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Abstract

The study of double-stranded RNA unwinding by helicases is a problem of basic scientific interest. One such example is
provided by studies on the hepatitis C virus (HCV) NS3 helicase using single molecule mechanical experiments. HCV
currently infects nearly 3% of the world population and NS3 is a protein essential for viral genome replication. The objective
of this study is to model the RNA unwinding mechanism based on previously published data and study its characteristics
and their dependence on force, ATP and NS3 protein concentration. In this work, RNA unwinding by NS3 helicase is
hypothesized to occur in a series of discrete steps and the steps themselves occurring in accordance with an underlying
point process. A point process driven change point model is employed to model the RNA unwinding mechanism. The
results are in large agreement with findings in previous studies. A gamma distribution based renewal process was found to
model well the point process that drives the unwinding mechanism. The analysis suggests that the periods of constant
extension observed during NS3 activity can indeed be classified into pauses and subpauses and that each depend on the
ATP concentration. The step size is independent of external factors and seems to have a median value of 11.37 base pairs.
The steps themselves are composed of a number of substeps with an average of about 4 substeps per step and an average
substep size of about 3.7 base pairs. An interesting finding pertains to the stepping velocity. Our analysis indicates that
stepping velocity may be of two kinds- a low and a high velocity.
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Introduction

The study of RNA unwinding by helicases is a problem of

basic scientific interest. Recent advances in single molecule

techniques have allowed the study of these proteins and their

action at an unprecedented detail [1,2]. The HCV RNA

helicase NS3 is one such example. The Hepatitis C virus infects

nearly 3% of the world population. NS3, as one of the viral-

encoded proteins that are essential for viral genome replication,

has been a potential target for therapeutic intervention. Several

studies [3–5] have focused on the RNA unwinding mechanism

using bulk measurement techniques. More recently, in [1] the

RNA unwinding mechanism was studied by observing individ-

ual mechanistic cycles using optical tweezers. They employed

Fourier analysis on the distribution of pairwise distances of

the unwinding to study the unwinding characteristics. This work

is motivated by these single molecule experiments [1]. We aim

to perform a statistical analysis on the RNA unwinding data and

compare with the conclusions reached before. The results

presented here were obtained using the data analysis methods

proposed in Arunajadai [6]. In this method, RNA unwinding by

NS3 is hypothesized to occur in a series of discrete steps. In [1],

Dumont et al. proposed the concept of pauses and subpauses,

which are periods of constant extension between the discrete

steps observed directly from single molecule experiments. Such

behavior has also been observed in single molecular studies

involving the separation of double-stranded DNA into two

separated single strands at constant force [7,8] which may

provide information pertinent to the mechanism of DNA

replication. Here the pauses are believed to caused by a series

of energy minima where the strand separation halts and will not

commence until the energy barrier is overcome. Even in identical

molecules the number of base pairs that separate as function of time

varies as separation requires random thermal activations that differ

in different identical molecules. In this work, a classification

algorithm is employed on the periods of constant extensions

estimated by the statistical model. This analysis helps one to

understand if such distinctions exist and if so, whether the

differences are statistically significant. We see that there is

reasonable agreement among most of the characteristics of the

unwinding mechanism but there are also some new inferences

which might be worth further investigation.

Methods

Experiment
Here we describe the experimental setup followed in [1] that was

used to obtain unwinding trajectories of NS3 helicase in real time.

The enzyme used is the full-length protein of the hepatitis C virus

helicase (NS3) from HCV genotype 1a. The single molecule assay can

directly follow the movement of NS3 on its RNA substrate. The RNA

secondary structure used in this experiment is called the hairpin.

Optical tweezers are used to apply a constant tension between the two

beads attached to the ends of a 60 base-pair (bp) RNA hairpin. The

end to end distance change of the RNA is recorded as it is unwound

by NS3. In [1], it is shown that any unwinding of the RNA at external

forces below 19 pN (pico Newton, 1 pN~10{12 N) must be helicase

catalyzed. Thus the double stranded RNA is held by the optical

tweezers at a constant force ranging between 5 and 17 pN. NS3 and
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ATP were flown together in a buffer. As NS3 unwinds the hairpin,

the distance between the beads increase so as to maintain a constant

force on the molecule. For each pair of base-pair unwound a pair of

nucleotides (nt) is released. A schematic of the experiment is shown in

figure 1. For the technical details of the experiment refer to [1]. The

extension of the unwound RNA is recorded in nanometers

(1 nm~10{9 m). The data for this study was provided by Dr. Wei

Cheng, of the Bustamante Lab, University of California Berkeley.

The details of the experiment, data collection and the original analysis

can be found in [1].

Statistical Analysis
It is hypothesized that the NS3 helicase enzyme unwinds RNA

in a series of discrete steps. The key questions of interest from a

biological perspective are

1. What is the size of these steps in base-pairs?

2. Are there substeps within these steps? If so how many

substeps are there in a given step and what is the size of these

substeps?

3. Is there a pause duration i.e. a period of constant extension

between these steps?

4. Are there subpauses between the substeps?

5. What is the stepping velocity of these steps?

Dumont et.al. in [1], perform a Fourier analysis on the

distribution of pairwise distances from a single trace and compute

the step size as frequency with the highest power. The steps were

then detected by scanning for the maximum slope within a

running-window. Pause durations were defined as the intervals

between two steps and the velocity as the slope from a linear fit.

Substeps were then detected using a running-window within a

step. Subpauses i.e. periods between substeps were required to be

longer than 80 ms. Thus we see that the analysis depends on

setting certain conditions like requiring the user to choose an

appropriate running window size. In this work we avoid the above

assumptions but make assumptions on a random process that will

be used to model the unwinding mechanism. The assumptions

made in this work regarding the random process are

1. The unwinding occurs in a series of discrete steps.

2. The step locations themselves occur in accordance to an

underlying point process.

3. The process is accompanied by stationary noise (by stationary

we mean that the mean and covariance structure of the noise

data is time invariant).

The above framework for the unwinding mechanism is analyzed

using the methodology described in Arunajadai [6] which employs

methods pertaining to the following two areas of statistics:

1. 79Change Point Problems: Consider a random process where

certain distributional characteristic of the process (for

example, the mean) changes at certain points in time. Such

class of problems are referred to as change point problems.

References [9,10] provide a comprehensive review of change

point problems. In this work it is assumed that the mean level

of the process (i.e. mean level of the step) m changes at certain

time points in time while the variance s2 remains constant

throughout the process. It is also assumed that each

individual homogenous segment follows a normal distribution

N mi,s
2

� �
where mi is the mean level of the ith step.

2. Point Processes: Point processes are a type of random

processes employed to study the collections of point

occurrences. An important class of point processes is the

renewal processes. Here it is assumed that the intervals

between the point occurrences are independently and

identically distributed. Here we consider the gamma

distribution Gamma a,bð Þ with shape parameter a and scale

parameter b, for the intervals between point occurrences.

For a~1, the Gamma distribution coincides with the

exponential distribution yielding a Poisson process as a

special case. For other values of a one gets sequences of

points with more (av1) and less (aw1) clustering. With the

so called substeps (to be discussed below) occurring close

together one might expect an (av1) as opposed to a~1 as

assumed in [1] in their Poisson analysis. For a review of

point processes refer [11–13].

In the RNA unwinding by NS3 Helicase the steps are separated by

pauses. In the DNA unzipping literature [7,8] these pauses are

believed to be caused by a series of energy minima where the strand

separation stops until a certain energy threshold is overcome. Even in

identical molecules the number of base pairs that separate as function

of time varies as separation requires random thermal activations that

differ in different identical molecules. These random thermal activations or

its counterparts in the RNA unwinding are assumed to be a from a

point process i.e. events occurring in a random way in time. To

determine these point occurrences we employ change point models.

That is at each of these point occurrences, the RNA unwinds and an

extension is recorded as shown in the unwinding trace in figure 2.

Thus when the RNA unwinds at the point occurrence, the mean level

of the extension changes and the change point methodology is used to

detect these mean level changes which in turn estimate the times of

the point occurrences.

Figure 3 shows the schematic of the point process driven change

point model on which the RNA unwinding is modeled. Here m
denotes the mean level of the step, T the time of the jump and d

the interval between the steps. Note that the time of the jump T

can be expressed as the sum of the inter-jump intervals d as

Tk~
Xk

j~1

dj ð1Þ

The mean level mk of step k may be given as

mk~akzvkTk ð2Þ

where vk is the velocity of the step and ak is the intercept term.

Thus the observed value yi at time ti is given by

yi~akzvkTkz[i TkƒtiƒTkz1, k~, . . . ,K, . . . i~1, . . . ,N ð3Þ

Figure 1. Schematic of the Experiment. A 60 BP RNA hairpin held
between the beads of an optical tweezer.
doi:10.1371/journal.pone.0006937.g001
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where [i is the accompanying noise and is assumed to follow

a normal distribution N 0,s2
� �

, N is the number of data

points and K the number of steps. The Gamma distribution has

the property that if Xi, i~1, k are independent and distributed as

Gamma a,bð Þ then X~
Pk
i~1

Xi is distributed as Gamma a,kbð Þ.

Assuming the intervals d between the steps follows a gamma

distribution Gamma a,bð Þ where a is the shape parameter and b is

the scale parameter, the distribution of the time points at which

the steps occur follows from the above property of the gamma

distribution and equation (1) and is given by

Tk*Gamma a,kbð Þ k~1, . . . ,K ð4Þ

Arunajadai [6] provide a robust-resistant approach and the

associated algorithms to detect change points. The change point

detection is based on the premise that the points in one step

behave as outliers with respect to the distribution of the points in

another step. A weighting procedure is described where points that

behave as outliers are assigned zero weights. The paper also

discusses the maximum likelihood approach to estimate the

parameters a, b and s2.

Results

Model Fit and Diagnostics
Figure 2 shows the plot of the raw data and figure 4 shows the

fitted values obtained from model described in equation (3) using the

Figure 2. RNA unwinding trace for four sample data. Time is in ms and Extension in nm.
doi:10.1371/journal.pone.0006937.g002
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algorithms described in [6]. Recall that there are two assumptions

imposed on equation (3). First, the intervals between the jumps have

a gamma distribution with a common shape parameter a and scale

parameter b, i.e. Gamma a,bð Þ. Second, the noise accompanying the

unwinding process are independent with zero mean normal

distribution N 0,s2
� �

. Figure 5 shows the Gamma quantile-quantile

plot for the time intervals between jumps from the four fits in figure 4.

Quantile-Quantile plots (QQ-plot) aid in validating the distributional

assumption in that when points fall along the reference line (Line

through the 0:25th and 0:75th quantiles of the empirical and the

theoretical distributions. The data falling along this line might

indicate that the data has the theoretical distribution but possibly

with different shape and scale parameter and hence the line need not

have an intercept of zero and a slope of 1) the assumption can be

taken to be valid. There are fewer outliers for the ATP concentration

of 1 mM than for 0.1 mM. What these outliers mean and their

dependence on ATP concentration will be discussed below. The

plots otherwise seem to suggest that it is reasonable to assume that

the time intervals between the jumps is gamma distributed.

The residuals from this fit are shown in figure 6. There seems to

be no obvious pattern in the residual plot with time indicating that

the residuals are randomly distributed across time. The QQ-plot

shows that the only outlier data points i.e. that ones straying away

from the reference line are the ones with zero weights (red dots).

The plots (ACF) and (PACF) show the autocorrelation and the

partial autocorrelation plots. The autocorrelation is the correlation

between points at different lags and the partial autocorrelation is

the correlation between points at different lags that is not

accounted for by the intermediate lags. For more details see

[14]. The plots indicate that the correlations are statistically

insignificant (values within blue dashed lines). Such diagnostic tests

were performed for all 66 of the available samples.

Figure 7 shows the estimates of the parameters a, b and s2 and

their associated 95% confidence intervals. The plot also shows the

estimates corresponding to the different values of the Force, ATP

and NS3 concentrations. The parameter estimates seem to be

independent of the force, ATP and NS3 concentrations. We

computed a weighted mean of the parameters using as weights the

inverse of the variances.(Fairly standard statistical procedure to use

inverse of the variance as the weights. The idea is that the quantities

with higher variance i.e. those that are less precise contribute less to

the mean.) This is indicated by the vertical dashed line. The

weighted estimates of a, b and s2 are 0.64, 0.77 and 0.35

respectively. Quantile -Quantile plots for the jump intervals like

those in figure 5 were plotted with these new parameter values and

they seem to satisfy the assumptions as before.

The gamma distribution with a equal to one is a homogenous

exponential distribution with rate 1=b. A renewal process with

inter-jump interval following an exponential distribution is a

poisson process. It is seen from figure 7 that in none of the 66

samples does the 95% confidence interval for a include the value

1. This suggests that it was inefficient to impose the assumption

that the inter-jump intervals followed a poisson process as in [1].

Pauses and Subpauses
Dumont et.al. [1] define pauses as periods of constant extension

between steps. They also identify each step being composed of a

number of substeps (this will be discussed below). The period of

constant extension between these substeps is defined as a subpause.

The estimation of the step locations using equation (3) and

algorithms in [6] gives an estimate of the duration of the periods of

constant extension. This leads to two questions:

1. Can the periods of constant extension be classified into pauses

and subpauses? Are the two classes statistically distinguish-

able?

2. Are the pauses and subpauses independent of the applied

force, NS3 concentration and ATP concentration?

Pause-Subpause Classification
Here we employ the classification algorithm Partitioning

Around Meloid (PAM) [15] to see if the periods of constant

extension can be classified into pauses and subpauses, i.e to see if a

cluster of size two is the ideal classification. The output from PAM

produces what is known as the silhouette width ranging from 0 to 1

for a given cluster size. The greater the value of the silhouette

width, the better the classification. A silhouette width ranging

between 0.7 and 1 indicates a very strong structure in the

classification and between 0.5 and 0.7 indicates a reasonable

structure in the classification. We first run PAM individually on

the durations across different experiments. Cluster sizes of 2, 3, 4

and 5 were employed. The silhouette plot from one such analysis is

presented in figure 8.

It can be seen from figure 8 that the average silhouette width is

highest for the cluster of size 2 with an average of 0.77. This cluster

shows that the subpause group (red) has a well pronounced

structure while the pause group (blue) has a weaker structure. This

could be due to the small number of pauses compared to

subpauses. As the number of clusters is increased, the strength of

some of the individual groups seems to increase, but the average

silhouette width decreases. Thus a cluster of size two seems to do

the best classification. This procedure was repeated for durations

from other sets of experiments. Each of them consistently chose a

cluster of size two with an average silhouette width ranging

between 0.74 and 0.77. Thus a cluster of size two seems to be the

ideal classification and we will refer to them as pauses and

subpauses.

Figure 3. Schematic of the RNA unwinding process. m represents
the mean level of the steps and T represents the jump locations. d is
the inter-jump interval.
doi:10.1371/journal.pone.0006937.g003
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To avoid misclassification by sheer chance of the observed

data we incorporate the PAM classification procedure into a

leave-one-out algorithm. We leave one trial out and run PAM on

the durations from other trials. Using the results from PAM, the

durations from the left out trial are classified as a pause or a

subpause. This procedure is repeated for every trial and a given

duration is given the majority classification. This reduces the

probability of misclassifying a given duration as pause or

subpause. It also gives a measure of the sensitivity of a given

duration to misclassification, i.e. in what proportion of the leave

one out trials was a given duration classified differently from its

final classification. A proportion of zero would suggest that a

given duration is clearly a pause or a subpause. Higher

proportions might indicate borderline values that could have

been classified as a pause or a subpause depending on the draw of

the data.

Figure 9 shows the empirical distribution of the pauses (a,b) and

the subpauses (c,d) respectively. The histograms suggest the

distribution is right skewed. The notches in the boxplots in

figures 9 (b) and 9(d) seem to overlap suggesting that their median

values might be similar at the 5% significance level except in the

case of the ATP comparison boxplots. The difference is more

pronounced in the case of pauses then the subpauses. The outliers

in the subpauses are the borderline values suggested by PAM. It

was observed from the leave one out PAM classifications that these

subpauses were classified as pauses in about a third of the trials.

The outliers in the pauses in figure 9(b) are shown in figure 10 as

the horizontal red lines. The black lines show the fitted values

Figure 4. RNA unwinding model fit. the red lines are the fitted value superimposed on the gray lines indicating the actual data.
doi:10.1371/journal.pone.0006937.g004

RNA Unwinding by NS3 Helicase
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superimposed on the raw data represented by the gray lines.

Diagnostic checks like the one in figure 5 reveal no abnormalities.

The consistency of their pattern of occurrence suggests that it

might not be appropriate to dismiss them as outliers. They seem to

occur consistently either between 2 and 6 seconds or between 4

and 8 seconds. Pauses are the time duration that it takes to break

the hydrogen bonds before proceeding with the unwinding

process. Thus in the time it takes to break a bond the apparatus

records constant extension. A relevant question that merits further

investigation with regard to these outlier pauses is, are there

particular sequences of RNA that are more difficult to unwind

than others? To address this question, the numbers of base pairs of

RNA unwound just before the pause and just after the pause were

calculated. This segment is shown in figure 11 by the sequence in

the gray shaded area. It is seen that except for outlier C in figure 10

the others are overlapping areas in the same region of the

sequence. These outliers also account for those that were observed

in the QQ-plots in figure 5. Such dependence of the pauses and

the jumps on the base sequence have been reported in [7,8] with

respect to DNA unzipping.

Hypothesis tests to test the effect of force, NS3 and ATP

concentration on pause subpause durations suggests that the pause

and subpause durations might be independent of the force applied

and the NS3 concentration. It also showed that the difference is

statistically significant in the case of ATP concentrations suggesting

that the pause-subpause durations might be dependent on ATP

concentration. This can explain the outliers in the QQ-plot in figure 5

where lower concentration of ATP had more outliers. Dumont et.al.

[1] explain this on the basis of the fact that ATP is needed to provide

the energy required to break the hydrogen bonds. Thus decrease in

the concentration of ATP appears to increase the waiting time for the

next molecule of ATP to aid the unwinding process.

As the pauses and subpauses seem to be independent of the force

applied and the NS3 concentration, one can pool the data and get

ATP specific estimates of the pause and subpause durations. The

estimates are shown in Table 1. From table 1 it seems that the pause

subpause durations decrease with increase in ATP concentration.

Steps
In the previous section, the periods of constant extension were

classified as pauses and subpauses using the partitioning around

medoids (PAM) algorithm. Dumont et.al. [1] define steps as the

extension of RNA between two pauses. While this could be a single

step, in most cases it appears to be composed of a series of

substeps. The periods of constant extension between these substeps

are the subpauses. Having identified the pauses, we can now infer

the steps and the number of substeps they are composed of.

Number of substeps per step
Here we look at the distribution of the number of substeps that

compose a step i.e. the number of substeps between two pauses

and the effect of force applied, NS3 and ATP concentration on it.

Hypothesis tests to study the effect of force, NS3 and ATP

concentrations suggests that the number of substeps per step is

independent of the force applied, NS3 and ATP concentrations.

As the number of substeps per step seems independent of the

various factors, one can get a better estimate by pooling the data

Figure 5. Jump Intervals - Gamma QQ Plot. The dots indicate the observed data and the red line indicates the reference line. NS3 and ATP
concentrations are labeled above the plot.
doi:10.1371/journal.pone.0006937.g005
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from the various experiments. The estimate from the pooled

analysis is shown in table 2. Thus one can infer that the number of

substeps per step might be independent of the force applied, NS3

and ATP concentrations and one can expect on average 4 substeps

per step. Dumont et.al. [1] report between 2 and 5 substeps per

step and hypothesize on 3 substeps per step based on a poisson

analysis.

Step Size
We will now analyze the distribution of the step size expressed

in base pairs. The extension between two pauses expressed in

nanometers can be converted at the given force to base pairs using

the worm-like chain model (WLC) [16] given by

F :P

kb
:T

~
1

4 1{
x

L

� �2
z

x

L
{

1

4
ð5Þ

where

1. kb is the Boltzmann constant 1:3806504|10{23 Joules/

Kelvin.

2. T is the temperature in Kelvin.

3. P is the persistence length of the polymer. The persistence

length is a property quantifying the stiffness of a long polymer.

Heuristically, for polymers shorter than the persistence length,

Figure 6. Residuals from fit. Residual plot, QQ-plot of residuals, the autocorrelation function (ACF) and the partial autocorrelation (PACF) plots of
the residuals. The red dots indicate the points with zero weights and the blue dots non-zero weights.
doi:10.1371/journal.pone.0006937.g006
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the molecules behave like a rod and for polymers longer than

the persistence length the properties can be described only

statistically.

4. L is the Contour length of the polymer. The contour length of

a polymer is its length at the maximum physically possible

extension.

Hypothesis tests to study the effect of force, NS3 and ATP

concentration on step size suggests that the mean step size might

be independent of the force applied, NS3 and ATP concentra-

tions. Thus one can pool the values to get a better estimate of the

step size. The estimate from the pooled analysis is given in table 3.

Dumont. et.al. [1] report a mean step size of 11 base pairs with

standard error of 3 base pairs which puts our point estimate within

their 95% confidence intervals. Earlier studies [5] report the mean

size as 18 base pairs with a standard error of 2 base pairs. Our

estimate seems to fall right in between with respect to the mean,

Figure 7. Estimates of parameters. a, b and s2 and their associated 95% confidence intervals. Also shown are the estimates for the
various values of Force, ATP and NS3 concentrations. The dashed line indicates the weighted mean of the parameters.
doi:10.1371/journal.pone.0006937.g007
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but has a much smaller variance. An estimate of the median value

and its 95% confidence interval given in table 4 seems to be more

in accordance with the results in [1].

Substeps
In this section we look at the distribution of the substep sizes.

Steps that occur between two pauses are referred to as substeps.

Knowing the location of the pauses we can extract the substeps.

If there is only a single step between two pauses we will not include

it in computing the substep statistics. It will be considered a single

step.

Hypothesis tests to study the effect of force, NS3 and ATP

concentration on substep size seems to suggest that the substep size

is independent of force, NS3 and ATP concentration. Pooling the

data, an estimate of the substep size is given in table 5.

Stepping Velocity
The stepping velocity is the velocity of the NS3 molecule as it

unwinds a set of base pairs constituting a step. Dumont et.al. [1]

define the stepping velocity as the slope of the unwinding trace

between two pauses. In this work the estimation of velocity vk of

the kth step is directly incorporated into equation (3). There is a

difference in the definition of velocity in this work and that of [1]

as a direct consequence of the method used to model the

unwinding process. Dumont et.al. first detect steps and then use a

smaller running window within the step to detect substeps. Using

their terminology, every step detected using equation (3) is a

substep and we define a step as comprising of those substeps

occurring between pauses. If there exists only one substep between

two pauses that will be referred to as a step. Thus it is the substeps

that occur naturally and a step is just a definition i.e. a collection of

substeps between two pauses. Our method estimates the stepping

velocity of each of these substeps. Though Dumont et.al. [1] report

as stepping velocity the slope of the unwinding trace between two

pauses, a relevant question to pose is whether such a velocity exists,

as there does not exist a natural step movement between pauses

except when there is just one substep between pauses. Thus the

results from [1] may not be comparable to one in this work due to

the way in which stepping velocity is defined. We propose that the

stepping velocity be defined as the slope between two subpauses or

between a pause and a subpause.

We now analyze the distribution of the stepping velocity and the

effects of the force applied, NS3 and ATP concentrations.

Figure 12 shows the histograms and the notched boxplots of the

estimated values of the stepping velocity. The histogram shows the

distribution to be right skewed in all the experiments. The outliers

in the boxplot reveal the extent to which the distribution is right

skewed. In fact 10% of the observation in each category is an

outlier. The maximum velocity that the measuring device could

follow was 172+17 nm/s, the upper limit of which translates to

Figure 8. PAM Silhouette plot. Shows classification of periods of constant extension obtained for traces with 1 mM NS3, 1 nM ATP and a force of
13 pN.
doi:10.1371/journal.pone.0006937.g008
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about 230, 222 and 216 bp/s at 13, 15 and 17 pN force

respectively. All but five of the estimated velocities were within

this limit with the maximum being 273 bp/s.

Figure 13 shows the histograms and the boxplots of the log

transformed stepping velocities. One can see from the boxplots

that the variance in the velocity has been stabilized and there

are no longer any outliers. Though it may not be evident from

the boxplots, the histograms (especially the plots on the right

and bottom) suggest a bimodal distribution for the log

transformed velocities. This leads to the question: do there

exist two kinds of stepping velocities like the two kinds of pauses

seen before. To see if the velocities can be classified into two

distinct groups we run the clustering algorithm partitioning

around medoids (PAM) on the velocities from each of the

experiments. The algorithm was run for cluster sizes 2, 3, 4 and

5. A cluster of size two was consistently chosen across all the

experiments with average silhouette widths ranging between 0.7

and 0.8 indicating a strong structure for the two groups. The

leave one out algorithm incorporating PAM was run to classify

the velocities into two groups. We refer to them as the low and

Figure 9. Histogram and Boxplots for Pauses and Subpauses.
doi:10.1371/journal.pone.0006937.g009
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Figure 10. Outlier Pause. The gray line indicates the raw data. The black line indicates the fitted value. The red line indicates the outlier pause seen in
figure 9D.
doi:10.1371/journal.pone.0006937.g010

Figure 11. Outlier Pause. The RNA sequence corresponding to the outlier pauses. The gray box shows the area of interest i.e. the region at which
pause durations were observed.
doi:10.1371/journal.pone.0006937.g011
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high velocity groups. Figure 14 shows the results from the

classification of the log transformed velocities into two groups

from one set of experiments. Figure 14 (a) shows the silhouette

plot indicating the cluster structure obtained from PAM. The

silhouette widths of 0.78 and 0.8 suggest the existence of two

clusters with very strong structures. Figure 14 (b) is the plot of

the histogram of the two groups with the normal density curve

overlaid. It shows the existence of two distinct distributions.

Figures 14 (c) and (d) are the quantile-quantile plots of the

sample quantiles of the log transformed velocities against the

theoretical quantiles of the normal distribution. It can be seen

that both the low and high velocities can be well approximated

by a normal distribution. Such inferences were drawn from all

the experiments. Thus one might infer that the stepping

velocities can be classified into low and high and that each of

them follow a log-normal distribution. This explains the

extreme right skew seen in figure 12.

Hypothesis tests to study the effect of force, NS3 and ATP

concentration on velocity seems to suggest that the velocities both

low and high are independent of force, NS3 and ATP

concentration. Thus one can pool the values to obtain a better

estimate. The estimate from the pooled computation is shown in

table 6 (log transformed velocities) and table 7 (velocities in the

original scale).

It was observed that the high velocity is the dominant one

occurring in 60% of the cases. This was significant as the

hypothesis of equal proportions of low and high velocities were

rejected using a binomial model. It is now of biological interest to

understand what causes this difference in the velocities one of

which is nearly 250 times the other.

Discussion

The results presented in the above analysis can be summarized

as follows:

1. The intervals between jumps is described well by a gamma

distribution, the parameters of which seem to be independent of

the force, NS3 and ATP concentrations.

2. The periods of constant extension can be classified into pauses

and subpauses. They seem to be ATP dependent with the

durations increasing with decreasing ATP concentration.

3. The number of substeps per step, the substep and the step size,

all seem to be independent of force, NS3 and ATP

concentrations.

4. The stepping velocity can be classified into low and high

velocities. Each following a log-normal distribution.

There is an overall agreement between the inferences drawn in

[1] and this work regarding the RNA unwinding characteristics. It

is worth noting that this work makes only two assumptions-the

intervals between the jumps being gamma distributed and the

noise being normally distributed. These are assumptions that one

can validate after the model is fit. This work avoids assumptions or

conditions that either have no basis nor can be verified after model

fit. Two characteristics that are worth exploring are

1. Step size: Both [1] and this work conclude that the step size is

independent of the force, NS3 and ATP concentrations but

differ in the average step size reported i.e. 11 bp in [1] and

16 bp in our work. The biologists hypothesize that a 11 bp step

size might make more biological sense from the viewpoint of the

chemical structure of both RNA and NS3. Due to the right

skewed distribution of the step size the median might be a more

appropriate statistic to consider. In this work the median step

size does appear to be in agreement with the results in [1]. To

address this disparity, a future work would be to explore the

outlier cases described in this work. What leads to the higher

number of substeps between two pauses? Are such behaviors

just anomalies? If so, does their exclusion lead to an agreement

between step size between the two studies with respect to the

mean step size?

2. Stepping Velocity: There are some basic differences in which

the velocities are computed in the two studies and as such are

incomparable. Unlike [1] our work suggests that the velocity

Table 1. Pause - Subpause estimate across ATP
concentration.

ATP (mM) Pause Subpause

Mean SE 95% CI Mean SE 95% CI

0.1 1.46 0.11 (1.24, 1.67) 0.26 0.02 (0.18, 0.28)

1 0.9 0.04 (0.81, 0.99) 0.12 0.003 (0.11, 0.13)

doi:10.1371/journal.pone.0006937.t001

Table 2. Estimate: Number of substeps per step.

Number of Substeps per Step

Mean SE 95% CI

4.1 0.2 (3.6, 4.5)

doi:10.1371/journal.pone.0006937.t002

Table 3. Estimate: Step size.

Step Size (bp)

Mean SE 95% CI

16.2 0.7 (14.7, 17.6)

doi:10.1371/journal.pone.0006937.t003

Table 4. Estimate: Step size.

Step Size (bp)

Median SE 95% CI

11.37 0.34 (10.69, 12.05)

doi:10.1371/journal.pone.0006937.t004

Table 5. Estimate: Substep size.

Substep Size (bp)

Mean SE 95% CI

3.7 0.05 (3.6, 3.8)

doi:10.1371/journal.pone.0006937.t005
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might be independent of ATP concentration, but one should

note that our work classified the velocities into low and high.

Further experimental studies might be required to understand

the phenomenon. Another area of interest is to study the

relation between pauses and their occurrence in relation to the

RNA sequence as discussed in this work.
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