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Abstract

The ability of the transcription factor NF-kB to upregulate anti-apoptotic proteins has been linked to the chemoresistance of
solid tumors to standard chemotherapy. In contrast, recent studies have proposed that, in response to doxorubicin, NF-kB
can be pro-apoptotic through repression of anti-apoptotic target genes. However, there is little evidence analyzing the
outcome of NF-kB inhibition on the cytotoxicity of doxorubicin in studies describing pro-apoptotic NF-kB activity. In this
study, we further characterize the activation of NF-kB in response to doxorubicin and evaluate its role in chemotherapy-
induced cell death in sarcoma cells where NF-kB is reported to be pro-apoptotic. Doxorubicin treatment in U2OS cells
induced canonical NF-kB activity as evidenced by increased nuclear accumulation of phosphorylated p65 at serine 536 and
increased DNA–binding activity. Co-treatment with a small molecule IKKb inhibitor, Compound A, abrogated this response.
RT–PCR evaluation of anti-apoptotic gene expression revealed that doxorubicin-induced transcription of cIAP2 was
inhibited by Compound A, while doxorubicin-induced repression of other anti-apoptotic genes was unaffected by
Compound A or siRNA to p65. Furthermore, the combination of doxorubicin and canonical NF-kB inhibition with
Compound A or siRNA to p65 resulted in decreased cell viability measured by trypan blue staining and MTS assay and
increased apoptosis measured by cleaved poly (ADP-ribose) polymerase and cleaved caspase 3 when compared to
doxorubicin alone. Our results demonstrate that doxorubicin-induced canonical NF-kB activity associated with
phosphorylated p65 is anti-apoptotic in its function and that doxorubicin-induced repression of anti-apoptotic genes
occurs independent of p65. Therefore, combination therapies incorporating NF-kB inhibitors together with standard
chemotherapies remains a viable method to improve the clinical outcomes in patients with advanced stage malignancies.
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Introduction

Nuclear Factor-kB (NF-kB) plays a major role in a number of

oncogenic processes, including development, metastasis and

treatment outcomes [1–3]. This family of evolutionarily conserved

transcription factors (p65 or RelA, p50/p105, p52/p100, RelB

and cRel), which share a common Rel homology domain, typically

exists as homo- or hetero-dimers in the cytoplasm where they are

bound by inhibitory kB proteins (IkB), such as IkBa. In response

to a variety of stimuli, the inhibitory kB kinase (IKK) complex,

consisting of two catalytic subunits (IKKa and IKKb) and a

regulatory subunit (IKKc/NEMO), can phosphorylate the IkB

proteins targeting them for degradation by the 26S proteasome. As

a result, NF-kB is released and can translocate to the nucleus to

modulate gene transcription. A number of target genes have been

identified, including anti-apoptotic proteins, proteins involved in

angiogenesis, and proteins regulating cellular proliferation [2,3].

The activation of anti-apoptotic gene transcription by NF-kB has

been linked to the ability of malignancies to resist the cytotoxic

effects of standard chemotherapeutics. Previous work from our

laboratory and others has demonstrated that NF-kB is activated in

response to a number of chemotherapies and irradiation [4].

Specifically, in fibrosarcoma cells, the induction of NF-kB activity

by etoposide resulted in increased expression of A1/Bfl-1 while

inhibition of NF-kB blocked the induction of A1/Bfl-1 and resulted

in enhanced etoposide-induced cell death [5]. Moreover in colon

cancer cells, NF-kB inhibition combined with CPT-11 (active

metabolite of camptothecin) resulted in decreased xenograft growth

when compared to chemotherapy alone [6,7]. Similar effects of NF-

kB inhibition have also been demonstrated in lung cancer and

breast cancer [8,9]. These studies collectively support an important

role for NF-kB in the chemoresistance of solid tumors.

However, some recent reports have challenged this model and

proposed that NF-kB activity seen in response to DNA damage

induced by ultraviolet radiation and chemotherapeutics can

function to promote cell death [10–12]. The most common

stimuli used to reportedly induce pro-apoptotic NF-kB activity are

the anthracycline, doxorubicin, and its analogues [10–12]. Two

distinct mechanisms have been proposed to mediate this effect.

Campbell et al. demonstrated that in osteosarcoma cells
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daunorubicin induces recruitment of NF-kB together with histone

deacetylases to silence the transcription of Bcl-xL [11]. On the

other hand, Ho et al. demonstrate that treatment of breast cancer

cells with doxorubicin generates an NF-kB complex that is

deficient in both phosphorylation and acetylation and represses

anti-apoptotic gene transcription in a mechanism independent of

histone deacetylases [12]. These studies further suggest that NF-kB

activation may be required for doxorubicin to induce cell death

and therefore that combining targeted NF-kB inhibition could

actually serve to counteract the desired cell killing effects of

chemotherapy [11,12]. While these two studies describe mecha-

nisms by which NF-kB can silence the expression of selective

genes, there is little evidence in the literature demonstrating that

inhibition of NF-kB activity renders chemotherapy less effective.

Answering this question is critical to determining the potential

benefits or hazards to employing NF-kB inhibition as an adjunct

to standard chemotherapy. Currently, the primary chemotherapy

treatment of advanced stage sarcomas is doxorubicin, which only

yields a 15–35% response rate [13,14]. This dismal response, in

combination with the fact that the therapeutic options have not

changed in 20 years, highlights the highly chemoresistant nature of

this disease [13]. As such, we employed the osteosarcoma model

used by Campbell et al. in order to further evaluate and

characterize the response of NF-kB to doxorubicin, specifically

focusing on determining whether the induced activation of NF-kB

is pro- or anti-apoptotic. To that end, in this study, we

demonstrate that doxorubicin-induced repression of certain anti-

apoptotic genes occurs through a mechanism that is independent

of canonical NF-kB activity. Moreover, we show that doxorubicin-

induced NF-kB activity in sarcomas is transcriptionally active and

that targeted inhibition of canonical NF-kB activation enhances

the cytotoxic effects of doxorubicin through increased apoptotic

cell death.

Results

Compound A blocks doxorubicin-induced activation of
canonical NF-kB

Initially, we sought to characterize the effects of IKK inhibition

using the small molecule IKKb inhibitor [15], Compound A, on

the ability of doxorubicin to activate NF-kB. To that end, U2OS

cells were stimulated with doxorubicin (2 mM) for 3 hours with or

without a one hour pretreatment with Compound A (5 mM). Cells

treated with DMSO served as controls. Activation of the canonical

NF-kB pathway was assessed by measuring the phosphorylation of

IkBa at the serine 32 and 36 residues (p-IkBa32,36). Additionally,

we evaluated the phosphorylation status of p65 at the serine 536

residue (p-p65536) as this modification has been shown to be

important for transcriptional activity [1]. We found that treatment

with doxorubicin resulted in a significant increase in p-IkBa32,36

(Figure 1A). This corresponded to a decrease in total levels of

IkBa, which is consistent with proteasomal degradation

(Figure 1A). Simultaneously, we determined that doxorubicin

stimulation generated a substantial increase in p-p65536 when

compared to untreated controls (Figure 1A). However, in cells

pretreated with Compound A there was complete inhibition of

doxorubicin-induced phosphorylation of both IkBa and p65

(Figure 1A). In order to confirm that doxorubicin can induce

phosphorylation of p65 following 3 hours of treatment, we also

examined this response in HT1080 fibrosarcoma cells. Similar to

the response seen in U2OS cells, doxorubicin did induce a

significant increase in p-p65536 at both 1.5 and 3-hour time points

(Figure S1). Together these results demonstrate that doxorubicin

activates the canonical NF-kB pathway and that targeting the

IKK complex with Compound A efficiently blocks doxorubicin-

induced NF-kB activity. Moreover, contrary to previously

published work [11], doxorubicin treatment of U2OS cells induces

phosphorylation at the serine 536 residue on p65 measured at

3 hours post treatment, suggesting that it may be transcriptionally

active (see discussion).

Compound A inhibits NF-kB DNA–binding activity and
nuclear translocation of p65

Understanding that doxorubicin activates NF-kB downstream

of the IKK complex, we then analyzed the effects of IKK

inhibition with Compound A on the nuclear activity of NF-kB in

response to doxorubicin. U2OS cells were treated with doxoru-

bicin with or without Compound A for 3, 6 and 12 hours and

nuclear extracts were isolated. We then assessed NF-kB DNA-

binding activity in vitro using EMSA. We found that treatment with

doxorubicin results in a robust increase in NF-kB DNA-binding

activity at all time points compared to the DMSO-treated controls

(Figure 1B, Lanes 4, 6, and 8). Supershift analysis confirmed that

this activated complex contained both p65 and p50 subunits

(Figure 1B). Importantly, when cells were pretreated with

Compound A for one hour, doxorubicin-induced NF-kB DNA-

binding activity was strongly inhibited (Figure 1B, Lanes 5, 7,

and 9).

In order to confirm the results of the EMSA, we also examined

the effects of doxorubicin treatment on the levels of nuclear p65.

As above, U2OS cells were stimulated with doxorubicin in the

presence or absence of Compound A and nuclear extracts were

isolated. These extracts were then evaluated by western blot for

the presence of p65. Consistent with the EMSA results, U2OS

cells treated with doxorubicin for 3 and 6 hours had a significant

increase in nuclear translocation of p65 when compared to

DMSO-treated controls (Figure 1C). Again we noted the presence

of increased phosphorylation at the serine 536 residue in cells

exposed to doxorubicin (Figure 1C). When cells were pretreated

with Compound A, the ability of doxorubicin to induce nuclear

translocation of NF-kB was eliminated (Figure 1C). These results

confirm that in response to doxorubicin, U2OS cells activate NF-

kB leading to its accumulation in the nucleus. Moreover, these

results further indicate that targeted inhibition of the IKK

complex with Compound A is an effective means of blocking

NF-kB nuclear activity, which is important for the analysis of

downstream gene targets.

NF-kB inhibition blocks doxorubicin-induced
transcription of cIAP2, but does not alter doxorubicin-
induced repression of other anti-apoptotic genes

We next evaluated the outcome of doxorubicin-induced NF-kB

activity on gene expression. Following treatment with doxorubicin

alone or in combination with Compound A for 3 and 6 hours,

total RNA was extracted and evaluated for mRNA levels of

potential NF-kB target genes by real time RT-PCR. First, we

analyzed the effects of doxorubicin treatment on the transcription

of IkBa, as it is directly regulated by NF-kB. Following three hours

of doxorubicin stimulation, we determined that the mRNA levels

of IkBa were increased nearly 5-fold compared to DMSO-treated

controls (Figure 2A). By 6 h, the transcriptional activation began

to subside and only a 2-fold elevation in IkBa mRNA was

identified. This pattern of induction corresponds to the strong

induction of p65 phosphorylation described above (Figure 1A and

1C). Furthermore, co-treatment with the IKK inhibitor complete-

ly abolished the doxorubicin-induced increase in IkBa transcrip-

tion (Figure 2A). These results illustrate that the induction of IkBa

NF-kB and Doxorubicin
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transcription by doxorubicin is regulated by NF-kB, confirming

that doxorubicin-induced NF-kB is transcriptionally active and is

not globally repressive in its function.

To further evaluate the transcriptional activity of NF-kB in

response to doxorubicin, we analyzed the expression patterns of a

panel of anti-apoptotic genes in these cells. We selected genes that

belong to both the Inhibitor of Apoptosis Protein (IAP) family and

the Bcl-2-like protein family as they have been reported to be NF-

kB regulated, both positively and negatively, in various cellular

model systems [3]. Interestingly, we determined that doxorubicin

treatment had varying effects on these genes. While there was no

effect of doxorubicin on the expression of cIAP1 compared to

DMSO-treated controls, there was a significant 2.5-fold induction

of cIAP2 mRNA transcription following 3 hours of treatment

(Figure 2A). On the other hand, when we examined other IAPs,

we found that exposure to doxorubicin resulted in transcriptional

repression of XIAP and Survivin (Figure 2A). Similarly, doxoru-

bicin’s ability to silence gene expression was also seen with Bcl-2

and Bcl-xL (Figure 2A), consistent with the results seen by

Campbell et al [11].

However, in cells pretreated with Compound A prior to

doxorubicin stimulation, we discovered that NF-kB inhibition had

no effect on basal expression of cIAP1, although combination

treatment did result in a modest decrease in cIAP1 mRNA

(Figure 2A). When we evaluated cIAP2, we found that the addition

of Compound A successfully inhibited the doxorubicin-induced

increase in transcription, in addition to substantially decreasing

basal mRNA levels (Figure 2A). Contrary to these results,

combining NF-kB inhibition with doxorubicin did not alter the

pattern of transcriptional repression of XIAP, Survivin, Bcl-2, or

Bcl-xL seen in cells treated with doxorubicin alone (Figure 2A).

These results provide further evidence that NF-kB is transcrip-

tionally active in response to doxorubicin as evidenced by the

regulation of cIAP2, which mirror the results seen with IkBa.

Moreover, our data reveal that the ability of doxorubicin to cause

transcriptional repression of the anti-apoptotic genes XIAP,

Survivin, Bcl-2 and Bcl-xL is not dependent on NF-kB activity,

at least that regulated by IKKb.

In order to expand on these results and further evaluate if the

effects at the mRNA level translated to protein expression, we

Figure 1. Doxorubicin activates canonical NF-kB signaling. (A) U2OS cells were pretreated with Compound A (Cmpd A, 5 mM) for 1 h and
then stimulated with doxorubicin (Dox, 2 mM) for 3 h. Whole cell extracts were evaluated for canonical NF-kB activation by western blot. Doxorubicin
induces phosphorylation of IkBa (p-IkBa32,36) and p65 (p-p65536) compared to DMSO-treated controls. Inhibition of the IKK complex with Cmpd A
blocks doxorubicin-mediated increase in p-IkBa32,36 and p-p65536. (B) Nuclear extracts were prepared from U2OS cells treated with Dox+/2Cmpd A
for 3, 6, and 12 hours and evaluated by EMSA. Doxorubicin treatment results in increased NF-kB DNA-binding activity at all times points.
Pretreatment with Cmpd A successfully inhibits the activation of NF-kB by doxorubicin. Supershift analysis confirms that the activated complex of NF-
kB contains both p65 and p50 subunits. (C) Western blot of nuclear extracts harvested from cells treated with Dox+/2Cmpd A demonstrates that
doxorubicin induces nuclear translocation of p65 phosphorylated at serine 536 (p-p65536), and this is inhibited by the addition of Compound A.
doi:10.1371/journal.pone.0006992.g001

NF-kB and Doxorubicin
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selectively depleted the p65 subunit in U2OS cells using siRNA

and then evaluated the effects of doxorubicin treatment on anti-

apoptotic proteins. Cells transfected with a non-targeting siRNA

(siCont) served as controls. The successful depletion of p65 was

confirmed using western blot (Figure 2B). Interestingly, the

increased transcription of cIAP2 did not translate to increased

protein levels following exposure to doxorubicin. However, in the

absence of p65, the levels of cIAP2 were significantly decreased

basally and in response to doxorubicin (see Discussion). On the

other hand, similar to the transcriptional results seen with

Compound A, the knockdown of p65 did not alter the baseline

protein expression of XIAP, Survivin, or Bcl-xL (Figure 2B).

Moreover, treatment with doxorubicin resulted in decreased levels

of these three anti-apoptotic genes and this pattern was unchanged

in cells lacking the p65 subunit (Figure 2B). These results in

combination with the transcriptional results seen using IKK

inhibition support a role for NF-kB in both basal and doxorubicin-

induced expression of cIAP2, and further suggest that NF-

kB canonical activity is not mechanistically important for

doxorubicin-induced repression of anti-apoptotic genes such as

XIAP, Survivin, and Bcl-xL.

NF-kB inhibition enhances the cytotoxicity of
doxorubicin through increased apoptosis

Having established that NF-kB activity has a selective

transcriptional effect on cIAP2 and no effect on the doxorubicin-

induced repression of other anti-apoptotic genes, we then explored

the outcome of NF-kB inhibition on the cytotoxicity of doxorubicin.

First, we evaluated the effects of combined treatment with

doxorubicin and Compound A on cell growth and viability. A

growth study was conducted using four treatment groups, DMSO,

Compound A, doxorubicin, and doxorubicin plus Compound A.

U2OS cells were seeded in 6-well plates and treated every 48 hours.

The total number of live cells was then counted every 2 days using

Figure 2. Doxorubicin-mediated repression of anti-apoptotic genes is independent of canonical NF-kB activity. (A) U2OS cells were
stimulated with doxorubicin (Dox) with or without Compound A (Cmpd A) for the indicated times. Total RNA was isolated and evaluated using real
time RT-PCR and results are displayed as relative gene expression compared to DMSO-treated controls. Doxorubicin treatment increased transcription
of IkBa and cIAP2, decreased transcription of XIAP, Survivin, Bcl-xL, and Bcl2, and did not alter cIAP1 transcription (black bars). Inhibition of NF-kB
activation with Cmpd A blocked the induction of IkBa and cIAP2, but had no effect on the doxorubicin-mediated repression of the other anti-
apoptotic genes (gray bars). (B) U2OS cells were transfected with either a non-targeting control siRNA (siCont) or siRNA directed against p65 (sip65).
After 48 h incubation, the cells were treated with doxorubicin (Dox) for 12 hours and changes in levels of anti-apoptotic proteins were assessed by
western blot. Knockdown of the p65 subunit decreased the basal expression of cIAP2, but did not alter baseline protein levels of XIAP, Bcl-xL, or
Survivin. Moreover, the absence of p65 did not alter the ability of doxorubicin to repress the expression of these same proteins.
doi:10.1371/journal.pone.0006992.g002

NF-kB and Doxorubicin
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trypan blue staining. Although treatment with Compound A or

doxorubicin individually had a modest effect on cell growth early, it

appeared only to delay cell growth (Figure 3A). However,

combination treatment with doxorubicin and Compound A

resulted in a significant decrease in cell number that persisted

throughout the course of the study (Figure 3A).

In order to further evaluate the outcome of combining NF-kB

inhibition with doxorubicin, U2OS cells were seeded in a 96-well

plate and subjected to treatment with DMSO, Compound A

(5 mM), doxorubicin (0.5 mM or 2 mM), or doxorubicin plus

Compound A for 24 hours. The overall number of cells was then

quantified using an MTS assay. Treatment with Compound A

alone had no effect on the overall number of cells compared to

controls, while doxorubicin demonstrated a dose-dependent

decrease in cell proliferation (Figure 3B). Consistent with the

results of the growth study, when U2OS cells were pretreated with

Compound A prior to the addition of doxorubicin there was a

greater decrease in cell number compared to cells treated with

doxorubicin alone (Figure 3B). Moreover, by incorporating NF-kB

inhibition with the chemotherapy, equivalent cytotoxic effects of

doxorubicin alone at 2 mM could be achieved using 75% less

chemotherapeutic drug (Figure 3B).

Finally, we analyzed U2OS cells treated with either doxorubicin

alone or in combination with Compound A for the presence of

cleaved poly (ADP-ribose) polymerase (PARP) and cleaved

Caspase 3 to determine if increased apoptosis was a component

of the enhanced cytotoxicity. While doxorubicin was able to

induce low levels of apoptosis by 12 hours, the combination of NF-

kB inhibition and doxorubicin resulted in a substantial increase in

the accumulation of cleaved PARP and cleaved Caspase 3

(Figure 3C). These results support a role for NF-kB activation in

the inherent chemoresistance of osteosarcomas. Understanding

that cIAP2 was regulated by NF-kB and induced by doxorubicin,

we questioned whether this anti-apoptotic gene alone enabled

U2OS cells to evade the cytotoxic effects of doxorubicin.

However, selective depletion of cIAP2 using siRNA did not result

in increased apoptosis in cells treated with doxorubicin (data not

shown and see Discussion). The combination of these assays

illustrates that increased NF-kB activity seen in response to

doxorubicin inhibits the cell killing potential of doxorubicin.

Figure 3. NF-kB inhibition with Compound A enhances the cytotoxicity of doxorubicin through increased apoptosis. (A) U2OS cells
were seeded in 6-well plates and treated every 48 hours with DMSO, doxorubicin (Dox, 5 ng/ml), Compound A (Cmpd A, 5 mM), or Dox+Cmpd A. The
total number of live cells was counted at 2-day intervals. While both Dox alone and Cmpd A alone resulted in some decrease in cell growth, the
combination of NF-kB inhibition with doxorubicin substantially enhanced the cytotoxic effects of doxorubicin alone. (B) U2OS cells were pretreated
with DMSO or Cmpd A and then exposed to Dox at either 0.5 mM or 2 mM for 24 hours. The number of cells was then measured using an MTS assay
and displayed as the percent of total cells compared to DMSO-treated controls. Although Cmpd A alone had minimal effect on cell number, its
combination with Dox at either dose resulted in decreased number of cells compared to doxorubicin alone. (C) U2OS cells treated with Dox+/2Cmpd
A for the indicated time points were evaluated for the presence of the apoptotic markers cleaved PARP and cleaved Caspase 3. Treatment with Dox
alone had minimal effects on apoptosis. However, the combination of NF-kB inhibition and Dox resulted in a significant increase in both cleaved
PARP and cleaved Caspase 3, which is consistent with increased apoptotic cell death.
doi:10.1371/journal.pone.0006992.g003

NF-kB and Doxorubicin
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IKKa and IKKb are critical to doxorubicin-induced NF-kB
activity

In order to further explore the mechanism behind NF-kB-

mediated chemoresistance, we initially further dissected the means

by which doxorubicin activates NF-kB. Based on previous results

from our laboratory showing an important role for both IKKa and

IKKb in the NF-kB response to doxorubicin [16], we hypothe-

sized that similar functions of these kinases existed in osteosarco-

mas. To address this question, U2OS cells were transfected with

siRNA targeting the IKKa subunit, the IKKb subunit, or both. A

non-targeting siRNA (siCont) served as a control. The cells were

incubated for 48 hours and then stimulated with doxorubicin for

3 hours. Whole cell extracts were then evaluated for phospho-

rylation of p65 at the serine 536 residue. We discovered that the

knockdown of either IKKa or IKKb resulted in diminished levels

of doxorubicin-induced p-p65536 when compared to cells trans-

fected with siCont (Figure 4A). However, in the absence of either

catalytic subunit alone, doxorubicin was able to generate a modest

increase in NF-kB activation compared to untreated controls, but

targeting both subunits completely prevented the induction of

p-p65536 (Figure 4A). Consistent with our previous work in

fibrosarcomas, doxorubicin activates canonical NF-kB signaling

through both IKKa and IKKb. Although it has been recently

shown that IKKa can activate the canonical pathway as a

compensatory mechanism in the absence of IKKb [17], our data

demonstrates that in sarcomas both catalytic subunits mutually

contribute to the activation of NF-kB in response to doxorubicin.

Doxorubicin induces nuclear accumulation of p52
Understanding that IKKa actively participates in the canonical

NF-kB response to doxorubicin, we proceeded to evaluate the

effects of doxorubicin on the alternative NF-kB pathway.

Specifically, we treated U2OS cells with doxorubicin (2 mM) in

the presence or absence of Compound A (5 mM) for 6 hours.

Cytoplasmic and nuclear extracts were then prepared and evaluated

for the presence of p52, a critical component and effector of the

alternative NF-kB pathway. Interestingly, we found that treatment

with doxorubicin did increase the levels of p52 in the nucleus when

compared to DMSO-treated controls (Figure 4B). This nuclear

accumulation of p52 was effectively inhibited when cells were

pretreated with Compound A (Figure 4B, see Discussion).

Activation of p65, not p52, is critical to chemoresistance
of sarcomas

Next we evaluated the individual contributions of each NF-kB

subunit to the chemoresistance of osteosarcomas. To do so we

transfected U2OS cells with siRNA targeting the p65 subunit, the

p100 subunit (the precursor for p52), or a non-targeting control. The

cells were then treated with doxorubicin for 12 hours and assessed for

the onset of apoptosis. Western blots confirmed that adequate and

selective knockdown of the individual subunits was achieved (Figure 5).

Treatment with doxorubicin alone was unable to induce measurable

apoptosis (Figure 5). The results were similar when cells lacking p100/

p52 were stimulated with doxorubicin (Figure 5). However, in cells in

which p65 was depleted, exposure to doxorubicin resulted in a

Figure 4. Both IKKa and IKKb contribute to doxorubicin-induced phosphorylation of p65 and doxorubicin induces nuclear
accumulation of p52. (A) U2OS cells were transfected with siRNA constructs targeting IKKa (siIKKa), IKKb (siIKKb) or a non-targeting control siRNA
(siCont). The cells were then treated with doxorubicin (Dox) for 3 hours. Western blot confirmed that siIKKa and siIKKb achieved selective knockdown
of their respective subunits. Analysis of phosphorylation of p65 (p-p65536) demonstrated that the decrease in either IKKa or IKKb alone did not
completely eliminate the ability of doxorubicin to induce p-p65536. However, knockdown of both catalytic subunits resulted in complete inhibition of
the doxorubicin-induced increase in p65 phosphorylation. (B) Cytoplasmic and nuclear extracts were isolated from U2OS cells treated with
doxorubicin (Dox) +/2 Compound A (Cmpd A) for 6 hours. Immunoblot for p52/p100 confirms an increase in the nuclear translocation of p52 in
response to Dox treatment. Inhibition of the IKK complex with Compound A prevented the nuclear accumulation of p52.
doi:10.1371/journal.pone.0006992.g004

NF-kB and Doxorubicin
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substantial increase in levels of cleaved PARP and cleaved Caspase 3

indicating ongoing apoptosis (Figure 5). The inability of sip100 to

enhance doxorubicin-induced cell death, demonstrates that the

enhanced nuclear accumulation of p52 does not directly contribute

to the U2OS cells’ resistance to the apoptotic effects of chemotherapy.

On the other hand, the p65 subunit has an active role in the ability of

osteosarcomas to resist the cytotoxic effects of doxorubicin, highlight-

ing the importance of canonical NF-kB signaling as a critical

mechanism underlying the chemoresistance of sarcomas.

Discussion

Our study demonstrates an important role for NF-kB activity in

the ability of osteosarcomas to resist the cytotoxicity of the

commonly used chemotherapeutic, doxorubicin. In contrast to

previously published work [11], we show that in response to

doxorubicin, a transcriptionally active form of p65 is generated

and accumulates in the nucleus. This in turn leads to the increased

transcription of cIAP2 and IkBa. We also illustrate that the

repression of several anti-apoptotic genes by doxorubicin occurs in

a manner independent of canonical NF-kB activity. Importantly,

the combination of canonical NF-kB inhibition with doxorubicin

resulted in enhanced cytotoxicity compared to doxorubicin alone,

in part through increased apoptotic cell death.

Previously, others have reported that doxorubicin or its

analogue daunorubicin activates NF-kB in such a manner that it

recruits p65 to repress its target genes. In those studies, there is

increased DNA-binding activity by EMSA in response to drug

treatment, but no change is identified in the level of phospho-

rylated p65 at the serine 536 residue [11,12], which has been

established as a important modification for NF-kB transcriptional

activity [1]. In contrast to the results seen by Campbell et al. after

5 hours of treatment with chemotherapy [11], in our study we

identified a significant increase in p65 phosphorylation at serine

536 following 3 hours of treatment with doxorubicin in both

U2OS and HT1080 cells. This difference in exposure to

doxorubicin suggests that an earlier assessment of response may

be critical to identify changes in p65 phosphorylation. The

importance of early evaluation of treatments on NF-kB activity is

also evident in the assessment of transcriptional targets, as this

early increase in p-p65536 did correlate with increased transcrip-

tion of IkBa and cIAP2. On the other hand, Ho et al.

demonstrated that doxorubicin treatment in MDA-MB-231 breast

cancer cells did not increase p65 phosphorylation at serine 536 at

any time from 10 minutes up to 24 hours and concordantly

demonstrated a decrease in cIAP2 transcription [12]. Similarly, we

also did not identify any alterations in p-p65536 in these breast

cancer cells after 1.5 or 3 hours of doxorubicin treatment (Figure

S1). Therefore, identifying the presence or absence of this

modification could serve as a marker to determine whether

canonical NF-kB activated by chemotherapeutics is transcription-

ally active or repressive, respectively.

In addition to the absence of post-translational phosphorylation

at serine 536, reports in the literature supporting a repressive

function for NF-kB have relied on evaluating a limited subset of

anti-apoptotic genes and correlating those expression patterns with

luciferase reporters [11,12,18]. However, this correlation can be

difficult in the setting of transient activation of NF-kB and time

required to accumulate firefly luciferase for an accurate reading.

For instance in U2OS cells, we reveal that the induction of

transcription of IkBa and cIAP2 is identified early following

3 hours of doxorubicin treatment, and subsequently declines.

Under such conditions, the use of a luciferase reporter assay,

which requires sufficient treatment times to allow for translation

and accumulation of firefly luciferase, may not accurately depict

the subtle changes at individual promoters at shorter time points.

This issue is evident in our study, where despite identifying

increased mRNA levels for two NF-kB target genes, the NF-kB

luciferase reporter assay shows decreased expression of the

reporter gene in cells treated with doxorubicin (Figure S2).

Additionally, if the mechanism by which doxorubicin represses

gene transcription is not regulated by NF-kB, it may also silence

the transcription of exogenous luciferase reporters.

Moreover, reports that link NF-kB activity to the repression of

anti-apoptotic genes lack substantial evidence examining the overall

effects of NF-kB inhibition on the cytotoxicity of doxorubicin, which

is an important question in regards to future clinical applications

[11,12]. As a result, in the present study we incorporated several

Figure 5. Activation of p65, and not p52, is critical to the
apoptotic resistance in U2OS cells. U2OS cells were transfected with
siRNA targeting the p65 subunit (sip65), the p100 subunit (sip100), or a
non-targeting control (siCont). After 48 hours of incubation with the
siRNA, the cells were treated with doxorubicin for 12 hours and the
effects on apoptosis were assessed by western blot. Western blot for p65
confirmed significant knockdown. Evaluation of p100 levels revealed a
modest decrease of p100 in the cells lacking p65 and complete
knockdown in the cells treated with sip100. Importantly, the levels of
p52 were not affected by sip65, but were substantially decreased in the
absence of its precursor p100. Analysis of the apoptotic markers cleaved
PARP and cleaved Caspase 3, revealed a robust increase in apoptosis in
response to doxorubicin only in cells lacking the p65 subunit. Cells
treated with siCont or sip100 demonstrated no increase in cleaved PARP
or cleaved Caspase 3 when treated with doxorubicin.
doi:10.1371/journal.pone.0006992.g005
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techniques to assess the outcome of combining targeted NF-kB

inhibition with chemotherapy on cell growth, cell number and

apoptosis. Using the IKKb inhibitor, Compound A, we illustrate

that blocking the induction of NF-kB activity can enhance the

efficacy of doxorubicin, as evidenced by decreased cell growth and

increased levels of cleaved PARP and cleaved Caspase 3. We then

further confirmed that canonical NF-kB signaling is important to

the chemoresistance of U2OS cells by showing similar increases in

apoptosis when cells were first depleted of p65 using siRNA prior to

treatment with doxorubicin. Based on these results, NF-kB is anti-

apoptotic in its function in response to doxorubicin and inhibiting

the activation of canonical NF-kB is an effective means for

overcoming the chemoresistance in sarcomas.

However, the mechanism underlying the anti-apoptotic func-

tion of NF-kB in U2OS cells remains elusive. In light of the fact

that selective depletion of cIAP2 did not generate enhanced

apoptosis (data not shown), the classical model of NF-kB-mediated

induction of anti-apoptotic genes may not be sufficient, in and of

itself, to explain the added benefits seen in the combination

treatment groups. Further studies are ongoing to determine the

key targets downstream of canonical NF-kB activation that are

responsible for mediating the resistance to doxorubicin-induced

cell death in sarcomas.

Given the active role of IKKa in the canonical NF-kB response

to doxorubicin, it will be important to further identify the

contributions of p52 activation to the ability of sarcoma cells to

evade the toxicity of standard chemotherapy. In our study we

demonstrate that doxorubicin treatment induces an increase in

nuclear accumulation of p52, and we further show that IKK

inhibition with Compound A abrogates this response. Further

studies will be necessary to determine if the increase in nuclear p52

is the result of true activation of the non-canonical pathway

through IKKa-mediated phosphorylation of p100 and its

subsequent cleavage to p52, or if there are other mechanisms

downstream of IKKa and IKKb that are driving additional NF-

kB subunits to the nucleus. In addition to determining the

mechanism leading to increased nuclear p52, it will be important

to identify its contribution to chemoresistance in response to

doxorubicin. Although we demonstrate that its knockdown in

isolation did not enhance cell death, p52 may contribute in other

ways to the ability of U2OS cells to evade cytotoxic effects of

chemotherapy. Specifically, further investigation of the potential

role of p52 in the regulation of the cell cycle in osteosarcoma cells

treated with doxorubicin will be important as others demonstrated

p52’s ability to influence the expression of several key cell cycle

regulators such as Cyclin D1 and p21 [19–21].

Furthermore, as the drive to design and discover new cancer

therapeutics continues, it is important to realize the importance of

the IKKa subunit in cancer chemoresistance. To date, the

majority of research on targeted inhibition has focused on the

IKKb subunit because of its role in NF-kB activation by cytokines

[2]. In this study, we demonstrate that selective depletion of either

IKKa or IKKb alone is not sufficient to inhibit the activation of

canonical NF-kB activity. Additionally, treatment with the IKKb
inhibitor Compound A at lower doses (1 mM) was unable to

completely inhibit the activation of canonical NF-kB (data not

shown). However, by increasing the concentration of Compound

A (5 mM), we were able to completely block doxorubicin-induced

canonical NF-kB activity. Given that Ziegelbauer et al. demon-

strated that although Compound A is more selective for IKKb it

also effectively inhibits IKKa at higher concentrations [15], we

hypothesize that Compound A at higher doses targets both IKKa
and IKKb and therefore can prevent downstream activation of

canonical NF-kB signaling by doxorubicin. The combination of

these results, together with our previous work [16], highlights an

important and active role for IKKa in chemotherapy-induced

activation of canonical NF-kB activity. Moreover, Lam et al have

recently shown that IKKa can be recruited to activate p65 as a

compensatory response in the absence of IKKb [17]. Therefore,

achieving adequate and complete inhibition of NF-kB activation

as an adjunct to conventional chemotherapy is likely to require

successful targeting of both subunits, rather than isolated

inhibition of IKKb alone.

For malignancies resistant to standard chemotherapies like

sarcomas, where the chemotherapeutic options have not changed

in nearly 20 years, nor has the 12–16 month median survival for

patients with metastatic disease, the concept of combating the

inherent chemoresistance of solid tumors with novel biologic

therapies has never been more important [13]. Our results

demonstrate that the transcription factor NF-kB actively influences

the cellular response to chemotherapy. Therefore, combination

therapies incorporating NF-kB inhibitors, such as small molecules

targeting the IKK complex, together with standard chemotherapies

remains a viable method to improve the clinical outcomes in

patients with advanced stage malignancies.

Materials and Methods

Cell culture and reagents
U2OS human osteosarcoma cells, HT1080 human fibrosarco-

ma cells, and MDA-MB-231 breast cancer cells were obtained

form American Type Culture Collection (ATCC, Rockville, MD).

The U2OS cells, HT1080 cells and MDA-MB-231 cells were

maintained in McCoy’s 5A medium (Mediatech, Inc., Manassas,

VA), MEM-Alpha medium, and DMEM medium (Invitrogen,

Carlsbad, CA), respectively. All growth media was supplemented

with 10% fetal bovine serum and 100 mg/ml penicillin and

100 mg/ml streptomycin. Cell cultures were maintained at 37uC
with a mixture of 95% air and 5% CO2. Cells were treated with

doxorubicin (1 mg/ml) and harvested at the indicated time points.

Inhibition of NF-kB was accomplished using a small molecule

inhibitor of IKKb (Compound A) obtained from Theralogics

(Chapel Hill, NC). It can target both IKKa and IKKb subunits,

but exhibits a greater affinity for IKKb [15]. Cells were pretreated

with Compound A for 1 hour prior to stimulation with

doxorubicin. For all experiments incorporating treatment with

Compound A, cells treated with DMSO served as a control.

Small interference RNA (siRNA) transfection
In preparation for transfection 2.56105 cells were plated in 6-

well plates and incubated overnight. The transfections were then

carried out according to the manufacturer’s protocol. Briefly, the

growth media was removed and replaced with transfection media

containing siGENOME SMARTpool siRNA for siControl #4 or

#5, sip65, sip100, siIKKa, or siIKKb (final concentration 20 nM)

and DharmaFECT1 transfection reagent (Dharmacon, Inc.,

Lafayette, CO). For knockdown of both IKKa and IKKb,

20 nM of siRNA targeting each individual subunit was added to

the transfection medium. The cells were cultured for 24 hours.

The transfection media was then removed and replaced with

standard growth media. The cells were grown for an additional

24 hours and treated with doxorubicin as described above. The

knockdown of target proteins was confirmed with western blot.

Western blot and antibodies
Cytoplasmic and nuclear extracts were prepared as previously

described [16]. Briefly, cytoplasmic extracts were isolated using a

hypotonic buffer [10 mM Hepes (pH 7.6), 60 mM KCL, 1 mM
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EDTA, 1 mM DTT, 0.2% NP-40, 1 mM PMSF] and centrifu-

gation. The nuclei were then suspended in a high-salt buffer

(20 mM Tris pH 8.0, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM

EDTA, 1 mM PMSF, 25% glycerol) for ten minutes and again

separated from cellular debris using centrifugation. For analysis of

whole cell extracts, cells were suspended in a lysis buffer [20 mM

Tris-HCL (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM

EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM b-

glycerophosphate, 1 mM Na3VO4] for 5 minutes. The lysate was

then separated using centrifugation at 13,000rpm for 10 minutes.

All lysis buffers were supplemented with protease inhibitors (Roche

Diagnostics, Mannheim, Germany) and phosphatase inhibitors

(Sigma Aldrich, St. Louis, MO) Protein concentrations of the

lysates were determined using a Bradford Protein assay.

Western blot analysis was performed following the protocol

provided by Invitrogen (Carlsbad, CA) by separating proteins (20–

30 mg) on NuPAGE 4–12% Bis-Tris gels. Antibodies for IkBa, b-

Tubulin, p65, survivin (Santa Cruz Biotechnology, Inc., Santa

Cruz, CA), caspase 3, cleaved caspase 3, cleaved PARP, PARP,

phosphorylated p65536, phosphorylated IkBa32,36, p100/p52,

histone H3, Bcl-xL, cIAP2, and XIAP (Cell Signaling Technology,

Inc., Danver, MA), IKKa and IKKb (Upstate) were used at

1:1000 dilution. All antibodies were diluted in 5% bovine albumin

(Sigma-Aldrich, St. Louis, MO) in TBS-T, except for phosphor-

ylated IkBa32,36, which was diluted in 5% non-fat milk in TBS-T.

The blots were incubated with the primary antibody overnight at

4uC. The membranes were then incubated with secondary anti-

rabbit or anti-mouse antibody diluted at a range of 1:5000 or

1:10000 in 5% milk in TBS-T for 1 hour and then developed

using Amersham ECL Western Blotting Detection Reagents (GE

Healthcare, Buckinghamshire, England).

Electrophoretic Mobility Shift Assay (EMSA)
Cells were harvested after treatment as indicated above, and the

EMSAs performed as previously reported [22]. In brief, nuclear

extracts were obtained as described above, and 5 mg of nuclear

proteins were incubated with 1 mg/ml polydIdC in binding buffer

(50 mM Tris pH 7.6, 5 mM DTT, 2.5 mM EDTA, 50% glycerol)

for 15 minutes. Subsequently, an oligonucleotide radiolabeled with

[a32P]dCTP was added and allowed to incubate for an additional

15 minutes at room temperature. The probe contains an NF-kB

consensus binding site for the H-2kB promoter (59-

GGGGATTCCC-39). The samples were then separated on a

polyacrylamide gel and developed with autoradiography. For

supershifts, 1 ml of p65X and p50X (200 mg/0.1 ml; Santa Cruz

Biotechnology, Inc., Santa Cruz, CA) was added together with

polydIdC for the initial incubation.

Real time RT–PCR
After treatment, total RNA was isolated using Trizol (Invitro-

gen, Carlsbad, CA). Reverse transcription was conducted using

1 mg of total RNA using MMLV reverse transcriptase (Invitrogen,

Carlsbad, CA) according to the manufacturer’s protocol. Real

time RT-PCR was then performed using TaqMan gene expression

assays for IkBa, cIAP1, cIAP2, XIAP, Survivin, Bcl-2, and Bcl-xL

(Applied Biosystems Inc., Forest City, CA) on an ABI 7900HT

real time PCR system (Applied Biosystems, Inc., Forest City, CA).

Growth study
2.56104 cells were seeded in 6-well plates and incubated for

24 hours. The media was then exchanged and the cells were treated

with doxorubicin (5 ng/ml) +/2 Compound A (5 mM) as described

above. Again cells treated with DMSO served as controls. Media

was replaced every 48 hours and the cells were again treated with

doxorubicin +/2 Compound A. This continued for a total of 10

days. Cells were trypsinized and counted using trypan blue at 2, 4, 6,

8, and 10 days. Experiments were conducted in triplicate and

displayed as total number of live cells.

MTS assay
U2OS cells (56103/well) were seeded in a 96-well plate and

allowed to incubate for 24 hours. The cells were then pretreated

with Compound A for 1 hour and then stimulated with

doxorubicin for 24 hours, and DMSO treated cells served as

controls. The MTS assay (Promega, Madison, WI) was then

conducted according to the manufacturer’s protocol. Briefly, 20 ml

of the reagent were added to each well and the plates were

incubated at 37uC for approximately 1.5 hours. The absorbance

of each well at 490 nm was then measured on the VERSAmax

microplate reader (Molecular Devices, Sunnydale, CA). Treat-

ments were performed in triplicate and the results are displayed as

the average percentage of total cell number.

Dual luciferase assay
U2OS cells were seeded in 6-well plates at 26105 cells per well

and cultured for 24 hours. Cells were then transfected with 250 ng/

well of a 36kB luciferase reporter construct together with 2.5 ng/

well of pRL-TK Renilla luciferase construct (Promega, Madison,

WI) using 2 mg polyethylenimine/mg of DNA. The cells were

incubated overnight, media was exchanged and the cells were

treated with DMSO, doxorubicin, Compound A, or doxorubicin +
Compound A for 12 hours. The cells were then harvested in passive

lysis buffer and analyzed using the Dual Luciferase Assay System

according to the manufacturer’s protocol (Promega, Madison, WI)

on an Lmax Microplate Luminometer (Molecular Devices, Sunny-

dale CA). Relative light units of the 36kB luciferase were

normalized to Renilla luciferase light units to control for transfection

efficiency. Experiments were performed in triplicate.

Supporting Information

Figure S1 Doxorubicin induces phosphorylation of p65 in

HT1080 cells. HT1080 fibrosarcoma cells and MDA-MB-231

breast cancer cells were treated with doxorubicin (DOX) for 1.5

and 3 hours. Whole cell lysates were then evaluated for the

presence of phosphorylation of p65 at serine 536 (p65536).

Doxorubicin treatment resulted in increased levels of p65536 at

both time points in HT1080 cells, but did not alter the level of p65

phosphorylation in MDA-MB-231 cells.

Found at: doi:10.1371/journal.pone.0006992.s001 (0.99 MB TIF)

Figure S2 Doxorubicin treatment represses NF-kB luciferase

reporter. U2OS cells were transfected with both a 36kB firefly

luciferase reporter construct and a Renilla construct to serve as a

control for transfection efficiency. After incubation for 24 hours,

the cells were subsequently stimulated with doxorubicin (Dox) with

or without Compound A (Cmpd A) for 12 hours. The cells were

then lysed and evaluated using a dual luciferase assay. Treatment

with doxorubicin resulted in repression of the NF-kB reporter

when compared to DMSO treated controls. Additionally,

Compound A alone or in combination with doxorubicin was also

capable of silencing the NF-kB reporter.

Found at: doi:10.1371/journal.pone.0006992.s002 (0.14 MB TIF)
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