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Abstract

Background: Recognizing regulatory sequences in genomes is a continuing challenge, despite a wealth of available
genomic data and a growing number of experimentally validated examples.

Methodology/Principal Findings: We discuss here a simple approach to search for regulatory sequences based on the
compositional similarity of genomic regions and known cis-regulatory sequences. This method, which is not limited to
searching for predefined motifs, recovers sequences known to be under similar regulatory control. The words shared by the
recovered sequences often correspond to known binding sites. Furthermore, we show that although local word profile
clustering is predictive for the regulatory sequences involved in blastoderm segmentation, local dissimilarity is a more
universal feature of known regulatory sequences in Drosophila.

Conclusions/Significance: Our method leverages sequence motifs within a known regulatory sequence to identify co-
regulated sequences without explicitly defining binding sites. We also show that regulatory sequences can be distinguished
from surrounding sequences by local sequence dissimilarity, a novel feature in identifying regulatory sequences across a
genome. Source code for WPH-finder is available for download at http://rana.lbl.gov/downloads/wph.tar.gz.
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Introduction

Rates of transcription from different promoters in animal

genomes are influenced by the binding of sequence-specific DNA-

binding transcription factors to cognate binding sites within

compact regulatory sequences known collectively as cis-regulatory

modules [1]. However, the identification of CRMs is confounded

by our incomplete understanding of the rules that govern the

relationship between the organization and composition of

regulatory sequences and their function.

Where the transcription factors involved in regulating a battery

of genes are known and their binding specificities characterized,

regulatory sequences responding to these factors can often be

identified [2–4], especially when comparative sequence data is

used [5–6]. However, except in a handful of well-characterized

regulatory systems, the binding profiles of the relevant transcrip-

tion factors are unknown. Furthermore, these methods are most

effective where the local concentrations of transcription factor

binding sites (TFBSs) in regulatory sequences are high, and such

‘‘binding site clustering’’ is not a universal feature of CRMs [7].

To circumvent this limitation, several methods have been

developed to identify shared sequence features of known CRMs and

exploit these signals to identify novel instances. The fluffy-tail test takes

advantage of a characteristic word distribution of CRMs to identify

regulatory sequences [8]. HexDiff uses the hexamer frequencies of co-

regulated and of non-regulatory sequences, and has proven to be

successful given appropriate positive and negative training sets [9].

LWF groups together words that have similar local word frequencies,

building a statistical likelihood profile based on known CRMs that

allows for prediction of similar CRMs [10]. Another class of ab initio

CRM discovery programs looks for CRMs within a set of sequences

by stochastically searching for subsequences that are maximally

similar, which shows promise in identifying CRMs when a set of co-

expressed genes is known (CSam, D2Z-set [11]).

Although the use of auxiliary information can be extremely

valuable in predicting CRMs, such information is not always available.

We developed a method called WPH-finder, a means to identify co-

regulated sequences in the absence of explicit TFBSs, alignments, or

large training sets of co-expressed sequences or genes. Given a known

cis-regulatory module, WPH-finder uses its word composition to

search for other putative CRMs with similar word composition. We

also show that although stripe CRMs can be recovered by identifying

clustered word profiles, neighboring dissimilar word profiles are a

more common feature of regulatory sequences.

Results

Word profiles of known regulatory sequences recover co-
regulated sequences

Given a known CRM, we would like to identify similar sequences

in the genome as putative co-regulated sequences. To this end, we
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defined a score (Z ) that measures the pairwise similarity between

two sequences based on their word content. The score measures

how likely the words found in one sequence would be found in a

second independently-generated sequence. A given sequence is

represented by its word profile, or its 8-mer composition, and is

associated with a set of genome sequences that have similar word

contents, which we refer to as word profile hits (WPHs). A known

CRM can thus be used to scan the genome for putative co-regulated

CRMs using our WPH-finder program (Figure 1).

To determine whether WPH-finder can accurately detect co-

regulated sequences, for a given CRM, we evaluated the degree to

which its known co-regulated sequences are overrepresented in its

set of WPHs. Our first dataset consists of the stripe CRMs

regulating the primary pair rule genes (eve, h, and run) in Drosophila

melanogaster (Supporting File S1). These well-characterized CRMs

are known to share common TFBSs and are all involved in

anterior-posterior patterning during embryonic development. The

availability of chIP-chip binding data for known regulators of these

stripe CRMs [12] allows us to evaluate the predictive power of

stripe WPHs on additional test sets, specifically the regions bound

by transcription factors BCD, GT, HB, and KR near pair-rule

genes. Pair rule genes each exhibit different segmental phasing in

response to the concentrations and combinations of maternal (i.e.

BCD and HB) and gap (i.e. GT and KR) transcription factors

[13], and these bound regions likely share TFBS combinations

with the stripe CRMs. Since it is unlikely that the boundaries of

experimentally verified CRMs are perfectly annotated, for the

purposes of this validation step, we collected WPHs for each

500 bp sequence window (shifted by 100 bp) across 15 kb regions

that span known stripe CRMs (see Methods). This windowing

allows closely linked binding sites to be considered simultaneously.

Each sequence window is associated with a set of similar sequences

from the genome (WPHs). We assessed the predictive power of a

given set of WPHs by determining the significance of its overlap

with a set of known regulatory regions.

Stripe WPHs exhibit significant overlap with these test sets,

while surrounding non-coding WPHs generally do not (Figures

2–3, S1, S2). Peaks that do not correspond to the reported minimal

Figure 1. WPH-finder: Finding putative co-regulated CRMs (WPHs). To identify putative co-regulated sequences given a known CRM, we first
split the CRM into overlapping windows to allow us to leverage closely linked word or motif combinations. Each of these windows is represented by
its word counts, or its word profile, which is then used to identify similar word profiles in the genome. A set of WPHs for a given CRM window consists
of genome sequence windows whose word profiles are similar to the word profile of the CRM window, as measured by our similarity score Z.
doi:10.1371/journal.pone.0006901.g001

CRM Word Profiles
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enhancers largely correspond to 1% FDR chIP-chip bound

regions (Supporting File S2), suggesting that some of these binding

sites occur outside of minimal enhancers. This finding is

corroborated by the modeling of sequences upstream of eve [14].

These results demonstrate that CRM word profiles can be used to

specifically predict other CRMs under similar regulatory control.

Figure 2. Significance of overlap between eve WPHs and test sets. Each sequence window across the eve locus is associated with a set of
WPHs. We observe significant overlap between WPHs corresponding to annotated CRMs and our test sets (stripe CRMs and four sets of chIP-chip
peaks). Stripe CRMs are shaded in gray, and chIP-chip bounds regions are boxed in a dotted line. For p , 1e-5, the p-value is reported as
6.1e-6 (2log(p) = 12). The dashed line represents p = 0.05.
doi:10.1371/journal.pone.0006901.g002

CRM Word Profiles
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By contrast, only portions of the runt stripe CRMs demonstrate

predictive power (Figure S2). Since our method relies on

identifying similar combinations of regulatory signals within the

same short sequence window, each runt stripe word profile may not

capture the sparse binding sites known to span these CRMs [15].

However, the additional stripe peaks found along the runt stripe

1+7 CRM that are absent from the chIP-chip test sets suggest that

these WPHs are composed of binding sites for transcription factors

other than the four considered. This observation highlights

another feature of our method: the binding motifs of a given

CRM need not be explicitly known to identify co-regulated

sequences since the entire sequence is used.

Our second dataset is drawn from the NRSF-bound sequences

found on chromosome 19 in the human genome specified by the

analysis of chIP-seq binding data (see Methods, Supporting File S3).

For each 500 bp window (shifted by 100 bp) spanning these

sequences, we calculated the significance of overlap between its

corresponding WPH set and the NRSF-bound sequences. To

ensure the degree of overlap we observed was not due to noisy

pairwise matches, we repeated this calculation between each WPH

set and 100 randomly generated test sets. NRSF WPHs are far

more predictive of other NRSF sequences than of our random test

sets (Figure 4). However, the degree of false positives at higher p-

values indicates that there are a large number of noisy pairwise hits

across chromosome 19.

Shared words among stripe WPHs correspond to known
TFBSs

Each set of WPHs consists of sequences that are similar in word

composition to a single seed sequence. To determine whether

WPHs share words that correspond to known regulatory sequence

signals, for each set of WPHs, we collected the words in the seed

sequence whose 1-neighbors are most commonly found among the

WPHs and compared these words to predicted TFBSs (see Methods,

Supporting File S4). These frequent WPH words often correspond

to TFBSs predicted across the stripe CRMs (Figure 3). However,

only 17.8% of the NRSF-bound sequences containing an NRSE

(the sequence bound by NRSF) have a window with significant

(p#0.05) overlap between its NRSE its frequent WPH words. This

percentage increases to 68.6% when only considering frequent

words among NRSF hits in each WPH set, which suggests that the

false positives in these WPH sets are likely masking NRSE signals.

These results demonstrate that the false positives in larger genomes

are a significant hurdle to isolating relevant regulatory sequence

signals from WPHs.

Word profiles of stripe CRMs recover orthologous CRMs
in distant species

To study the subtleties of sequence evolution, sequencing

projects are currently underway to sequence closely related

genomes. These studies require tools to translate existing

annotations to the new related genomes. Regulatory sequences

can be a particularly difficult sequence feature to translate, as they

tend to be in more flux than coding sequences, and any

organizational constraints they are subject to are not well

understood. Alignments have proven unreliable for some enhanc-

ers, especially in distantly related species. The accurate identifi-

cation of regulatory sequences in related species is critical to

understanding their evolution as well as the intricacies of the

regulatory code.

Several eve enhancers (stripe 3+7, stripe 2, stripe 4+6 and MHE)

have been manually identified in sequences of the eve locus of

several distantly related fly species (S. lebanonensis, T. putris, T.

superba, S. cynipsea) which have minimal non-coding similarity to D.

melanogaster [16] (Supporting File S5). Although the manual

methods used to identify these enhancers were successful, they

do not scale well. Using eve enhancers from D. melanogaster, we

scanned the scaffolds on which eve is found for the tested species.

All four of the eve enhancers were identified in S. lebanonensis and S.

cynipsea, but only the stripe CRMs were verified in T. putris, and

only the MHE CRM was verified in T. superba. Figure 5

summarizes our results: we recovered 8 of the 12 verified

Figure 3. Summary of predictive power of stripe WPHs and
their frequent words. For WPHs associated with stripe CRMs or with
chIP-chip bound regions found near the primary pair-rule genes, most
demonstrate significant overlap (p#0.05) with stripe CRMs (dark blue,
light blue). Words overrepresented in these WPHs also correspond well
with predicted TFBSs (p#0.05, red, pink).
doi:10.1371/journal.pone.0006901.g003

Figure 4. Significance of overlap between NRSF WPHs and test
sets. WPHs are collected for windows spanning NRSF-bound sequenc-
es. At all p-value cutoffs considered, these NRSF WPHs significantly
overlap with the NRSF dataset considerably more than they overlap
with randomly generated test sets.
doi:10.1371/journal.pone.0006901.g004

CRM Word Profiles
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enhancers, detecting all of the CRMs for the more closely related

S. lebanonensis, but only the stripe 3+7 and stripe 4+6 CRMs in the

remaining species. These findings illustrate the ability to identify

orthologous CRMs in species that have diverged approximately

120 million years ago.

Local word profile clustering is predictive of stripe CRMs
The stripe CRMs are examples of regulatory sequences that are

not only modular, but are also somewhat repetitive: these CRMs

are regulated by a similar set of transcription factors and are found

clustered together in the genome. Although many regulatory

sequences are known not to operate under these design principles,

we attempted to recover CRMs that are by searching for local

word profile clustering. This search is based on our pairwise

similarity score: a genome window is considered a putative

clustered CRM if it has a high pairwise score with another nearby

non-overlapping window within B kb (see Methods, Figure 6).

Using several score cutoffs and neighborhood (B) sizes, we

collected sets of high-scoring neighbors (HSNs), or sequences with a

high-scoring neighbor within a given neighborhood size. We

calculated the significance of overlap between these HSN sets and

two CRM test sets, the REDfly CRMs (Supplementary File S6) and

the well-studied stripe subset of REDfly (Supplementary File S1).

Although HSNs for smaller block sizes are enriched for stripe

CRMs (Figure 7A), they are not enriched for REDfly CRMs

(p.0.05 for all block sizes and Z-scores, data not shown), suggesting

that the repetitive modular regulatory sequences characteristic of

stripe CRMs are not a common design feature of many CRMs.

Locally dissimilar sequences are predictive of REDfly
CRMs

We looked more closely at the neighborhood of CRMs as

measured by our similarity score to see if the level of local

similarity near REDfly CRMs is indistinguishable from that of

non-coding sequences. As suggested by our findings with sets of

HSNs, stripe CRMs have high-scoring neighboring sequences on

average relative to non-coding sequences (Figure 8). Non-coding

sequences also appear to be more similar to its neighbors than

expected by chance based on our scoring scheme. This finding

may illustrate the degree to which non-coding sequences in

Drosophila are inherently repetitive, beyond what is annotated by

Flybase and RepeatMasker. More precisely, it is likely that the

non-uniform distribution of microsatellites in the D. melanogaster

genome contributes to the observed level of local similarity, as we

do not explicitly correct for biases in dinucleotide and trinucleotide

frequencies [17]. By contrast, REDfly CRMs have relatively low-

scoring neighbors. This observation may be due to measurable

differences between regulatory sequences and their flanking non-

regulatory sequences or other nearby CRMs that do not share

similar binding sites.

We used this feature of REDfly CRMs as a criterion for

identifying regulatory sequences de novo. Instead of looking for sets

Figure 5. Identifying orthologous CRMs in distant fly species. We scanned eve CRMs from D. melanogaster against the eve loci of several
distant fly species, Sepsis cynipsea (A), Themira putris (B), Scaptodrosophila lebanonensis (C). The upper blue track indicates experimentally verified
CRMs, the lower green track shows the best match to the indicated D. melanogaster CRM. The best match is not shown if the score did meet the score
threshold (Z$6).
doi:10.1371/journal.pone.0006901.g005

Figure 6. Finding similar and dissimilar sequence neighbors (HSNs and LSNs). Given a block size B and a threshold pairwise score of
similarity, we scanned the genome for sequence windows with either high-scoring or low-scoring neighboring sequences within B kb.
doi:10.1371/journal.pone.0006901.g006

CRM Word Profiles
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of high-scoring neighbors, we scanned the genome for sequences

with low-scoring neighbors (LSNs, Figure 7B–C). At modest score

cutoffs and broad neighborhood sizes, LSNs are strongly enriched

for REDfly CRMs. LSNs are also enriched for stripe CRMs for

larger block sizes.

To determine whether these CRMs are dissimilar to other

nearby regulatory sequences, we looked for enrichment of REDfly

CRMs in sequences that are dissimilar neighbors (Z#21.5) of

REDfly CRM sequences. The overlap of these neighbors with

REDfly CRM sequences is significant (p,0.001) for all block sizes

considered (Figure 9). Larger block sizes may include more distant

CRMs that are not identified as CRMs in the REDfly database.

This finding suggests that differences between nearby regulatory

sequences may account for the decreased similarity among

sequences surrounding REDfly CRMs versus non-coding se-

quences on the whole (Figure 8).

Discussion

We have presented WPH-finder, a means of looking for co-

regulated sequences given a known CRM in the absence of explicit

TFBS models. Given a known CRM, a genome-wide scan of its

Figure 7. Significance of overlap between HSNs/LSNs and REDfly CRMs. Each set of HSNs (or LSNs) represents sequences with a high-
scoring (or low-scoring) neighbor within a given block size for a given Z-score threshold. The significance of overlap between an HSN (or LSN) set and
known CRMs is represented by a color scale (2log(p)), such that blue shades represent significant enrichment of CRMs (p,0.05). While HSNs are
enriched for stripe CRMs (A), they are not enriched for the broader set of CRMs in REDfly (p.0.05 for all block sizes and Z-scores, data not shown),
suggesting that CRM clustering is not a common feature of CRM organization. LSNs are enriched for both stripe CRMs (B) and REDfly CRMs (C) at
modest score cutoffs. For p , 1e-5, the p-value is reported as 6.1e-6 (2log(p) = 12).
doi:10.1371/journal.pone.0006901.g007

Figure 8. Average pairwise Z-score as a function of distance. Pairwise sequence similarity decreases as the distance between the two
sequences in the genome increases. On average, non-coding sequences (black) are more similar to neighboring sequences than REDfly CRM
sequences (blue). Stripe CRMs (red), known to cluster together, are similar to close neighboring sequences.
doi:10.1371/journal.pone.0006901.g008

CRM Word Profiles
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word profile returns a small handful of sequences (typically ,1% of

non-coding sequences) that are found to significantly overlap CRMs

known to be under similar regulatory control. The vast majority of

existing methods rely on prior knowledge about the binding profiles

of particular transcription factors, conservation information, or

other known co-expressed sequences, information which may or

may not be available. Despite success in leveraging binding site

clustering as a predictive measure of regulatory potential, either by

looking for overrepresentation of known or derived motifs [2–3,18],

it is not clear that this is the only means of organizing regulatory

signals. [7,19]. Similarly, although conserved sequences have been

shown to correspond to true regulatory sequences, there are other

known regulatory sequences that are not well-conserved, even

within functional binding sites, or whose conservation levels are

similar to those of other non-coding sequences [20–21].

In light of these findings, it is a tantalizing problem to identify

other sequence signals to help us identify novel CRMs that do not

rely on these fallible sources. Other de novo approaches make use of

word frequencies to look for overrepresentation of word motifs

[8–10], or use comparative data to look for conserved CRM

subsequences [22–24]. We use a simple word-based motif model

and a straightforward score of pairwise sequence similarity as an

alignment-free and efficient means to look for similar regulatory

sequences, without relying on orthologous sequences or an explicit

requirement of motif overrepresentation. Such a model greatly

simplifies the degeneracy of binding motifs, and therefore we expect

to miss CRMs whose motifs exhibit low information content. A

position weight matrix (PWM) offers a much more precise

description of the binding preferences for a given transcription

factor, but the total space of all possible PWMs across each

subsequence of a genome cannot be completely explored in an

efficient manner. Despite using a limited motif model, our genome-

wide word profile scans are able to recover known co-regulated

CRMs. Furthermore, these recovered sequences share word motifs

that correspond to predicted TFBSs of the original CRM.

We note that our pairwise score is similar to the D2z score applied

to comparing regulatory sequences [25]. Unlike the D2z score, our

score corrects for GC-skews without an explicit Markov chain

background model and makes the simplifying assumption of word

independence, which allows for its efficient calculation in genome-

wide scans while allowing for mismatches. Our score also avoids

overcounting repetitive sequences by allowing each k-mer to

contribute only once to the similarity score and permits mismatches.

A strength and weakness of our method is using only one CRM

sequence to search for co-regulated CRMs. A CRM can be

isolated without prior knowledge of its regulators or which genes

are co-expressed with its target genes, such as those CRMs

identified by deep conservation with greatly diverged species

[26–28]. Without such prior knowledge, sequences that are co-

regulated with this CRM cannot be identified with other existing

computational methods.

While we do not require a set of co-expressed sequences to

produce meaningful hits, our method is subject to noisy pairwise

matches and is unlikely to capture all sequences that share a

common set of input TFBSs. Another source of false positives can

come from recent duplications in the genome, whereby paralogous

genes may fall under different regulatory controls but share similar

word motifs due to lack of evolutionary distance. Since our method

for finding co-regulated sequences is predicated on using the word

profile of a known seed regulatory sequence, we should pick up

paralogous regulatory sequences in the same WPH set only if those

sequences share more word motifs with the seed sequence than

expected by chance. Thus, the co-occurrence of these paralogous

regulatory sequences in the same WPH set is evidence that these

sequences may still be under similar regulatory controls.

Our method is unique in that we can mine the genome

sequences similar to a single CRM sequence to uncover shared

words. These words are good candidates for TFBSs, which in turn

can be used to filter out noisy sequence hits. Thus, despite starting

out with a single CRM, our method can overcome some of its

limitations via post-processing and analysis of genome-wide hits.

These analyses may also prove useful in identifying transcription

factors in otherwise uncharacterized CRMs, such as those

uncovered by deep conservation. Meaningful hits can also be

filtered from those recovered across the genome by looking at non-

coding sequences surrounding known co-regulated genes, which

may be especially useful to reduce false positives hits in large

genomes. We do not explicitly enforce this constraint, as this data

is not always readily available or reliable.

We also showed that our model could be used towards

identifying orthologous hits in greatly diverged sequences. The

flexibility afforded regulatory sequences, believed to be critical for

diversity and evolutionary change, can yield unreliable alignments

for large evolutionary distances between CRMs. Searching for

similar word profiles in distant species provides an alignment-free

and highly specific means of looking for conserved motif

combinations that may have been greatly permuted.

In an attempt to exploit local CRM clustering, we looked for novel

CRMs by looking for local word profile clustering. Although we

recovered many stripe CRMs, we failed to recover the vast majority

of REDfly CRMs. This result suggests that clustering of CRMs may

be a feature of stripe CRMs, but not one of CRMs in general.

Interestingly, our more successful CRM screen utilized the

opposite approach, looking for dissimilar neighboring sequences.

REDfly CRMs are measurably dissimilar from its neighboring

sequences, and oftentimes, their dissimilar neighbors correspond

to other REDfly CRMs. These findings suggest that these nearby

sequence dissimilarities may be a universal feature of CRM

organization, as evolution may favor differentiating different

Figure 9. Significance of overlap between low-scoring neigh-
bors of REDfly sequences and REDfly CRMs. Low-scoring
(Z#21.5) neighbors of REDfly CRMs overlap REDfly CRMs more than
expected by chance compared to its coverage of ‘‘valid’’ non-coding
sequences surrounding REDfly CRMs. For p , 5e-7, the p-value is
reported as 3e-7 (2log(p) = 15). The dashed line represents p = 0.05.
doi:10.1371/journal.pone.0006901.g009

CRM Word Profiles
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CRMs from each other, especially those located near each other.

This feature may be even more critical in compact genomes such

as D. melanogaster, where much of the genome appears to be under

functional constraint and it is therefore more likely for functional

elements to be located near each other [18].

The stripe CRMs are well-characterized and share spatial and

temporal expression in embryonic development, making them an

extremely useful test set in identifying common TFBSs and

common properties of regulatory sequences. However, the

disparity in these two approaches underscores the need for insight

in other regulatory systems to learn more general characteristics of

CRMs and their organizational properties. Further experimental

investigation will allow computationalists to train more robust

CRM-finding algorithms, which in turn will provide greater

insight into the evolution of regulatory sequences.

Methods

Pairwise similarity score
A word profile of a sequence is defined as its 8-mer composition.

Each 8-mer in the sequence is considered equally, except to correct

for base composition skews as described below. The similarity

between two sequences is determined by comparing the degree of

word overlap between two profiles with the expected overlap given

the number of words in each sequence. More precisely, for two

sequences A and B, a word w of length k (k = 8) in A contributes to

the observed word overlap ovARB if a 1-neighbor of w occurs in j. A

1-neighbor of w, w9, is defined as a word that has no more than one

mismatch with w. Note that each pair of sequences defines two

overlaps (i.e., ovARB and ovBRA), and accordingly, there are two

resulting scores, zARB and zBRA. The overall pairwise similarity

between two sequences is defined as the minimum of these two

scores. Taking the minimum ensures that similarity requires many

words in A to have 1-neighbors in B and vice versa. For simplicity,

we proceed by showing the derivation of overlap score zARB, which

is clearly equivalent to the derivation of zBRA.

We used the Poisson distribution to calculate the probability of

these overlaps. Let W(A) be the set of all words found in sequence

A, and W9(A) be the total set of words in the 1-neighborhood of

W(A), including duplicates. Given n unique words for fixed word

length k (i.e. n = 32,896 for k = 8; a word maps to itself and to its

reverse complement), the probability that a given word w occurs at

least once in A is

pw Að Þ~1{exp { W Að Þj j=nð Þ

Similarly, the probability that a 1-neighbor of a given word w

occurs in A is

pw0 Að Þ~1{exp { W 0 Að Þj j=nð Þ

The probability that a given word w occurs in A and has a 1-

neighbor in B is then calculated as

pov A?Bð Þ~pw Að Þ:pw0 Bð Þ

Let X w
A?B be the indicator variable that represents whether w

occurs in A and w9, a 1-neighbor of w, occurs in B. We make the

simplifying assumption that each word occurs independently,

which suggests a binomial distribution with the following

characteristics:

Pr X w
A?B~1

� �
~pov A?Bð Þ

XA?B~
X

w[ A,C,G,Tf gk X w
A?B

E XA?B½ �~Pr X W
A?B~1

� �
:n

sA?B~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr X w

A?B~1
� �

:n: 1{Pr½X w
A?B~1�

� �q

The pairwise overlap score zARB is then defined as the

corresponding z-score, which compares the degree of actual overlap,

VARB, to that of what is expected, E[XARB]. Pairs of sequences with

significant overlap will have high positive scores, while the expected

z-score of between a pair of unrelated sequences is zero.

zA?B~
VA?B{E XA?B½ �

sA?B

As stated above, the overall pairwise similarity score Z(i, j) is

then calculated as

Z A,Bð Þ~min zA?B,zB?Að Þ

Accounting for composition bias

One of the major complications we encountered upon applying

this scoring scheme is that sequences with similar GC-content would

preferentially cluster together. This problem arises because the

above scheme assumes that each word is equiprobable. However,

sequences with significant skews in base composition will have

skewed word occurrence probabilities. We corrected for GC-biases

by binning together words with equal GC-ratios and calculating the

probability of word overlap for each bin. This correction allows

sequences with similar GC-content to have a higher probability of

overlap, thereby reducing the observed GC-biases.

For a fixed word length k, there are nr words for each GC-ratio

r = 0, 1/k, 2/k, …, 1. Let Wr(A) be the set of words in A with a GC-

ratio of r, and W’r(A) be the set of words in the 1-neighborhood of

Wr(A). The word occurrence probabilities for a given GC-ratio r is

pwr
Að Þ~1{exp { Wr Að Þj j=nrð Þ

pw0r Að Þ~1{exp { W 0
r Að Þ

�� ���nr

� �

The corresponding pairwise word overlap probability between

sequences i and j for words with a given GC-ratio r is

povr
A?Bð Þ~pwr

Að Þ:pw0r Bð Þ

The overall probability of word overlap sums over all possible

GC-ratios:

pov A?Bð Þ~
X

r

nr

n
povr

A?Bð Þ

The overlap Z score is calculated as before, based on this

overlap probability.
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The D. melanogaster genome is highly AT-rich, with many runs of

A’s occurring in the non-coding regions. To avoid overcounting

words associated with this ubiquitous sequence, we remove

all words within the 1-neighborhood of AAAAAAAA from

consideration. The word counts (nr and n) reflect this omission

(i.e. n = 32,871, n0 = 127, n1/8 = 1008 for k = 8). As an additional

safeguard against stretches of repetitive sequences and microsat-

ellites, if the same occurrence of a given word w in sequence A

overlaps with a previous occurrence, only the first occurrence

counts towards W(A). For example, for long tandem repeats of the

microsatellite CAA, only the first occurrence of overlapping 8-

mers (i.e. CAACAACA, AACAACAA, and ACAACAAC) is

counted towards the total count of words.

To ensure that these measures correct for base composition

biases, we compare pairwise scores (i.e., zARB, zBRA) with and

without taking GC skews into account over several sets of random

sequences. Each of the 1000 sequences in a given random set is

generated by a 0th order Markov model based on a GC content

chosen from a normal distribution. The first random set has a

distribution of GC ratios based on the observed distribution of

random D. melanogaster 500 bp sequences (m = 0.41, s2 = 0.06). The

base composition of the second set is unskewed, representing

sequences whose scores do not benefit from these base composi-

tion correction measures (m = 0.5, s2 = 0.03). The last set

represents the reciprocal of the first set, where sequences are

GC-rich (m = 0.59, s2 = 0.06). Figure S3 illustrates that our new

scoring scheme indeed corrects for skews in base composition.

The sequence composition skews we encountered upon

applying our scoring scheme to human sequences exceeded those

found in fly sequences, with background word distribution skews

not easily accounted for by base composition or by overlapping

repeats alone. To more accurately compute pairwise scores

between human sequences, we allow for the input of arbitrary

background word frequencies. Words are binned on both

frequency and GC content, such that the standard deviation of

word frequencies in a given bin does not exceed a tenth of the

mean and large frequency bins (.2000 words) are subdivided by

GC content. Bins closely related in GC content and frequency are

merged to ensure that each bin has at least 20 words. Background

word frequencies of chromosome 19 are obtained by scanning

non-repetitive sequences. Overlapping copies of the same word are

not counted, and the final background frequency of a given word

is set as the average of the frequencies of its 1-neighbors.

Probabilities are calculated as described above, such that the

probability of overlap is determined for each bin and weighted

accordingly in the overall probability calculation. The WPH-

finder program is available as Supporting File S7, as well as

updated on the web (http://rana.lbl.gov).

Sequences
Our analysis was performed on the D. melanogaster genome

Release 4.3 (http://flybase.net). We masked the genome for CDS,

repeat regions, transposons, rRNA, and tRNA as annotated by

FlyBase, and for repeat regions as reported by the UCSC Genome

Browser RepeatMasker track (http://genome.ucsc.edu). All of our

analyses make predictions on 500 bp sequence windows shifted by

100 bp across the masked genome. Since much of the genome is

masked, only ‘‘valid’’ windows, or windows containing at least 300

unmasked words (60% of the window size), were considered in

generating prediction sets. ‘‘Valid’’ sequences cover 92.2 Mb of

the D. melanogaster genome.

Our CRM datasets are the REDfly database (Supporting File

S6) and the stripe CRM subset found within REDfly (Supporting

File S1) for the primary pair rule genes, eve, h, and run (http://

redfly.ccr.buffalo.edu, accessed April 2007). Overlapping CRMs

were consolidated, and we excluded those that were longer than

3 kb or shorter than 300 bp. Some CRMs were heavily masked

for coding and repetitive sequences (as described above).

Unmasked sequences that are less than 100 bp and are found

between masked sequences are masked, and masked sequences

that are greater than 200 bp are removed. The resulting REDfly

dataset covers 229.6 kb of the genome over 196 consolidated

CRMs. The stripe subset consists of 11 consolidated CRMs

covering 13.5 kb.

The chIP-chip binding datasets are drawn from [12] for

transcription factors Bcd, Gt, Hb, and Kr (Supporting File S2).

Each of these four datasets consists of the 500 bp windows

surrounding the 1% FDR peaks near the nine pair rule genes (eve,

ftz, h, odd, opa, odd, prd, run, slp1, slp2). ChIP-Chip peaks for each of

the four transcription factors above are found near all of the 9

pair-rule genes and cover 10.5–21.5 kb of the genome. As in the

REDfly sets, long stretches of masked sequences were excluded.

Our human data set consists of the NRSF-bound chIP-seq

sequences found on chromosome 19 as reported by Wold et al

[29]. Chromosome 19 has the highest concentration of NRSF-

bound sequences. Long ($200 bp) and trailing sequences that are

annotated as repetitive by the UCSC genome browser (release

hg17) are removed from the set. After removing repetitive

sequences, sequences shorter than 300 bp are removed, as we

require at least 60% of the words in a 500 bp window to be

unmasked. Our final dataset consists of 121 unique sequences

spanning 82,829 bp, 118 of which contain an annotated binding

site, NRSE (Supporting File S3).

Finding co-regulated CRMs (WPHs)
A set of WPHs is defined as a set of sequences that are all

pairwise similar to a given seed sequence by our pairwise similarity

score described above (Figure 1). In our analysis of stripe CRMs,

we used a similarity score threshold of Z $5, and seed sequences

are 500 bp sequence windows across the eve, h, and run regulatory

regions shifted by 100 bp. These regulatory regions were chosen to

encompass 15 kb surrounding known stripe CRMs (D. melanogaster

release 4.3 coordinates: eve, chr2R:5,485,827-5,500,826; h, chr3L:

8,634,112-8,649,111; run, chrX:20,487,522-20,502,521). These

regulatory regions and the WPHs are drawn from the masked

genome described above.

We extended the 121 NRSF-bound sequences such that each

sequence in the dataset is a multiple of 100 and the minimum

length is 500 bp. As with the stripe CRMs, seed sequences are

500 bp sequence windows shifted by 100 bp across this length-

extended set and are masked for repetitive sequences. We used a

score cut-off of Z $2 to identify WPH sets for each sequence

window, and compare the overlap of each WPH set with the

original NRSF dataset described in the previous section as well as

with 100 randomly generated test sets. These random test sets are

drawn from chromosome 19 such that each set contains 121

sequences that are length-matched to the NRSF set and have few

(,10%) repetitive sequences.

Finding shared words in WPHs
To identify shared words across WPHs, we looked at the most

frequent words found among the sequences in a WPH set that are

in the 1-neighborhood of the words in the original seed sequence.

Given the background genome word frequency for each word w in

the seed sequence, f(w), we normalized f(w) with respect to all

words in the seed sequence, f’(w) = f(w)/gw f(w), and we scored

each word based on the difference between the expected frequency

of w and its observed frequency in the WPH set, log ( f’(w)/fobs(w)).
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Each word is also assigned a score based on its frequency in repeat

sequences, fr(w), allowing words that look repetitive, log ( f(w)/

fr(w)) , 0.2, to be removed from consideration. The top m words

are reported as the set of overrepresented words in a WPH set.

Since the median coverage of an NRSE is 21 bp while the stripe

CRMs are known to be densely populated with binding sites, we

set m = 5 for the stripe WPHs and m = 3 for the NRSF WPHs.

We looked at the overlap of these words with predicted binding

sites of transcription factors known to be involved in early stripe

patterning. These TFBSs were identified across the stripe CRMs

with Patser [16], using empirically determined score cutoffs (Bcd -

6; Hb -6; Gt -5.5; Kr -6; Slp1 -6; Kni -6.5; Dstat -6; see Supporting

File S4). The predictions of NRSF binding sites (NRSE) are taken

from [29].

Finding orthologous CRMs
Scaffolds of distant fly species (Scaptodrosophila lebanonensis,

Themira putris, Themira superba, Sepsis cynipsea) were made available

through a sequencing project with the Joint Genome Institute

[16]. The genomic locations of some of the eve enhancers have

been verified by transgenic experiments and were manually

identified by careful inspection of dotplots with orthologous D.

melanogaster sequences [16] (Supporting File S5). To identify

orthologous CRMs using their word profiles, the entire scaffold

on which the target gene is found was scanned against the desired

query CRM from D. melanogaster, in the same manner that we look

for WPHs (see above). The 500 bp window with the best match to

each 500 bp CRM window was returned, provided that the best

match exceeds a high threshold (Z $6).

Finding locally similar and dissimilar sequences (HSNs
and LSNs)

Sequence neighbors are defined as non-overlapping sequence

windows that are found within the same sequence block, or within

B kb of each other (B = 1.5, 2, …, 4). For a given block size B and

score cutoff Z, a set of HSNs (or LSNs) is defined as all ‘‘valid’’

sequence windows in the genome (see above) with a high-scoring

(or low-scoring) sequence neighbor.

To determine appropriate score cutoffs, we looked at the

distribution of pairwise scores between 1000 ‘‘valid’’ sequence

windows (Figure S4). These sequence windows are randomly

chosen such that each pair of windows is separated by at least

50 kb to avoid comparing neighboring sequences. To capture

sequences that occur ,5% by random, we used score thresholds of

Z $3 to collect sets of HSNs and score thresholds of Z#21.5 to

form sets of LSNs.

Assessing predictive power
Given a set of sequences that are putative regulatory sequences

(i.e., WPHs, HSNs, LSNs), we evaluated their predictive potential

by computing the significance of their overlap with one or more

test sets. We calculated p-values by comparing this overlap with the

overlap between a given test set and random sequence sets

(n = 100,000). These random sequence sets are created by

permuting the lengths and distances of sequences found in the

original sequence set across the ‘‘valid’’ non-coding genomic

sequences. This method was similarly applied to assessing the

significance of the overlap between sequences that are dissimilar

neighbors of REDfly CRMs and the REDfly set, aside from using

only ‘‘valid’’ sequences that are within neighborhood boundaries

of REDfly CRMs instead of all ‘‘valid’’ non-coding sequences

across the genome (n = 2,000,000).

We calculated analogous p-values when comparing the overlap

of common word signals in a WPH set with the predicted TFBSs

across the seed sequence window. In this case, the seed sequence is

fragmented into (overlapping) common words and the intervening

spacers. Random word sets were formed by permuting the lengths

of the fragments separated by spacers of random length

(n = 100,000).

Supporting Information

Figure S1 Significance of overlap between h WPHs and test sets.

WPHs corresponding to h stripe CRM sequences significantly

overlap both other stripe CRMs and chIP-chip peaks near pair-

rule genes. Stripe CRMs are shaded in gray, and chIP-chip

bounds regions are boxed in a dotted line. For p , 1e-5, the p-

value is reported as 6.1e-6 (2log(p) = 12). The dashed line

represents p = 0.05.

Found at: doi:10.1371/journal.pone.0006901.s001 (0.38 MB TIF)

Figure S2 Significance of overlap between run WPHs and test

sets. run stripe CRM WPHs tend to significantly overlap other

stripe CRMs, and chIP-chip peaks. For p , 1e-5, the p-value is

reported as 6.1e-6 (2log(p) = 12). Stripe CRMs are shaded in gray,

and chIP-chip bounds regions are boxed in a dotted line. The

dashed line represents p = 0.05.

Found at: doi:10.1371/journal.pone.0006901.s002 (0.36 MB TIF)

Figure S3 GC correction eliminates GC skews in pairwise

similarity scores. We generated 500 bp random sequences whose

GC content is drawn from a normal distribution, and compared

the distribution of their pairwise similarity scores with and without

GC correction. The mean GC content of a pair of sequences is

plotted against the mean Z-score for all pairs of sequences with the

same mean GC content to illustrate score variance with respect to

GC ratio. For sequences mimicking the GC content of the D.

melanogaster genome ((A) m= 0.41, s2 = 0.06) and those with the

reciprocal GC ratio distribution ((C) m= 0.59, s2 = 0.06), the

uncorrected pairwise scores vary with GC ratio while the GC-

corrected scores do not. Random sequences with an unskewed

base composition ((B) m= 0.5, s2 = 0.03) do not benefit from these

base composition correction measures.

Found at: doi:10.1371/journal.pone.0006901.s003 (0.09 MB TIF)

Figure S4 Distribution of pairwise similarity scores. Using

500 bp windows drawn from the D. melanogaster non-coding

genome, we use the histogram of the all-by-all pairwise scores to

determine extreme score cutoffs. The mean and median of this

distribution are 0.67 and 0.63 respectively. We suspect that the

non-zero mean of these scores is due to the non-random

composition of the non-coding sequences.

Found at: doi:10.1371/journal.pone.0006901.s004 (0.07 MB TIF)

File S1 Stripe CRMs from REDfly. Fasta file of REDfly CRMs

associated with stripe formation regulating primary pair-rule

genes: even-skipped, hairy, and runt.

Found at: doi:10.1371/journal.pone.0006901.s005 (0.01 MB

TXT)

File S2 ChIP-Chip peaks surrounding pair-rule genes. Positions

of 1% FDR chIP-chip peaks found upstream and downstream of

pair-rule genes (eve, ftz, h, odd, opa, odd, prd, run, slp1, slp2) for

transcription factors Bcd, Gt, Hb, and Kr. Sequence positions are

with respect to release 4.3 of the Drosophila melanogaster

genome.

Found at: doi:10.1371/journal.pone.0006901.s006 (0.00 MB

TXT)
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File S3 NRSF-bound chIP-seq sequences. Fasta file of chromo-

some 19 NRSF-bound chIP-seq sequences used in this study, such

that long repetitive sequences are removed and each sequence

exceeds 300 bp.

Found at: doi:10.1371/journal.pone.0006901.s007 (0.09 MB

TXT)

File S4 Patser motif hits near stripe CRMs. Patser motif hits for

twi, Pnt, pan, med, mad, Tin, bcd, hb, gt, Kr, slp1, kni, and Dstat

across even-skipped, hairy, and runt loci.

Found at: doi:10.1371/journal.pone.0006901.s008 (0.03 MB

TXT)

File S5 Eve scaffolds of distant fly species. Fasta file of eve loci in

Scaptodrosophila lebanonesis, Sepsis cynipsea, Themira putris,

Themira superba.

Found at: doi:10.1371/journal.pone.0006901.s009 (0.16 MB

TXT)

File S6 REDfly CRMs. Fasta file of REDfly CRMs used in this

study. Overlapping CRMs are merged, and masked and long

(.3 kb) sequences are removed.

Found at: doi:10.1371/journal.pone.0006901.s010 (0.24 MB

TXT)

File S7 WPH-finder. Code to scan genome sequences for WPHs.

Please see http://rana.lbl.gov for most current version.

Found at: doi:10.1371/journal.pone.0006901.s011 (5.54 MB GZ)
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