
MiR-107 and MiR-185 Can Induce Cell Cycle Arrest in
Human Non Small Cell Lung Cancer Cell Lines
Yukari Takahashi1,2., Alistair R. R. Forrest2,4., Emi Maeno1, Takehiro Hashimoto3, Carsten O. Daub3, Jun

Yasuda1¤*

1 RNA Function Research Team, Omics Science Center, RIKEN Yokohama Institute, Yokohama, Japan, 2 LSA Technology Development Group, Omics Science Center, RIKEN

Yokohama Institute, Yokohama, Japan, 3 LSA Bioinformatics Core Facility, Omics Science Center, RIKEN Yokohama Institute, Yokohama, Japan, 4 The Eskitis Institute for

Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia

Abstract

Background: MicroRNAs (miRNAs) are short single stranded noncoding RNAs that suppress gene expression through either
translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 59 seed region of
miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several
hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle
regulation and consequentially play critical roles in carcinogenesis.

Methodology/Principal Findings: Introduction of synthetic miR-107 or miR-185 suppressed growth of the human non-
small cell lung cancer cell lines. Flow cytometry analysis revealed these miRNAs induce a G1 cell cycle arrest in H1299 cells
and the suppression of cell cycle progression is stronger than that by Let-7 miRNA. By the gene expression analyses with
oligonucleotide microarrays, we find hundreds of genes are affected by transfection of these miRNAs. Using miRNA-target
prediction analyses and the array data, we listed up a set of likely targets of miR-107 and miR-185 for G1 cell cycle arrest and
validate a subset of them using real-time RT-PCR and immunoblotting for CDK6.

Conclusions/Significance: We identified new cell cycle regulating miRNAs, miR-107 and miR-185, localized in frequently
altered chromosomal regions in human lung cancers. Especially for miR-107, a large number of down-regulated genes are
annotated with the gene ontology term ‘cell cycle’. Our results suggest that these miRNAs may contribute to regulate cell
cycle in human malignant tumors.
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Introduction

miRNAs are 19 to 23-base long single stranded RNAs that play

critical roles in biological processes [1]. The nucleotide sequences

of miRNAs are often evolutionally conserved among multicellular

organisms [2]. The miRNAs are expressed as hairpin shaped

double stranded pre-miRNAs and sequential processing by

different RNase III enzymes, Drosha and Dicer, generates mature

miRNA [3].The mature miRNA binds with a set of proteins,

including Agonaute, to form a miRNA induced silencing complex

(miRISC). The miRISC is believed to make a complex with target

messenger RNAs and post-transcriptionally suppresses the expres-

sion of the target genes. The mechanism of action of miRISC is

still controversial [4], however, there is a general consensus that

majority of target messenger RNAs have binding sites for the

miRNAs in the 39 untranslated regions. From second to eighth

bases of 59 end sequence of miRNA is called seed sequence and is

believed to be essential for the recognition of the target messenger

RNAs by miRNAs.

It has become evident that some miRNAs play critical roles in

the cell cycle regulation in cooperation with the oncogenes or

tumor suppressor genes (see review [5,6]). One example of cell

cycle regulating miRNA is the let-7(for hsa-let-7a, MI-

MAT0000062). The introduction of synthetic pre-let-7 causes

the cell cycle arrest in lung cancer cells [7]. Many miRNAs are

known to downregulate cell cycle related genes. The miR-17,92

cluster was identified as the downstream of the MYC oncogene [8]

and downregulate E2F transcription factors which are well-known

mediators of cell cycle progression [9].Another important tumor

related gene, the TP53, induce the expression of miR-34 family

members and overexpression of miR-34 caused the cell cycle

arrest at the G1 phase [10–16].

Here we report potential cell cycle regulating miRNAs during

the search of cancer related miRNAs in human lung cancer cells.
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In this study we revisit a set of genomic regions identified by Zhao et

al. that are amplified or deleted in human lung cancers [17]. During

the study, we found that miR-107 (MIMAT0000104) and miR-185

(MIMAT0000455) suppress proliferation in lung adenocarcinoma

cell lines and induce cell cycle arrest at the G1 phase of the cell cycle.

We attempted to characterize downstream target messenger RNAs

of these miRNAs by the use of microarray profiling with gene

ontology analyses and TargetScan predictions [18].

Results

Expression of miR-31, 107, and 185 in human tissue
collection including lung cancer tissue and cell lines

From the regions identified by Zhao et al. [17], we found 13 and

26 annotated miRNAs in the homozygously deleted and amplified

regions respectively (supplementary table S1). Because many of the

cancer related genes contribute to malignant transformation in

wide spectrum of cell types, we prioritized miRNAs that have been

implicated in other adult-onset human cancers. Then we chose

three miRNAs : miR-107, miR-185, and miR-31 (MI-

MAT0000089) [19–22]. We added the let-7a for cell growth

and cell cycle control because the miRNA can suppress cell growth

in the lung cancer cell lines [23] and induce cell cycle arrest in the

HepG2 cell line [7].

Using Taq-Man quantitative RT-PCR technology, we mea-

sured the expression of the four miRNAs in the human lung

cancer cell lines A549 and H1299 and across a panel of

commercially available RNAs from normal tissue and lung cancer

samples (Fig. 1). Most of the miRNAs showed relatively ubiquitous

expression among healthy tissues (Fig. 1). It is interesting that

expression of the analyzed miRNAs (miR-107, 185, and let-7a)

were lower in the lung tumor and lung cancer cell lines than in

normal lung. The miR-31 was highly expressed in the lung cancer

cell lines.

Growth suppression and cell cycle arrest by over-
expression of candidate miRNAs in human lung cancer
cell lines

The effect of these miRNAs on proliferation was tested by MTT

assay with pre-miRNA transfected H1299 and A549 cells.

Transfection of hsa-miR-107 and hsa-miR-185 dramatically

reduced cell proliferation in both cell lines (Fig. 2). In the case of

H1299 cells, the let-7a miRNA showed significantly reduced

proliferation while the effects were less obvious in A549 cells. The

extent of growth suppression of A549 by let-7a is similar to that of

reported [7]. The miR-31 showed slight suppression of cell growth

but the suppression levels were not statistically significant at many

time points for both of the cells (Fig. 2).

DNA content analysis by flow cytometry revealed transfection

of hsa-miR-107 and hsa-miR-185 induced a significant increase in

the percentage of cells at the G1 phase of the cell cycle, to similar

levels as a let-7a control while a scrambled negative control did not

(Fig. 3). We did not observe either any apparent increase of the

sub-G1 population in the flow cytometry or any apoptosis-related

morphological changes, such as nuclear blebbing and condensa-

tion, under the phase contrast microscope (data not shown). This

suggests that growth suppression induced by hsa-miR-107 and

hsa-miR-185 transfection was caused by induction of G1 arrest

rather than apoptosis.

Identification of candidate target mRNAs of the miRNAs
by gene profiling analysis

The microarray profiling was done to determine the global

changes in mRNA expression levels in H1299 cells transfected

with growth suppressive miRNAs compared to a negative control.

In the hsa-miR-107, hsa-miR-185 and hsa-let-7a transfected cells

there were 561, 646 and 812 transcripts down-regulated and 608,

698 and 949 upregulated by 1.5 fold or greater, respectively. Gene

Figure 1. Expression of candidate miRNAs in normal tissues and lung cancer. miRNA expression levels were measured by miRNA TaqMan
qRT-PCR in normal lung, brain, pituitary, liver and ovary tissues, a lung tumor sample and also in the lung tumor cell lines, H1299 and A549. The
vertical axis indicates the relative expression of each miRNA normalized with that of RNU44.
doi:10.1371/journal.pone.0006677.g001
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Ontology analysis was carried out on the genes down-regulated in

the transfectans. Table 1 lists the most significantly enriched GO

terms for the down-regulated genes with each miRNA. The top

five terms in genes down-regulated by hsa-miR-107 were all cell

cycle related (table 1). Down-regulated genes with the let-7a were

mainly involved in rRNA metabolism, ribosome biogenesis, and

the M phase of the cell cycle. Finally, the down-regulated genes

with hsa-miR-185 showed no enrichment for cell cycle related

terms, instead of the terms related to the development and

differentiation were prominent. In addition the 127 and 33 genes

commonly down-regulated and upregulated respectively by both

miRNAs showed no gene ontology enrichments, suggesting that

these miRNAs induce cell cycle arrest with different signaling

pathways (tables 2, 3, and data not shown).

We compared the miRNA target predictions with the

TargetScan software [18] for these miRNAs to the genes down-

regulated in our expression profiling datasets. For both conserved

and non-conserved sites, we found the median fold change of

Figure 2. Overexpression of miR-107 and miR-185 causes growth suppression and induces G1 cell cycle arrest. Growth suppression
effect of miRNA candidate transfections on H1299 (left panel) and A549 (right panel) as measured by MTT assay. The vertical axis indicates the relative
ratio of the A450 nm: that of day 0 of each cell as 1. Note miR-107 and miR-185 suppresses proliferation in both cell lines.
doi:10.1371/journal.pone.0006677.g002

Figure 3. Effect of miR-107, miR-185 and let-7a over-expression on cell cycle profile in H1299 cells. Histograms of DNA contents
obtained by FACS analysis are shown. The percentages of each cell cycle stages are shown in the inset of the histograms. There was no gate applied
to the events so that there was no obvious accumulation of sub-G1 populations in all the experiments.
doi:10.1371/journal.pone.0006677.g003
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Table 1. Gene ontology terms enriched of genes down-regulated by miR-107, miR-185 and let-7a transfection.

GO category GO terms (# of genes) # of genes affected P-value

mir107

GO:0022403 cell cycle phase (304) 135 7.66E-14

GO:0022402 cell cycle process (519) 203 1.58E-13

GO:0007049 cell cycle (635) 238 1.73E-13

GO:0000279 M phase (248) 114 1.82E-13

GO:0051301 cell division (197) 95 6.04E-13

GO:0000278 mitotic cell cycle (279) 119 6.71E-11

GO:0000087 M phase of mitotic cell cycle (203) 93 9.18E-11

GO:0007067 mitosis (201) 92 1.18E-10

GO:0006259 DNA metabolic process (665) 218 0.0000106

GO:0006260 DNA replication (190) 77 0.0000235

GO:0006974 response to DNA damage stimulus (283) 105 0.0000428

GO:0006281 DNA repair (232) 88 0.000126

GO:0007059 chromosome segregation (55) 28 0.00108

GO:0000070 mitotic sister chromatid segregation (26) 16 0.00341

GO:0006270 DNA replication initiation (26) 16 0.00341

GO:0000819 sister chromatid segregation (27) 16 0.00732

mir185

GO:0032501 multicellular organismal process (2482) 695 1.26E-14

GO:0007275 multicellular organismal development (1739) 496 4.76E-11

GO:0048513 organ development (900) 283 7.98E-11

GO:0048731 system development (1265) 376 7.98E-11

GO:0048856 anatomical structure development (1576) 453 8E-11

GO:0032502 developmental process (2503) 664 8.08E-09

GO:0009653 anatomical structure morphogenesis (831) 248 0.000000877

GO:0009888 tissue development (234) 88 0.000000914

GO:0030154 cell differentiation (1404) 387 0.00000199

GO:0048869 cellular developmental process (1404) 387 0.00000199

GO:0007154 cell communication (2838) 722 0.0000032

GO:0007166 cell surface receptor linked signal transduction (1061) 300 0.00000713

GO:0007165 signal transduction (2569) 651 0.0000395

GO:0009887 organ morphogenesis (301) 102 0.0000395

GO:0001568 blood vessel development (139) 54 0.000197

GO:0001944 vasculature development (140) 54 0.000252

GO:0008277 regulation of G-protein coupled receptor protein signaling pathway (26) 16 0.000365

GO:0048514 blood vessel morphogenesis (125) 49 0.000365

GO:0048646 anatomical structure formation (128) 50 0.000365

GO:0015031 protein transport (616) 85 0.000404

GO:0008104 protein localization (684) 98 0.00055

GO:0033036 macromolecule localization (722) 105 0.00055

GO:0009611 response to wounding (295) 96 0.000577

GO:0006412 translation (455) 58 0.000646

GO:0007186 G-protein coupled receptor protein signaling pathway (531) 157 0.000646

GO:0044237 cellular metabolic process (6365) 1257 0.000646

GO:0006952 defense response (350) 110 0.000684

GO:0045184 establishment of protein localization (650) 93 0.000684

GO:0048771 tissue remodeling (76) 33 0.000684

GO:0001501 skeletal development (163) 59 0.000703

let7a

GO:0042254 ribosome biogenesis (85) 60 2.32E-16

miRNA Induce Cell Cycle Arrest
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predicted targets was consistently lower than that of all genes

detected in the arrays (Fig. 4). There is a trend for more strongly

predicted targets to be more down-regulated than weak predicted

targets. Similarly, the conserved targets tend to be more down-

regulated than all predicted targets (Fig. 4).

We then matched these computer-predicted targets to the genes

down-regulated more than 0.75 fold at the RNA level to narrow

down the potential targets of these miRNAs. We found many of

these potential targets were annotated with the terms ‘‘cell cycle’’

in Entrez Gene annotations (table 2) suggesting that these three

miRNAs may directly regulate the cell cycle progression through

these genes. Interestingly, in our hand, the let-7 did not suppress

the expression of the CDK6 (NM_001145306 ) mRNA, which is

suppressed by the overexpression of let-7 in the previous study [7].

Table 2. List of commonly downregulated cell cycle related
genes by transfection of different miRNAs.

entrez symbol Fold change in expression

mir-107 mir-185 let-7

SMG6 0.130749 0.126058 0.111471

FUNDC2 0.570185 0.523724 0.492232

MUC20 0.64695 0.499866 0.323235

BCL2L11 0.736578 0.41652 NS

CCNE1 0.376009 0.512158 NS

CDK6 0.565894 0.705571 NS

RASSF5 0.423999 0.44275 NS

RUNX3 0.653897 0.731732 NS

VEGFA 0.690304 0.6205 NS

XRCC3 0.723088 0.537486 NS

TUBGCP3 0.365103 0.607218 NS

TPD52 0.36629 0.639004 NS

RAB1B 0.470178 0.397512 NS

MAP9 0.502884 0.719742 NS

RAPGEF1 0.515269 0.726705 NS

CDK5R1 0.538231 0.638624 NS

NS: Not suppressed.
doi:10.1371/journal.pone.0006677.t002

Table 3. List of commonly downregulated oncogenes by
transfection of different miRNAs.

entrez symbol Fold change in expression

mir-107 mir-185 let-7

FUNDC2 0.5701851 0.5237243 0.49223238

MUC20 0.64695007 0.49986598 0.32323453

BCL2L11 0.73657805 0.41651997 NS

VEGFA 0.6903044 0.62050027 NS

TPD52 0.36629018 0.6390038 NS

RAB1B 0.47017783 0.3975123 NS

RAPGEF1 0.51526946 0.72670466 NS

PIM1 0.66107285 0.48559082 NS

RAB35 0.71937436 0.30117804 NS

HMGA2 NS 0.4689389 0.052681383

FGF5 NS 0.62565315 0.3222275

PATZ1 NS 0.6462347 0.5966134

CCND2 0.7438488 NS 0.523334

CBL 0.41297674 NS 0.4365899

RGPD5 0.63766026 NS 0.7261504

ABL2 0.7186717 NS 0.67202175

NS: Not suppressed.
doi:10.1371/journal.pone.0006677.t003

GO category GO terms (# of genes) # of genes affected P-value

GO:0022613 ribonucleoprotein complex biogenesis and assembly (177) 98 6.22E-15

GO:0006364 rRNA processing (60) 41 5.53E-10

GO:0010467 gene expression (2934) 929 7.63E-10

GO:0016072 rRNA metabolic process (63) 42 7.63E-10

GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process (3216) 991 0.000000141

GO:0006396 RNA processing (419) 167 0.000000191

GO:0016070 RNA metabolic process (2479) 774 0.00000174

GO:0043170 macromolecule metabolic process (5608) 1634 0.00000248

GO:0044237 cellular metabolic process (6395) 1830 0.0000105

GO:0044238 primary metabolic process (6396) 1834 0.000024

GO:0043283 biopolymer metabolic process (4287) 1256 0.000159

GO:0007154 cell communication (2838) 648 0.000212

GO:0006412 translation (455) 163 0.00124

GO:0044249 cellular biosynthetic process (860) 285 0.00124

GO:0032501 multicellular organismal process (2482) 570 0.00255

GO:0009451 RNA modification (31) 19 0.00499

GO:0006399 tRNA metabolic process (111) 49 0.00634

GO:0007267 cell-cell signaling (465) 85 0.00923

doi:10.1371/journal.pone.0006677.t001

Table 1. Cont.
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Table 3 indicates that distinct sets of known oncogenes are

downregulated by these miRNAs.

From these lists and other list describing candidate miRNA

targets annotated with the terms cell cycle, lung cancer, oncogene

or tumor suppressor in Entrez Gene annotations (supplementary

table S2), we chose a subset of transcripts for validation by qRT-

PCR by the comparison with the target lists provided by

TargetScan [18] and PicTar [24] software (Fig. 5A). For miR-107,

we confirmed mRNA down-regulation of CCNE1 (NM_001238),

CDK6, CDCA4 (NM_017955.3), RAB1B (NM_030981.2) and CRKL

(NM_005207.3), and for miR-185, we confirmed down-regulation of

CCNE1, CDK6, AKT1 (NM_001014431.1), HMGA2 (NM_003483.4)

and CORO2B (NM_006091.3) (Fig. 5B). We note that both miR-107

and miR-185 transfection caused down-regulation of cyclin E1

(CCNE1) and cyclin dependent kinase 6 (CDK6) mRNA levels

although the suppression level of CDK6 by miR-185 is modest

(Fig. 5B). We then confirmed by western blotting that CDK6 protein

levels are also down-regulated by miR-107, whereas CDK6

expression was relatively unchanged by miR-185 (Fig. 5C). Because

the suppression level of CDK6 mRNA expression by miR-185 is

very modest, the subsequent decrease of CDK6 protein expression at

the time point of observation (24 hours after transfection) may be too

little to be observed the conventional immunoblottings.

Discussion

We happened to find that miR-107 and miR-185 can suppress

cell proliferation in two lung cancer cell lines and induced a G1

arrest of the cell cycle. The extent of growth suppression by these

miRNAs is similar to that by the tumor suppressive miRNA, let-7.

Gene expression profiling analysis with the transfection of these

miRNAs indicated that only miR-107 showed significant enrich-

ment of cell cycle regulators for the downstream effectors. On the

other hand, miR-185 did not significantly repress cell cycle

regulator as well as let-7, a known cell cycle regulating miRNA [6].

The miR-185, however, could suppress the mRNA expression of

cell cycle regulating genes such as CDK6 and AKT1.

The commonly regulated gene sets by all three growth

suppressive miRNAs are not so many and not so strongly related

to the cell cycle regulation (Table 2). These results suggested that the

three miRNAs regulate distinct cellular signaling pathways. Since

miRNA has a wide range of targets in a cell (i.e. less specific) and

since the extent of suppression of the target expression by miRNA is

generally moderate, the function of miRNAs should be considered

as the ‘‘fine tuning’’ of gene expression in mammalian cells [25].

The accumulation of these small regulatory effects may cause the

significant biological reactions in the cells [5].On the other hand, a

few potential target molecules such as CCNE1 and CDK6 may be

critical for cell cycle regulation by these miRNAs. For example,

reduction of CCNE1 with siRNA causes cell cycle arrest in liver

cancer cell lines [26]. In the case of CDK6, reduction of CDK6 by

siRNA caused prolonged S-phase in human embryonic stem cells

[27]. In general, the importance of miRNA in cell cycle regulation is

quite reasonable because miRNAs are supposed to be key molecules

for induction of cell differentiation, which accompanies with cell

cycle arrest in many cases.

In terms of miR-107, other evidence supports a role for this

miRNA in G1 arrest and growth suppression. miR-107 shares 7 of

the 8 bases of its seed sequence with the miR-16 family of

miRNAs, which induce G1 arrest by targeting multiple cyclins and

cell cycle regulators, including CDK6 which we confirmed as a

miR-107 target [28]. Furthermore, a previous study found that

synthetic inhibitors for miR-107 increase proliferation of A549

cells, but do not effect HeLa cells [29] suggesting miR-107 may

indeed play a lung specific role in reducing proliferation.

Interestingly, the miR-107 showed overexpressions in pancreatic

cancers suggesting this miRNA has some positive role in

pancreatic carcinogenesis [21]. On the other hand, during the

preparation of this manuscript, Lee et al. reported that demeth-

ylation and deacetylation treatments to human pancreatic cancer

Figure 4. Plot of median signal of TargetScan predicted targets at different thresholds. Target scan predictions were extracted for
miRNAs 185, 107 and let7a. Median expression signal is shown only for genes considered as detected by the Agilent software. Y-axis indicates the
median fold change for sets of predicted microRNA target genes at different thresholds, compared to all genes on the microarray (shown in black). In
all cases the median signal of predicted targets is lower than that observed if all probes are used. When the experiment is extended out to three days,
we observe less of an effect, suggesting direct targets are more affected within the first day.
doi:10.1371/journal.pone.0006677.g004
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cell lines induced the overexpression of miR-107 and the

overexpression of miR-107 suppressed cell growth and the

expression of the CDK6 in the human pancreatic cancer cell

lines [30]. The latter study is compatible to our data in terms of

CDK6 as a candidate downstream target of miR-107. It is

interesting whether this miRNA did have any specific cellular

functions in the cells rather than cell cycle regulation. Safdar et al.

suggested that miR-107 has been induced in exercised mice

quadriceps muscles [31]. According to the review by Wilfred et al.,

the miR-107 and its paralog, miR-103, may function in the

regulation of cellular metabolism [32]. It may be interesting

possibility that these miRNAs regulate the fundamental cellular

functions such as metabolism or cell cycle progression rather than

the specification of cell differentiation.

The mechanism of cell cycle arrest by miR-185 is not clear. The

number of cell cycle regulators in the downstream suppressed

genes is much lower by miR-185 than by miR-107. One group of

scientists suggested that this miRNA is overexpressed in bladder

cancer [20]. In the other paper, Choong reported that miR-185

have strong positive correlation to the appearance of erythroid

surface antigens (CD71, CD36, and CD235a) in human umbilical

cord blood cells stimulated with growth factors and induced

erythroid differentiation [33]. Generally speaking, the induction of

cell differentiation usually couples with the suppression of cell cycle

progression. Considering the miRNA functions in other metazo-

ans, many of the miRNAs inducible with cell differentiation might

have some cell cycle suppressive functions. The miRNA should

have other biological functions in different cell types. It is therefore

interesting to investigate whether miR-185 has any differentiating

functions in lung cancer cells. Another important question is that

miR-185 showed growth suppressive functions (figures 2, 3) and

decrease of expression in lung cancer cells (figure 1) even though

the miRNA is localized in a chromosomal region amplified in two

lung cancer cell lines ([17] and supplementary table S1). These

results are counter-intuitive. It is possible, however, that the tumor

suppressors can be localized in a region showing chromosomal

amplification in tumor cells. One example is a potential tumor

suppressive gene, GSDMA(NM_178171.4) [34], is localized in a

chromosomal region amplified in gastric cancer cells [35]. This

gene is downregulated in the human gastric cancers even though

the gene showed amplification in tumor cells [35]. In the case of

the miR-185, epigenetic silencing of the miRNA might occur prior

to the gene amplification of the chromosome 22q21.1 region.

Further investigation clearly needs to address these questions

thoroughly.

Finally, we report that new candidate miRNAs which can

regulate cell cycle progression in human non-small cell lung cancer

cell lines. It is still an open question that whether any somatic

Figure 5. Confirmation of mRNA down-regulation by qRTPCR for predicted targets. A) Representative nucleotide sequence matches
between possible target genes and miRNAs. The numbers in parenthesis indicates the positions of target nucleotides from the stop codon. Only
matched nucleotides with miRNA seed sequences are indicated with the vertical lines. B) The quantitative RT-PCR analyses of potential targets of
miR-107 (CCNE1, CDK6, CDCA4, RAB1B and CRKL) and miR-185 (CCNE1, CDK6, AKT1, HMGA2, CORO2B) are shown. The vertical axis indicates the
relative expression ratio of each gene normalized with that of GAPDH. C) Western Blot showing down-regulation of CDK6 protein by miR-107.
doi:10.1371/journal.pone.0006677.g005
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genetic alterations can cause the suppression of these miRNAs in

human lung cancer or any other malignant tumors. Further

characterization of the genomic loci of these miRNAs is necessary

to make the issue clear.

Methods

Extraction of miRNA position
Annotated miRNA loci were extracted from regions of

chromosomal gain and loss identified by Zhao et al. [17] in a

large panel of human lung carcinomas using SNP arrays. The

Hg16 co-ordinates were converted to their Hg18 using equivalents

using the UCSC Lift-Over tool (http://genome.ucsc.edu).

Cell lines
Human lung cancer cell lines, H1299 and A549, were

purchased from ATCC. The cell lines were grown in DMEM

containing 10% heat-inactivated fetal bovine serum, 100 mg/ml of

penicillin/streptomycin and 292 mg/ml of L-glutamine (Invitro-

gen, Carlesbad, CA, USA).

RNA preparations and quantification of RNAs using real-
time PCR

All the realtime PCR was performed with StepOnePlus

Realtime PCR system (Applied Biosystems, Foster City, CA,

USA) in quadruplicate. Total RNA was extracted from H1299

and A549 cells with the mirVana miRNA isolation kit (Ambion,

Austin, TX, USA). Total RNAs of human tissues were purchased

from BioChain Institute, Inc. (Hayward, CA, USA; Catalog

numbers: R1234152-50, R1235152-50, R1234035-50, R1234068-

10, R1234149-50, R1234183-50). For quantification of miRNAs,

100 ng of total RNA was analyzed with TaqMan MicroRNA

Reverse Transcription (RT) Kit (Applied Biosystems) with RNU44

as loading control. For quantification of mRNAs, 500 ng of total

RNA was reverse-transcribed using the PrimeScript II RT

Enzyme (Takara Bio, Inc., Shiga, Japan) and PCR was performed

with SYBR premix Ex Taq (Perfect Real Time: Takara Bio, Inc.)

with GAPDH as loading control. All the real-time PCR analysis

were done in triplicate.

miRNA transfection
Synthetic pre-miRNAs and nonspecific negative control (miR-

IDIAN microRNA Mimic Negative Control#1) were purchased

from Dharmacon, Inc. (Lafayette, CO, USA). The pre-miRNAs

were transfected at a final concentration of 10 nM with

Lipofectamine2000 (Invitrogen), and medium changed 24 hours

after transfection.

Cell growth measurement
Cells were plated in 96-well plates and incubated at 37uC in a

5% CO2 incubator. Cell viability was evaluated by MTT assay

using the Cell counting kit-8 (DOJINDO, Kumamoto, Japan),

according to the manufacturer’s protocol. After 1 hour incubation

with the media containing tetrazolium compound, the absorbance

at 450 nm was detected for 0.1 sec with Arvo MX 1420 (Perkin

Elmer, Waltham, MA, USA).

Cell cycle analysis
Cells were harvested after 72 hours and fixed in 70% ice cold

ethanol and followed by RNAse A treatment, stained with 50 mg/

ml of Propidium Iodide for DNA content analysis by flow

cytometry analysis on a FACS Calibur system (Becton Dickinson,

Franklin, NJ, USA). The data were collected and processed using

the FlowJo FACS analysis software (Tree Star, Inc., Ashland, OR,

USA).

Expression profiling using Agilent Gene expression array
The cRNA probe was generated from total RNA (500 ng) with

the Low RNA Input linear amplification & Labeling kit (Agilent

Technologies, Santa Clara, CA, USA). Cy3-labeled cRNA

(1.65 mg) was then fragmented and relative expression was

measured by hybridization to 4644K whole human oligo

microarray (Agilent). Feature Extraction ver. 9.1 software (Agilent)

was used to analyze the image of microarray. The microarray

analyses were performed in duplicate. All microarray data

reported in the manuscript is described in accordance with

MIAME guidelines and the data has been deposited in CIBEX

(Center for Information Biology gene Expression) database [36] at

Center for Information Biology and DNA Data Bank of Japan

(DDBJ), National Institute of Genetics (Mishima, Japan). The

accession number for the dataset is CBX79.

Microarray and Gene ontology analysis
Microarray data was visualized and normalized using Gene-

spring GX 7.3 software (Agilent). Values below 0.01 were set to

0.01. For each chip each measurement was divided by the 50th

percentile of all measurements for that chip. Then for each probe

the measurements were normalized to the negative control

measurements. Because of the limitation of the resources, the

statistic p-value may not be applicable criteria for gene selection of

our dataset. Hence, for gene ontology analysis, differentially

expressed genes were defined as $1.5 fold up or down relative to

the negative control on the corresponding day. Gene Ontology

term enrichment in up and down regulated gene sets were assessed

using the GOstat web tool [37]. The GOstat web tool provides a

p-value on whether the gene list provided is significantly enriched

for genes annotated with a particular Gene Ontology. This is

calculated based upon how many genes in the gene set are

annotated with the given ontology, and how many genes on the

entire microarray (the background) are annotated with the same

ontology. We defined the background as the set of genes detected

in at least one of the array experiments.

Antibodies and immunoblotting analysis
Antibodies to the a-tubulin (Sigma) and CDK6 (Santa-Cruz

Biotechnology, Santa-Cruz, CA) were used. Cultured cells

(5.0610̂5 cells/well) were grown on 6-well plate wells and

transfected with miRNAs. 24 hours after the transfection, the

cells were lysed and subjected to SDS-polyacrylamide gel

electrophoresis. The separated proteins were transferred onto

Immobilon membrane (Millipore, Billerica, MA) by electroblot-

ting. Immune complexes were detected by enhanced chemilumi-

nescence (Perkin Elmer) and visualized with LAS 3000 image

analyzer (Fuji film, Tokyo, Japan).
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