 1 means that the covariance of

immigration and within deme reproduction, SS{w,jTT, is much

larger than the variance in immigration rate. In the case illustrated

in Figure 4, in which times of high immigration correlate exactly

with times of high within deme reproduction, the value of me can

be quite a bit less than the mean immigration rate.

Though it may be small, the variance in immigration, SS2jTT,

will almost never be zero, since it is quite unlikely that exactly the

same number of immigrants will arrive each generation. All else

held equal, we thus expect me to be lower than the value of m used

in deterministic models unless immigration is negatively correlated

with resident fitness or is positively correlated with emigration.

Since the potential for parapatric speciation increases with

decreasing migration [3], models with deterministic migration

will thus tend to underestimate the potential for such speciation in

real populations.

The effective migration rate in Equation 12 is different from the

one presented by Whitlock [25] for studying Fst. This is because,

just as with effective population size, different effective migration

rates will be appropriate for different questions. When calculating

the probability of identity by descent for two alleles chosen from

the same subpopulation [25], the rate of emigration is irrelevant.

(Since they are still there, the two allele copies can not be

Figure 4. Hypothetical example of a local population in which
immigration (j) and within deme mean reproductive rate ({w)
vary over time. j~0 with probability 0.9 and j~:1 with probability
0.1, and {w~1 with probability 0.8, {w~0:7 with probability 0.1, and
{w~1:3 with probability 0.1. In this case, bjj~0:01 and SS2jTT~0:0009.
Emigration is independent of both j and {w. If immigration were
independent of {w and of emigration, then the effective migration rate
is me~0:0091. If, however, immigration and within deme reproduction
are strongly correlated, so that immigrants always arrive during times of
high within deme reproduction (as illustrated), then SS{w,jTT~0:003,
so me~0:0061.
doi:10.1371/journal.pone.0007130.g004

Evolution with Migration

PLoS ONE | www.plosone.org 9 October 2009 | Volume 4 | Issue 10 | e7130



emigrants; we are thus concerned only with the probability that

they are immigrants.) By contrast, when studying phenotypic

evolution within a subpopulation, both immigration and emigra-

tion matter, and thus both appear in Equation 12.

The relation between special case models and axiomatic
theories

In the Introduction, we distinguished between simplifying

assumptions (postulates that we know are not strictly true but

serve to make our models more tractable) and scientific axioms

(postulates that we think are actually true). Most model building in

biology involves either special case analytical models or simulation

models. Analytical models have the advantage of providing

mechanistic insight into the processes involved, but often force

us to make particular simplifying assumptions for the sake of

mathematical tractability, and this can render some important

processes hard to model. Simulations allow us to investigate a

wider range of processes, but still require many unrealistic

assumptions in order to narrow the range of parameter values

that need to be investigated. Furthermore, simulations tell us only

what could happen within the range of parameter values

investigated - they do not yield mechanistic insight into why the

system behaves as it does. Though special case analytical models

and simulations appear to deal differently with assumptions, in one

sense they are similar: In both cases we start out by identifying the

processes we think are important, then make appropriate

simplifying assumptions to allow us to study these.

In building an axiomatic theory, on the other hand, we start out

with what we think is actually true about the system in question,

then derive from this the mathematical rules that tell us what

processes are important under what circumstances. The scientific

axioms from which Equations 5 and 6 follow are simply that

organisms live in populations, have measurable phenotypes, leave

descendants, and that we can in principle assign probability

distributions to individual fitness, offspring phenotype, and

immigration and emigration rates. Not surprisingly, the resulting

equations have many terms, most of which can themselves be

expanded to yield even more terms. In traditional model building

this would be a drawback - all those terms complicating the

interpretation of the model. For an axiomatic theory, though, this

proliferation of terms is exactly what we want. Because we started

out with only assumptions that we have good reason to think are

actually true, each of the resulting terms must correspond to some

real biological process - including some that we might never have

thought of. For example, the importance of the correlation between

within deme fitness and immigration rate (Figure 1) emerged

naturally from an expansion of the terms in Equation 5 (specifically,

the appearance of the term w,SSw�ss,jTT½ �½ �). Axiomatic theories

thus allow us to discover processes that were rendered invisible by

the assumptions used to make special case models and

simulations tractable. In many fields we have no useful axiomatic

theories. When we do have them, though, they serve to clarify the

fundamental relationships between different processes, and

facilitate the discovery of new processes that we did not expect,

but that follow necessarily from the basic facts of the system.

Finally, note that much of our analysis of Equations 5 and 6

involved considering simplified systems that isolate the effects of a

particular term. We are thus still using simplifying assumptions in

our analysis. Because we started out deriving an axiomatic theory,

though, the simplifying assumptions come at the end, rather than

at the beginning, of the analysis - after we have seen what the exact

general rules look like. Axiomatic theories, when we can derive

them, thus also serve as formulas for generating special case

models.

Methods

Frequency vs probability operations
There are two, very different, kinds of statistical operators used

in this paper: Frequency operations, denoted by straight symbols

(� or ,½ �½ �), are operations over objects that have a distinct value,

such as individuals in a deme or the descendants of a particular

ancestor.

It is important to note that frequency operations are not the

same as ‘‘sample statistics’’. Though w and bwowo,d bVVh ih i
are

calculated using a finite set of individuals, they are not estimates

of anything else. Rather, they are the terms that actually determine

the dynamics of evolutionary change within a deme [20]. This

means that in calculating variances and covariances across the

deme, we do not use any of the statistical corrections associated

with sample statistics.

Probability operations, represented by angled symbols (b or

SS,TT), are over the possible values of random variables, such as

the distribution of possible values of change in mean phenotype, or

the distribution of possible fitness values of an individual.

For some values, both frequency and probability operations are

relevant, though they will have very different interpretations. For

example, bww is the expected fitness of an individual, while {w is the

average fitness across the population or deme. Note that {w is itself

a random variable, so we could calculate b{w{w, the expected average

fitness, or expected per capita population growth rate. In other

cases, only one kind of operation will be meaningful. For example,

if w represents the current phenotype of individuals in a

population, then SSw,VTT:0. Since w is not a random variable,

it can not have a non-zero probability covariance with anything.

In order to determine the level at which a particular operation is

applied, one needs to look at the objects involved. For instance, w
is a property of a deme because individuals within the deme each

have a value of w, whereas �ss is a property of an individual ancestor,

because s is a property of each of an individuals descendants. The

average value of �ss in a deme would then be ��ss�ss.

Rules for manipulating frequency and probability
operations

Two theorems relating frequency and probability operations

will be useful in the subsequent derivations. The first, demon-

strated by Rice [23], says that the expected value of the average is

the same as the average of the expected value:

b�aa�aa~baa: ð13Þ

The second important relation concerns covariances and

means:

da,b½ �½ �a,b½ �½ �{ baa,bbbh ih i
~SSa,bTT{SS�aa,�bbTT: ð14Þ

This is easily demonstrated by noting that the lefthand side of

Equation 14 is equal to
c
abab{c�aa�bb�aa�bb{baabbbzbaabbb, and the righthand side

is equal to cabab{baabbb{
c�aab�aabzb�aa�aabbb. Applying Equation 13 shows that

these are equal.

Derivation of Equation 5
Consider a deme of size N. Immigrants may enter the deme such

that at the end of a chosen time interval, nI individuals are either
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immigrants or descendants of immigrants that arrived during the

interval. The rest of the population at the end of the interval is

composed of descendants of residents (individuals in the deme at the

beginning of the interval). We define wo
ij as the phenotype of the jth

descendant of resident i and wI as the mean phenotype of

immigrants. We can then write the expected mean phenotype in

the deme at the end of the next time interval, E w
0� �

, as:

E w
0� �

~E

PN
i~1

Pwi

j~1

wo
ijsijznI wI

PN
i~1

wi�ssiznI

0
BBB@

1
CCCA: ð15Þ

From Equation 1, and the fact that j~ nI

N
, we see that the

denominator of the righthand side of Equation 15 is equal to NR.

We can further simplify the first term in the numerator of Equation

15 by noting that the expected mean phenotype among those

descendants of individual i that do not emigrate, dwo
i is given by:

dwo
i ~

Pwi

j~1

wo
ijsij

Pwi

j~1

sij

[
Xwi

j~1

wo
ijsij~

dwo
i wi�ssi: ð16Þ

Equation 15 then becomes:

E w
0� �

~E

1

N

XN

i~1

dwo
i wi�ssi

R
z

wI j

R

0
BBBB@

1
CCCCA: ð17Þ

Recalling the definitions of dV and J from Equations 2 and 3,

and noting that
c
DwDw~E w

0� �
{w, we can write:

c
DwDw~ z

d
wI JwI J{w: ð18Þ

Using the fact that ab~ a,b½ �½ �z�aab and that cabab~SSa,bTTzbaabbb,

Equation 18 becomes:

cD�wwD�ww~ E dwo, dV
� �� �� 	

z zSS�wwI ,JTTz
b
wwI
bJJ{w: ð19Þ

We can rewrite the first term on the righthand side of Equation

19 using Equation 14:

E dwo,dV
� �� �� 	

~ cdwodwo,d bVVh ih i
zSSdwo,dVTT{SSdwo,dVTT: ð20Þ

Similarly, we can use the facts that cabab~SSa,bTTzbaabbb and that

(from Equations 2 and 3) dVzJ~1 to rewrite the second term on

the righthand side of Equation 19 as:

~SSdwo,dVTTz
cd wod wo 1{bJJ� �

: ð21Þ

Substituting Equations 20 and 21 into Equation 19, setting

wI~wzc, and rearranging terms, yields:

c
DwDw~ cd wod wo,d bVVh ih i

zSSdwo, dVTTz
cdwodwo{wzSSc,JTT

zbJJ bcczw{
cdwodwo

� �
:

ð22Þ

Substituting
cdwodwo

{w~bdd into Equation 22 yields Equation 5.

Distinguishing between multiple immigrant populations
If we wish to formally distinguish between immigrants coming

from different original populations, then each source population

has it’s own value of c, j, and J. For the case of two different

immigrant origins, Equations 1 and 4 become R~w�sszj1zj2

and dVzJ1zJ2~1. Using these facts, and following the same

steps as in the derivation of Equation 5 above, we get:

c
DwDw~ cdwodwo,d bVVh ih i

zSSdwo,dVTTzbddzSSc1,J1TT

zSSc2,J2TTzbJJ1(bcc1{bdd)zbJJ2 bcc2{bddÞð23Þ
�

Expanding d bVV and bJJ
Equations 7 and 8 are obtained using the general rule for

expanding ratios of random variables presented in Rice [23]. In

the notation of the current paper, this is:

E
a

b

� �
~

baa
H bð Þz

X?
i~1

{1ð ÞiSSa, ibTTbbbiz1
, ð24Þ

where SSa, ibTT~E a{baað Þ b{bbb� �i

 �

.
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