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Abstract

Background: Epidermal growth factor receptor (EGFR) inhibitors have shown only modest clinical activity when used as
single agents to treat cancers. They decrease tumor cell expression of hypoxia-inducible factor 1-a (HIF-1a) and vascular
endothelial growth factor (VEGF). Hypothesizing that this might normalize tumor vasculature, we examined the effects of
the EGFR inhibitor erlotinib on tumor vascular function, tumor microenvironment (TME) and chemotherapy and
radiotherapy sensitivity.

Methodology/Principal Findings: Erlotinib treatment of human tumor cells in vitro and mice bearing xenografts in vivo led
to decreased HIF-1a and VEGF expression. Treatment altered xenograft vessel morphology assessed by confocal microscopy
(following tomato lectin injection) and decreased vessel permeability (measured by Evan’s blue extravasation), suggesting
vascular normalization. Erlotinib increased tumor blood flow measured by Power Doppler ultrasound and decreased
hypoxia measured by EF5 immunohistochemistry and tumor O2 saturation measured by optical spectroscopy. Predicting
that these changes would improve drug delivery and increase response to chemotherapy and radiation, we performed
tumor regrowth studies in nude mice with xenografts treated with erlotinib and either radiotherapy or the
chemotherapeutic agent cisplatin. Erlotinib therapy followed by cisplatin led to synergistic inhibition of tumor growth
compared with either treatment by itself (p,0.001). Treatment with erlotinib before cisplatin led to greater tumor growth
inhibition than did treatment with cisplatin before erlotinib (p = 0.006). Erlotinib followed by radiation inhibited tumor
regrowth to a greater degree than did radiation alone, although the interaction between erlotinib and radiation was not
synergistic.

Conclusions/Significance: EGFR inhibitors have shown clinical benefit when used in combination with conventional
cytotoxic therapy. Our studies show that targeting tumor cells with EGFR inhibitors may modulate the TME via vascular
normalization to increase response to chemotherapy and radiotherapy. These studies suggest ways to assess the response
of tumors to EGFR inhibition using non-invasive imaging of the TME.
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Introduction

The idea of manipulating the tumor microenvironment (TME)

to improve cancer therapy has been around for decades; however,

finding ways in which to do this in the clinic has proven difficult.

The response of tumors to radiation depends on factors in the

TME including tumor cell-extracellular matrix interactions [1]

and tumor oxygenation [2]. Efforts to decrease tumor hypoxia

using hyperbaric oxygen have had limited success in increasing

radiosensitivity [3]. In the 1970’s, Folkman proposed the concept

of targeting blood vessels within tumors to control their growth [4].

There are currently a number of anti-angiogenic drugs in clinical

use but, used as single agents, these have had modest success in

patient trials [5,6]. More recently Jain and colleagues showed that
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anti-angiogenic therapy can result in a ‘‘normalization’’ of

aberrant tumor vasculature in such as way as to improve

oxygenation and blood flow that could enhance the efficacy of

subsequent radiation and chemotherapy [7,8]. Their approach

relied on using agents that directly target vascular endothelial

growth factor (VEGF) or its receptor (VEGFR) on endothelial

cells. In the current study we use a different approach to alter the

TME, to target the tumor cells to reduce VEGF secretion, thereby

indirectly leading to vascular normalization.

The advent of molecularly targeted agents opens the possibility

for inhibiting specific molecules and pathways critical for tumor

growth, invasion and metastasis, and most of these agents target

the tumor cells themselves. Tumor cells may be targeted by

inhibiting the epidermal growth factor (EGFR). EGFR is

overexpressed and activated in a variety of tumors and provides

an attractive target for anti-cancer therapy (reviewed in [9]). In the

early 1980’s Mendelsohn and colleagues developed the monoclo-

nal antibody C225 (now called cetuximab) and showed it to have

efficacy in inhibiting cancer cell growth both in vitro and in vivo

[10]. Since then, a variety of EGFR inhibitors, both monoclonal

antibodies and small molecular kinase inhibitors such as gefitinib

and erlotinib have been developed and tested in clinical trials.

There is a clear connection between EGFR signaling and VEGF

expression. EGF induces VEGF in many cell lines through

increased VEGF mRNA transcription [11–13]. EGFR stimulation

activates many downstream signaling pathways including the

PI3K/Akt pathway [9]. Activated Akt increases expression of a

key transcription factor, hypoxia-inducible factor-1a (HIF-1a)

[14,15]. One of the many transcriptional targets of HIF-1a is the

VEGF gene. Conversely, pharmacological inhibition of EGFR can

decrease VEGF expression and consequently angiogenesis in

many tumor types [16–20].

Because EGFR inhibition can downregulate HIF-1a expression

in tumor cells and decrease VEGF secretion, we hypothesized that

erlotinib treatment would indirectly lead to vascular normalization

and decrease tumor hypoxia. We explored the effects of erlotinib on

the TME, specifically on vessel morphology, vascular permeability,

tumor blood flow and tumor oxygenation. We found profound

alterations in all of these parameters, which led us to investigate the

effects of this agent on the subsequent response of tumors to

chemotherapy and radiotherapy. Our results offer insight into how

targeting tumor cells with EGFR inhibitors may modulate the TME

to improve sensitivity to chemotherapy or radiotherapy. They have

clinical implications about the sequencing and timing of these

agents with conventional therapy and suggest ways to monitor their

effects on the TME in the clinic using non-invasive imaging.

Methods

Ethics statement
All animal work was conducted according to relevant national

and international guidelines. For details please refer to subsection

entitled Mouse studies.

Tissue Culture and Reagents
SQ20B head and neck squamous cell carcinoma, H226 and

H292 non-small cell lung cancer cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM, 4500 mg/liter glucose, Life

Technologies, Inc.) containing 10% fetal bovine serum (Atlanta

Biologicals) and grown in an incubator containing 5% carbon

dioxide and 21% oxygen.

Erlotinib (Tarceva; OSI Pharmaceuticals; Melville, NY) was

prepared as a 10 mM stock solution by taking an erlotinib tablet,

crushing it and dissolving in DMSO. Cetuximab (Erbitux;

ImClone, Branchburg, NJ) was prepared as directed by the

manufacturer (2 mg/ml stock solution). siRNA was purchased

from Dharmacon: EGFR siRNA SMARTpool (M-003114-03)

and non-targeting #1-5 (control) siRNA (D-001210-02-20).

Optimem media and Oligofectamine, purchased from Life-

Technologies, (Rockville, MD), were used as per the manufactur-

er’s instructions.

Protein Extraction, Western Blot Analysis
For protein isolation, cells were washed once with cold PBS

containing 1 mM EDTA, then solubilized by adding lysis buffer

(1% Triton X-100, 20 mM Tris, pH 7.6, 150 mM NaCl, 2 mM

EDTA, 10% glycerol, 1 mM DTT, 1 mM orthovanadate, 2 mM

PMSF) directly on the cells. Lysates were transferred into 1.5 ml

Eppendorf tubes and centrifuged at 12,000 rpm for 10 minutes at

4uC. Supernatants were transferred to a fresh tube and frozen on

dry ice. Protein concentrations were determined using a BCA

Protein Assay kit (Pierce, Rockford, IL). For Western blotting, an

equal amount of total protein was separated by SDS/PAGE on a

6% polyacrylamide gel.

For Western blotting, equal amounts of total protein were run in

each lane of an SDS-PAGE gel (12% acrylamide). Each protein

sample was mixed with an equal volume of 26Laemmli buffer and

boiled at 95uC for 5 minutes before loading onto the gel. After

completion of gel electrophoresis, protein was transferred to a

Hybond nitrocellulose membrane over one hour using a blotting

apparatus. The following antibodies were used: monoclonal anti-

phospho Akt antibody that recognizes P-S473 (New England Biolabs,

Ipswich, MA), anti-Akt antibody, anti-HIFa antibody (clone H1a67,

Novus Biologicals, Littleton, CO) at a dilution of 1:1000, anti-b-actin

antibody (Sigma, St. Louis, MO) at a 1:1,000 dilution. The secondary

antibody used for these blots was a goat anti-mouse antibody (Biorad,

Hercules, CA). Antibody binding was detected by chemilumines-

cence using an ECL kit (Amersham Pharmacia, Piscataway, NJ).

Mouse studies
Pathogen free female Ncr-nu/nu mice were obtained from

Charles River Laboratory Inc. (Wilmington, MA) and housed in

the vivarium of the University of Pennsylvania Laboratory Animal

Resources. All the experiments were carried out in accordance

with the protocols approved by University Institutional Animal

Care and Use Committee guidelines. No more than 4 adult mice

were housed in a cage to avoid overcrowding. The weight of the

mice was monitored. As per IACUC regulations, a veterinarian

would have to be contacted when any of the following occurred:

weight dropped below 10% of the baseline, the mice appeared less

active, depressed, sunken eyes, abnormal posture, mice had

reduced feed or water intake (even lower than the restricted

amounts), or showed signs of pain or distress. Mice were allowed to

move freely most of the time. They were restrained only for brief

periods, usually minutes, for specific research procedures.

Appropriate anesthesia was administered to mice undergoing

procedures that caused more than momentary or slight pain or

distress. For tumor regrowth studies, the size of the subcutaneous

tumors was monitored 3 times a week. Mice were sacrificed when

tumors exceeded 10% of body weight.

To implant xenografts, mice at the age of five - seven weeks

were subcutaneously injected with 1–26106 cells subcutaneously

into the flank. Palpable tumors were generally observed 7–10 days

after injection.

Prior to the start of experiments, mice were housed individually

and daily food consumption was measured for 5 days. During the

course of erlotinib treatment mice were also housed separately so

that they could be fed a fixed amount of transgenic dough diet
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(Bioserve; Cat# S3472) daily. Erlotinib was mixed into the dough

diet so that based on the average daily intake of each mouse; the

targeted daily erlotinib dose was 50 mg/kg/day. During the

treatment phase of the study, all the feed was eaten daily by each

animal. No additional food was given. Body weight was measured

at the start and end of feeding to ensure mice did not lose weight.

Cisplatin (Bedford Laboratories, Bedford, OH) was adminis-

tered intraperitoneally. 1 ml of cisplatin stock (1 mg/ml) was

diluted up in 10 ml of 0.9% saline. 250 ml was injected per mouse

(average of 21 gm. per mouse). Bevacizumab (Avastin; Genentech,

South San Francisco, CA) at 25 mg/ml and cisplatin were

administered intraperitoneally.

VEGF ELISA
Tumors were excised and weighed, then homogenized in 1 ml of

1x PBS (0.1% heparin). VEGF protein concentration was determined

from tissue homogenate (100 ml) using a commercial kit (R & D

Systems) according to the manufacturer’s protocol. VEGF protein

levels were normalized to their weights and plotted on y-axis.

Vascular permeability assay
Evans blue (30 mg/kg) was injected intravenously and allowed

to circulate for 6 hrs. Thereafter mice were sacrificed and tumors

were excised, dried (60uC, 16 hr), and weighed before Evans blue

extraction in 1 ml of formamide at 55uC for 16 hr. Evans blue

content was quantified by spectrophotometer reading at 620 nm.

Power Doppler studies
Contrast-enhanced power Doppler imaging was performed as

described previously [21]. In brief, mice bearing SQ20B

xenografts were anesthetized and injected with 0.02 ml of

microbubble contrast agent (Definity, Lantheus Medical Imaging,

Billerica, MA, USA) and power Doppler imaging was performed

using a broadband 7–15 MHz probe (HDI500 SonoCT, Philips,

Bothell, WA, USA). Power Doppler images were acquired at a

frame rate of 0.5 Hz to minimize microbubble destruction by the

imaging ultrasound pulses. The Doppler signal from the inflowing

contrast agent was visible in the images in color superimposed on

the grayscale image of the tumor. The power Doppler images at

peak enhancement were analyzed to determine percentage area of

the tumor with flow (PAF) and color-weighted flow area (CWFA),

representing relative blood volume flowing through the unit

volume of the tumor in the image plane [22,23].

In vitro and in vivo radiation
Cells in exponential growth phase were counted and plated in 60-

mm dishes containing 4 mL medium. The cells were allowed to

attach for 4 hours, then erlotinib was added to cultures one hour

before radiation. Cells were irradiated with a Mark I cesium

irradiator (J.L. Shepherd, San Fernando, CA) at a dose rate of

1.6 Gy/min. Colonies containing.50 cells were stained and counted

10 to 14 days after irradiation. The surviving fraction was calculated

by dividing the number of colonies formed by the total number of

cells plated, times plating efficiency. Each point on the survival curve

represents the mean surviving fraction from at least three replicates.

Irradiation of the flank bearing the tumor was performed using a

250 kV orthovoltage irradiator (Philips RT 250) at a dose rate of

2.63 Gy/min through a 0.2-mm copper filter. The source-to-tumor

target distance was 30 cm with adequate shielding of non-tumor sites.

Broadband diffuse reflectance spectroscopy
To quantify tissue optical properties and determine tissue

hemoglobin oxygen saturation (SO2), broadband diffuse reflec-

tance spectrometric measurements were performed prior to the

start of erlotinib therapy and after 4 days of therapy. The

instrument and the analysis algorithm have been described in

detail in previous publications [24,25]. Briefly, the instrument

consists of a 250-W quartz tungsten halogen lamp, a hand-held

surface contact fiber optic probe, a spectrograph, and a liquid

nitrogen–cooled CCD camera to image the reflectance spectra

from multiple detection fibers simultaneously. For this experiment,

the reflectance spectra in 600–800 nm range from source-detector

distances between 1.2 to 4.0 mm were used for data analysis. The

data was fit to the analytical solutions of photon diffusion equation

for semi-infinite geometry to calculate tissue concentrations of oxy-

hemoglobin (HbO2) and deoxy-hemoglobin (Hb). From this

information, the total hemoglobin concentration

(THC = cHbO2+cHb) and the tissue hemoglobin oxygen satura-

tion (SO2 = cHbO2/THC) were derived. In previous study, the

broadband diffuse reflectance spectroscopy was validated through

reproducing the oxy-hemoglobin dissociation curve for a tissue

phantom of mouse erythrocytes, and by correlating pO2 measured

by Eppendorf pO2 histograph and SO2 of in vivo mice with varying

oxygenation. The dissociation curve matched the published values

closely (, 5% difference) and the correlation coefficient of in vivo

mice was 0.90 (23).

Detection of hypoxia with EF5
EF5 is a 2-nitroimidazole that forms covalent protein adducts in

viable hypoxic cells in a manner that is inversely proportional to

oxygen concentration in the physiologic range [26]. Details

regarding its use in assessing tumor oxygenation in human tumors

and human tumor xenografts in rodent models are provided

elsewhere [27–29]. EF5 studies were performed after five days of

erlotinib therapy.

Briefly, mice were injected with 10 mmol/L drug in 2.4%

ethanol and 5% dextrose intravenously (0.01 ml/g body weight),

followed by an equal volume intraperitoneal injection 30 minutes

later. Three hours after the first EF5 injection, mice were

euthanized. The tumor was resected and frozen in OTC

compound (Sakura Finetek Torrance, CA) by using dry ice. For

analysis of hypoxia, 10 mm sections were cut onto poly-L-lysine–

coated slides, fixed in 4% paraformaldehyde for 1 hour, and then

rinsed and blocked for 2 hours at room temperature. Slides were

stained with Cy3-conjugated ELK3-51, a mouse monoclonal

antibody to EF5. Just prior to imaging, tissue sections were dipped

briefly into a 25 mM Hoechst 33342 solution. This stains the

nuclei, which can then also be imaged, prior to the imaging of

EF5, over the same coordinates.

Determination of tumor growth delay
Xenografts were grown as described above. The mice were

started on erlotinib, given cisplatin or irradiated when the tumors

reached approximately 1 cm in diameter. Mice were examined

twice weekly for evaluation of tumor growth. Tumors were

measured with calipers in three mutually perpendicular diameters

(a, b, and c) and the volume was calculated as V = (p/6) x a x b x c.

Confocal microscopy and tomato lectin studies
Mice bearing xenografts tumors were fed with erlotinib diet

(treated) or diet only (control) for 4 days. Then mice were

intravenously injected FITC conjugated tomato (Lycoperscion

esculentum) lectin (Vector Laboratories) to label perfused vessels.

After 30 minutes, tumors were excised and frozen in OCT (Sakura

Fineteck, Torrance, CA) using liquid nitrogen. Thereafter,

100 mm section(s) were used to perform confocal microscopy.

Erlotinib Alters Vascularity
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Cisplatin determination in tissue samples
Samples were sent to ESA Laboratories. Inc. (Chelmsford, MA)

for cisplatin determination using graphite furnace atomic absorp-

tion spectrometry [30]. The tissue samples were prepared using an

acid digestion method in which the sample is heated in HNO3 and

H2O2. The sample was then brought up to final volume in dilute

HCl and analyzed by AAS Graphite Furnace (Perkin Elmer 600)

with a detection limit of 25 ng. Prior to cisplatin determination on

mice treated with the drug, standardization was performed using

tumors taken from five non-cisplatin treated mice.

Statistical analysis
Models were constructed to analyze the effects on the treatment

on tumor growth rate, which was summarized as the time to reach

a target tumor volume. If the data were complete (e.g., all animals

reached the target volume) then a linear regression model was

employed. However, if the data were censored (e.g., animals

expired or were sacrificed prior to reaching the target volume) a

Cox regression model was employed. As described previously [31],

a regression model was fit to time to tumor volume data that

included terms to target tumor volume data that included terms to

estimate the individual (main) effects of each treatment and the

interaction of these two treatments on the tumor regrowth. For the

cisplatin/erlotinib experiments, the linear model took the form:

Y ~ b0 z b1 cisplatinð Þ z b2 erlotinibð Þ

z b3 cisplatin x erlotinibð Þ

Y = days to reach a target tumor volume during the observation

period, cisplatin, and erlotinib are indicators for the treatment

received (1 = yes, 0 = no) and cisplatin x erlotinib is an interaction

term. The test of interaction between cisplatin and erlotinib was

conducted on the interaction term using a one-sided Wald statistic

to determine whether b3.0, indicating synergy, defined as a more

than additive effect. Due to censoring (i.e., animals expired or were

sacrificed prior to reaching the target volume) of approximately

30% of animals in the erlotinib and radiation experiments, a Cox

regression model was fit to time to target tumor volume data that

included terms for the main effects of erlotinib and radiation and

the interaction between these two treatments. Wald test of synergy

was similar to that described above. With no censoring of animals

in the cisplatin/erlotinib sequence experiments, the comparison of

time to reach a target tumor volume among control, erloti-

nibRcisplatin and cisplatin R erlotinib groups was performed by

ANOVA. Post-hoc paired group comparisons were performed by

Scheffe testing to control the overall type I error rate. A

significance level of 0.05 was considered to be statistically

significant. Regression modeling and group comparisons, as

described above, were performed in SPSS 12.0 (SPSS, Inc.,

Chicago, IL).

Unpaired Student’s t-tests were used for comparisons between

groups of tumors or dishes of cells. Paired t-tests were used for

comparison within individual tumors before and after treatment.

These statistics were calculated using KaleidaGraph (version 3.6.2;

Synergy Software, Reading, PA).

Results

EGFR inhibition downregulates HIF-1a and VEGF
expression in vitro and in vivo

Our previous work demonstrated that small molecule EGFR

inhibitors including erlotinib decreased VEGF mRNA expression,

decreased secretion of VEGF protein, and blunted HIF-1a
induction in response to hypoxia in SQ20B head and neck

squamous cell carcinoma cells [20]. We extended these studies by

using siRNA directed against EGFR. This also led to a decrease in

HIF-1a induction in response to 1% oxygen by approximately

50% (Fig. 1A). Likewise, treatment of these cells with the anti-

EGFR monoclonal antibody cetuximab also attenuated HIF-1a
induction in response to hypoxia (Fig. 1B).

To determine the effects of EGFR inhibition in vivo and to

examine their consequences, we implanted SQ20B cells subcuta-

neously in nude mice. When these cells formed tumors

approximately 1 cm in diameter, host mice were fed a control

diet or a diet containing erlotinib for 4 days to deliver 50 mg/kg/

day. After five days, mice were sacrificed, and tumors were

excised. Each tumor was divided in two and processed for either

Western blotting or ELISA. Western blotting showed that erlotinib

almost completely abolished p-Akt and HIF-1a expression in vivo

(Fig 1C), similar to what was seen in vitro. Erlotinib also led to an

approximately a 50% decrease in VEGF expression (Fig. 1D).

In order to show that these results were not unique to SQ20B

cells, we repeated the experiments in two other cells lines. Figs. 1E

and 1F show that erlotinib blunted both HIF-1a expression and

secretion of VEGF protein in H226 lung carcinoma cells. Similar

results were seen in H292 lung carcinoma cells (Fig. S1).

Erlotinib alters vessel morphology and permeability in
vivo

Because HIF-1a and VEGF are intimately associated with

tumor vascularization, we examined the effect of erlotinib on

tumor vessels. Mice bearing SQ20B xenografts were injected with

tomato lectin prior to being sacrificed, and confocal microscopy

was performed on the excised tumors. This showed a change in

the vascular morphology (Fig. 2A) with the vessels in the erlotinib-

treated tumors appearing more sharply and discretely outlined

compare to vessels in control tumors. Control tumors showed

more lectin staining surrounding the vessels. This suggested that

erlotinib caused changes in vessel structure and/or permeability,

resulting in less leakage of lectin into the interstitium. To assess this

directly, we injected Evans blue dye and quantified the amount

that extravasated into the tumor interstitium. We found that

erlotinib treatment significantly decreased vascular permeability

(Fig. 2B).

Erlotinib increases tumor blood flow
The data in Fig. 2 suggested that erlotinib decreased vascular

permeability and changed vessel morphology. In order to

determine what effect this might have on tumor blood flow, we

used power Doppler ultrasound. By day 4 of erlotinib therapy,

most tumors showed an increase in tumor blood flow (Fig. 3A). We

quantified this effect using 2 different parameters, percentage area

of the tumor with flow (PAF) and color-weighted flow area

(CWFA), which are shown in Figs. 3B and 3C respectively. Using

either of these parameters we saw a statistically significant increase

in blood flow. In control mice not treated with erlotinib, there was

no increase in tumor blood flow with time (data not shown).

We repeated the Doppler studies using a different xenograft

model, H226 non-small cell lung cancer cells. In this model

erlotinib treatment also led to an improvement in blood flow

(Fig. 3D); however, in general this took longer than in SQ20B

xenografts, on the order of 6 days rather than 4 days. Analysis of

percentage area of tumor with flow confirmed a statistically

significant increase in tumor blood flow from day 0 to day 6, but

there was no difference between day 0 and day 4 (Fig. 3E).

Erlotinib Alters Vascularity
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Figure 1. EGFR inhibition downregulates VEGF and HIF-1 in vitro and in vivo. SQ20B cells were seeded at 25% confluence and cultured
overnight. The next morning, cells were transfected with 150 nanomoles siRNA (either EGFR SmartPool or control non-targeted) in Optimem
transfection medium using Oligofectamine. After 24 hours, the transfection medium was replaced with fresh, prewarmed culture medium. 24 hours
after this (48 hours after transfection), cells were exposed to either 21% or 1% oxygen. Three hours later they were harvested and Western blotting
was performed. (B) SQ20B cells were treated with 10 nM cetuximab or DMSO (control) for 16 hrs, and then exposed to either 21% or 1% oxygen.
Three hours later they were harvested and Western blotting was performed. (C) Nude mice were injected subcutaneously in the flank with SQ20B
cells to form xenografts. When the tumors reached a size of 100–150 mm3 (approximately 7–10 days after injection), half the mice (lanes 4–6) were
started on an erlotinib-containing diet (50 mg/kg/day). After 4 days of feeding, mice were sacrificed, and the tumors were removed. Half of each
tumor was lysed in protein lysis buffer, and Western blotting was performed for pAkt (S473) and HIF-1a. Each lane represents a tumor from a different
mouse. (D) The other half of each tumor from (E) was homogenized in PBS, and then ELISA for VEGF was performed. VEGF level was normalized to
tumor weights. Data shown represent mean values from 3 control mice and 3 erlotinib-treated mice. Error bars represent standard error of the mean.
p value was obtained using Student’s t-test. (E) H226 cells were treated with 10 mM erlotinib or DMSO (control) for 16 hrs, and then exposed to either
21% or 1% oxygen. Three hours later they were harvested and Western blotting was performed. (F) H226 cells were seeded then later that day they
were treated with erlotinib (10 mM) or DMSO (control). 24 hours later, the media was changed and replaced with media containing 1% serum with or
without erlotinib. Cells were exposed to 1% oxygen. 16 hours later, aliquots of supernatant were removed from dishes, and ELISA for VEGF was
performed. ELISA values were normalized to the number of cells present. Data shown represent mean values. Error bars represent standard error of
the mean. p value was obtained using Student’s t-test.
doi:10.1371/journal.pone.0006539.g001
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Analysis of CWFA also confirmed the increase in blood flow (data

not shown).

Bevacizumab increases tumor blood flow
Vessel normalization and the consequent increase in tumor

vascular flow were originally seen using VEGFR2 antagonists to

directly target tumor blood vessels [8]. To see whether

improvements in tumor vascular function through targeting

EGFR achieved comparable effects as anti-VEGF therapy in our

model, we treated mice with SQ20B xenografts with the anti-

VEFR monoclonal antibody bevacizumab. Treatment of this

agent led to an increase in blood flow 4 days after injection, similar

to that seen with erlotinib (Fig. S2).

Erlotinib decreases hypoxia and increases SO2 in vivo
As vascularization could affect tumor oxygenation, we measured

hypoxia in our tumors using the 2-nitroimidazole, EF5. This agent

binds to regions of hypoxia in a manner that is inversely

proportional to oxygen concentration [26]. EF5 was injected after

5 days of erlotinib treatment, and then mice were sacrificed three

hours afterwards. Images were acquired after immunohistochem-

ical staining for EF5 (Fig. 4A). Tumors from 4 different control

mice showed patchy regions of high EF5 binding, consistent with

heterogeneous binding and the presence of markedly hypoxic

tumor regions (panels i-iv). In mice treated with erlotinib the EF5

staining was noticeably less prominent, consistent with decreased

hypoxia (Fig. 4A).

As an alternate method of assessing tumor oxygenation, we

measured tissue hemoglobin oxygen saturation (SO2) in a group of

mice prior to erlotinib therapy and on day 5 of erlotinib therapy.

Tumors were allowed to grow to approximately 1 cm in diameter

before erlotinib was started in order to have tumors of sufficient

size to perform broadband diffuse reflectance spectroscopy before

and after therapy. These tumors (n = 7) also underwent power

Doppler ultrasound to assess tumor blood flow. The mean tumor

blood flow increased after 4 days of erlotinib treatment (Fig. 4B).

Optical spectroscopy showed the pre-erlotinib SO2 to be

56.463.1% (mean value6SEM). This increased to 67.162.7%

(mean value6SEM) after 4 days of erlotinib therapy (Fig. 4C;

p = 0.06; Student’s t-test). Of the seven tumors in this experiment,

six showed an increase in tumor vascular perfusion after 4 days of

erlotinib therapy. All six of these tumors showed an increase in

SO2. In the single tumor that showed a decrease in vascular

perfusion, the SO2 also decreased. Therefore, there was a perfect

correlation between increasing vascular perfusion and increasing

SO2. These tissue hemoglobin oxygen saturation data support our

hypothesis that erlotinib improves tumor oxygenation in tumors

via improved vascular perfusion.

Effect of erlotinib on response to cisplatin in SQ20B head
and neck squamous cell xenografts

A predicted consequence of increased blood flow to a tumor

would be enhanced drug delivery, which would have obvious

clinical implications for the combination of anti-EGFR therapy

and chemotherapy. The agent cisplatin is the most commonly used

drug in the treatment of head and neck squamous cell cancers;

hence, we used this drug to test our hypothesis. SQ20B xenografts

were grown in nude mice. When these reached a size of

approximately 5 mm, the control set of mice were given a single

dose of cisplatin. Three hours later they were sacrificed, and the

Figure 2. Erlotinib alters vascular morphology and increases vascular permeability in vivo. (A) Nude mice were injected subcutaneously
in the flank with SQ20B cells to form xenografts. When tumors reached a size of ,1 cm in diameter, some of the mice were started on an erlotinib-
containing diet (50 mg/kg/day). After 4 days of erlotinib treatment (or control diet), FITC-conjugated tomato lectin was injected via tail vein. The mice
were euthanized, and then a 100 mm thick section of each tumor was viewed under confocal microscope. The projected photomicrograph (2006
total magnification) of sections of tumors from 2 different erlotinib-treated and 2 control mice are shown (B) Tumors were grown as described in (A).
Evans blue dye was injected intravenously. Six hours later mice were sacrificed and tumors were excised. Dye was extracted, then quantified by
reading at 620 nm in a spectrophotometer. Data shown represent mean of 3 control mice and 3 erlotinib-treated mice. Error bars represent standard
error of the mean. p value was obtained using Student’s t-test.
doi:10.1371/journal.pone.0006539.g002
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tumors were removed. The experimental group of mice was

started on erlotinib-containing feed, then after four days (on day

5), the mice were sacrificed and the tumors removed. Tumors were

flash frozen in liquid nitrogen and sent to an outside laboratory to

determine the level of cisplatin in the tumors using graphite

furnace atomic absorption spectrophotometry. Fig. 5A shows that

the mice that were pre-treated with erlotinib had a higher level of

cisplatin in their tumors than did the control mice.

With a higher level of cisplatin within the tumors, we predicted

that this would lead to increased efficacy in tumor control. In

order to determine whether this was the case, we gave mice with

SQ20B xenografts a single dose of cisplatin or a 4-day course of

erlotinib followed by a dose of cisplatin on day 5. Fig. 5B shows

that the dose of cisplatin that we used was subtherapeutic, resulting

in no change in tumor regrowth compared with control mice.

Erlotinib by itself had some effect on retarding tumor regrowth,

but the single dose of cisplatin administered after 4 days of

erlotinib therapy had a much greater effect. The effect between

erlotinib and cisplatin was more than additive (test of synergy;

p,0.001 by linear regression) as shown in Fig. 5C.

If the synergistic effect of erlotinib combined with cisplatin was

primarily due to changes in the TME induced by erlotinib leading

to increased cisplatin cytotoxicity, then the order in which these two

agents are given should be critical in determining outcome. To test

this, we repeated the tumor regrowth assay, this time giving one set

of mice erlotinib for 4 days followed by a dose of cisplatin on day 5

and another set the same dose of cisplatin followed by 4 days of

erlotinib. The results, shown in Fig. 5D, unequivocally demonstrate

that the sequencing is critical. Erlotinib followed by cisplatin had a

greater effect on inhibiting tumor regrowth than the reverse

combination. There was a statistically significant difference among

the three groups in the time taken for tumors to reach a volume of

1,250 mm3 (p = 0.001) with a significantly longer time period for

erlotinibRcisplatin as compared to both control (p = 0.003;

ANOVA) and cisplatinRerlotinib (p = 0.006) groups.

Effects of erlotinib on radiation response
Improvement in hypoxia should theoretically lead to improved

radiation response in vivo, an idea that we tested using the tumor

regrowth delay assay. Mice bearing SQ20B tumors were assigned to

one of 4 treatment groups (radiation plus erlotinib, radiation alone,

erlotinib alone, or mock treatment). Mice were pretreated for 4 days

with erlotinib prior to irradiation (6 Gy). The results are shown in

Fig. 6A. Due to censoring of animals, survival analysis was

employed to evaluate treatment interaction. The median time to

reach a tumor volume of 1,000 mm3 was 17 days in both the control

group and the erlotinib group. The median time increased to 24

days in the radiation and to 34 days in the radiation+erlotinib

group. The effects on tumor regrowth with the combination therapy

appeared to be at most additive, as the test for synergy was not

Figure 3. Erlotinib increases blood flow in vivo. Mice were injected subcutaneously in the flank with SQ20B cells (panels A–C) or H226 cell
(panels D, E) to form xenografts. When tumors reached a size of ,1 cm in diameter, mice were anesthetized and injected with microbubble contrast
agent, then power Doppler ultrasound was performed. Mice were then started on an erlotinib-containing diet (50 mg/kg/day). Repeat Doppler
measurements were performed at day 4 in all mice and also at day 6 for mice with H226 xenografts. (A) Doppler flow in two mice with SQ20B
xenografts imaged pre-erlotinib and at day 4 of erlotinib treatment. Area of contrast enhancement (yellow pixels) signifies the perfused region of the
TME. (B) Percentage area of flow (PAF) was quantified in 4 SQ20B xenografts. (C) Area of color-weighted flow area (CWFA) was quantified in same 4
xenografts used in (B). (D) Doppler flow in two mice with H226 xenografts imaged pre-erlotinib and at days 4 and 6 of erlotinib treatment. (E) PAF was
quantified in 4 mice with H226 xenografts (including two shown in (D)). Figures in (B), (C) and (E) show the mean values before and after treatment
with erlotinib; bars represent the standard error of the mean. p values were calculated using paired Student’s t-test.
doi:10.1371/journal.pone.0006539.g003
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statistically significant (p = 0.24, Cox regression analysis). We also

investigated the effect of erlotinib on in vitro radiosensitivity. Using a

standard clonogenic survival assay, we found that erlotinib had no

effect on the radiation survival curve in SQ20B cells (Fig. S3).

Discussion

The concept of vascular normalization, as proposed by Jain [7],

has relied primarily on the idea of targeting the tumor vasculature

via anti-VEGF or VEGFR agents. According to this model,

tumors often express high levels of VEGF, leading to aberrant

vasculature that provide inadequate blood flow to tumors. A

decrease in VEGF activity, for example by using the anti-VEGFR

agent AZD2171 can reduce interstitial fluid pressure and

‘‘normalize’’ blood vessel morphology, leading to improved

vascular perfusion [7,8]. In this report we investigate the idea of

using agents targeting the tumor cells themselves. We chose the

EGFR inhibitor erlotinib, but other agents that indirectly decrease

VEGF expression may show the same effect. Data from many

laboratories indicate that inhibition of EGFR signaling can

decrease expression of HIF-1a and VEGF [16–20], most likely

through the PI3K pathway. We confirmed that erlotinib inhibited

HIF-1a and VEGF both in vitro and in vivo in SQ20B squamous

cell carcinoma cells. The decrease in VEGF expression in vivo was

accompanied by a change in vessel morphology (Fig. 2A), a

decrease in vascular permeability (Fig. 2B) and an increase in

tumor blood flow (Fig. 3). Therefore, we hypothesize that erlotinib

treatment has an indirect effect on the vessels resulting from a

decrease in VEGF secretion by the tumor cells. Further evidence

supporting the idea that VEGF is the downstream effector

responsible for the improved blood flow comes from the fact that

in the same SQ20B tumor model, the anti-VEGF antibody

bevacizumab led to a similar improvement in blood flow (Fig. S1).

We investigated the consequences of improved tumor blood

flow in response to erlotinib. One prediction is that erlotinib pre-

treatment would alter the TME, allowing for better delivery of

chemotherapy (e.g. cisplatin) and improved therapeutic effect. Our

data confirmed both. Erlotinib pre-treatment did increase cisplatin

levels in the tumors (Fig. 5A). A single dose of cisplatin that by itself

had no effect on tumor regrowth was strongly synergistic with

erlotinib in inhibiting tumor regrowth. Furthermore, the timing of

cisplatin relative to erlotinib was critical. Erlotinib followed by

cisplatin had a much greater effect on inhibition of tumor

regrowth than did the reverse combination. This result is

consistent with the idea that erlotinib alters the TME in a way

that allows cisplatin to have a greater effect.

We also found that erlotinib treatment decreased hypoxia as it

improved blood flow. We demonstrated this by using both EF5

immunohistochemistry and by measuring tissue hemoglobin satura-

tion. Solomon et al. [32] had previously shown that the EGFR

inhibitor gefitinib decreased intratumoral hypoxia in A431 xenografts

using 18F-FAZA PET scanning with the nitroimidazole FAZA.

Another group showed that gefitinib improved tumor oxygenation in

ErbB2 expressing breast cancer xenografts using EF5 flow cytometry

[33]. Our results are entirely consistent with these studies.

Furthermore, we offer a mechanism for this phenomenon, namely

that EGFR inhibition downregulates VEGF expression, leading to

vascular normalization and improved blood flow.

A predicted consequence of decreased hypoxia would be

improved response to radiation therapy. Krause et al. provided

evidence that increased oxygenation after targeting of the EGFR

Figure 4. Erlotinib decreases hypoxia in vivo. (A) Eight mice were injected subcutaneously in the flank with SQ20B cells to form xenografts. Half
the mice were started on erlotinib feed when the tumors reached a size of ,1 cm in diameter; the other half were fed control diet. After 4 days, mice
were injected with EF5, sacrificed 3 hours later and the tumors harvested. Tumors were stained with Hoechst 33342 and with the Cy3 conjugated
anti-EF5 Elk3-51 antibody. Images represent representative sections of tumors taken from 4 erlotinib-treated mice (panels i-iv) and from 4 control
mice (panels v-viii). (B) A different set of mice was injected subcutaneously with SQ20B cells to form xenografts. When the tumors reached ,2 cm in
diameter, Doppler ultrasound and broadband diffuse reflectance spectroscopy (to determine tissue hemoglobin oxygen saturation (SO2)) were
performed. Mice were then started on erlotinib-containing diet. Four days later Doppler and optical measurements were repeated. Mean tissue
hemoglobin oxygen saturation (SO2) for these 7 tumors pre- and post-erlotinib is shown. Bars represent the standard error of the mean. p values were
calculated using paired Student’s t-test.
doi:10.1371/journal.pone.0006539.g004
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by C225 might contribute to the improvement in local control

following radiation [34]. Indeed we found that there was a greater

effect on tumor regrowth when erlotinib was followed by 6 Gy of

radiation than with either treatment by itself, although this was not

a synergistic effect. We hypothesize that this lack of synergy may

be a result of the heterogeneity of tumor response. In contrast to

the effects in vivo, erlotinib had no effect in vitro in radiosensitizing

SQ20B cells (Fig. S3). We acknowledge that other groups have

found that EGFR inhibition can increase in vitro radiosensitivity.

Cetuximab has also been shown to augment radiation-induced cell

killing and to decrease the proportion of cells in S phase, a more

radioresistant phase [35]. Several groups have shown that EGFR

inhibition can decrease DNA damage repair, perhaps by altering

an interaction between EGFR and DNA-PK [17,36,37]. Chinna-

yan et al. showed that erlotinib radiosensitized cells in vitro, an effect

that might have occurred through a combination of increased

apoptosis, cell cycle arrest, and changes in DNA damage repair

[38]. Notwithstanding these results, our findings suggest that an

additional mechanism may also be operative in the improved

radiation response seen in vivo with EGFR inhibition.

Figure 5. Effect of erlotinib with cisplatin on tumor regrowth of xenografts. (A) Mice were subcutaneously implanted with SQ20B cells.
When tumors reached a size of ,5 mm in diameter, therapy was started. One group of mice (five mice) received a single dose of cisplatin (CDDP)
intraperitoneally (1 mg/kg). Three hours later, the mice were sacrificed, and tumors were removed and snap frozen in liquid nitrogen. The second
group of mice was fed an erlotinib-containing diet, and then on day 5 the mice were injected with CDDP intraperitoneally (1 mg/kg). Three hours
later, the mice were sacrificed, and tumors were removed and snap frozen in liquid nitrogen. (B) Mice were subcutaneously implanted with SQ20B
cells. When tumors reached a size of ,5 mm in diameter, therapy was started. One quarter of the mice received no therapy (control). One quarter
received a single dose of cisplatin (CDDP) intraperitoneally (1 mg/kg) on Day 1. One quarter received erlotinib feed on days 1 through 4 and the
morning of day 5 followed by a single dose of CDDP on day 5. One quarter received erlotinib feed starting on day 1 and continuing through the
morning of day 5 but no CDDP. Erlotinib was not given from day 6 onward for any group. (C) Test of synergy for regrowth delay in time to reach
tumor volume of 2,000 mm3 (D) Mice were subcutaneously implanted with SQ20B cells. When tumors reached ,5 mm in diameter, a third of the
mice were given a single injection of CDDP (on Day 1) then later that day started on an erlotinib-containing diet that continued through day 5. A third
of the mice were given erlotinib feed on days 1 through 4 and the morning of day 5 followed by a single dose of CDDP on day 5. Erlotinib was not
given from day 6 onward for any group. A third received no therapy (control). Mean tumor volume6standard deviation of time to reach 1,250 mm3

were 16.563.21, 17.164.22 and 26.066.40 days for control, CDDP -.erlotinib, erlotinib -.CDDP groups respectively. The three groups were
significantly different (p = 0.0001; ANOVA) with the erlotinib -.CDDP group having a significantly longer time period as compared with both control
(p = 0.003) and CDDP -.erlotinib (p = 0.006) groups.
doi:10.1371/journal.pone.0006539.g005
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Clinical studies using EGFR inhibitors as monotherapy have

been disappointing. Approximately 10% of patients with non-

small cell lung cancer (NSCLC) (those harboring an activating

mutation of EGFR) show a dramatic shrinkage in response to the

inhibitor gefitinib [39,40], but this is unlikely to lead to long-term

cure. Most clinical trials (e.g. IDEAL, SWOG0023) have failed to

show a survival advantage with EGFR inhibitors as monotherapy

in NSCLC (reviewed in [9]).

EGFR inhibitors have also been tested in combination with

chemotherapy. Numerous preclinical studies have shown that

EGFR inhibitors can sensitize cells to chemotherapy [41–45] and

to radiotherapy [17,38,46,47]. However, several trials (e.g.

TRIBUTE, TALENT, INTACT) have failed to show a benefit

to small molecule EGFR inhibitors in combination with

chemotherapy in NSCLC (reviewed in [48]). A phase III trial in

patients with advanced pancreatic carcinoma showed that adding

erlotinib to gemcitabine resulted in a very small improvement in

overall survival (on the order of weeks) compared with gemcitabine

alone [49]. In one phase III trial, the addition of cetuximab to

cisplatin in metastatic/recurrent head and neck squamous cell

carcinoma improved tumor response rate but did not impact

survival [50]. However, a phase III trial in patients with platinum-

resistant recurrent or metastatic head and neck squamous cell

carcinoma found that the addition of cetuximab to platinum-based

chemotherapy significantly prolonged median overall survival (7.3

months to 10.1 months) [51]. One can only speculate as to why

there are such disparate results in these trials. In part, it may relate

to redundant signal transduction pathways that occur in cancers in

patients that experimental models may not reflect. Mechanisms of

resistance in specific tumors could involve activation of insulin-like

growth factor (IGF)-1 signaling, activation of Met signaling, loss of

PTEN, or mutation of K-Ras that can compensate for the

therapeutic inhibition of EGFR signaling. Additionally, certain

tumor types may be more susceptible to signaling modulation by

EGFR inhibition, perhaps because they are more reliant on the

EGFR pathway for survival. Head and neck tumors have a high

rate of EGFR overexpression [52], which may suggest that these

tumors as a class are more EGFR-dependent than other tumor

types. Also, it has been suggested that the method by which EGFR

is inhibited (antibody versus small molecule inhibitor) may be

important in what downstream events are inhibited.

The only randomized phase III trial published to date

examining radiation versus radiation plus an EGFR inhibitor

used cetuximab in locally advanced head and neck squamous cell

carcinoma [53]. This trial showed an improvement in local control

and survival favoring the combined modality group. As discussed

above, EGFR inhibition has been shown to have numerous effects

that could lead to increased in vitro radiosensitization. However,

this does not preclude an effect on the TME. It is conceivable that

the scheduling of weekly cetuximab on this trial produced

sufficient vascular normalization to improve oxygenation and

increase radiation response.

Our findings may have clinical implications. Improvement in

blood flow leading to better drug delivery or increased tumor

oxygenation offers a rationale as to why these EGFR inhibitors

might perhaps be started prior to cytotoxic therapy and continued

through this therapy. Our pre-clinical findings suggest the idea of

imaging the TME prior to and after 5–7 days of EGFR inhibitor

therapy in order to assess whether there has been any modulation of

the TME and whether in patients in whom this occurs there is any

improvement in outcome. Non-invasive imaging techniques are

currently available in the clinic that could be used to assess tumor

vascularity (i.e. DCE MRI, Power Doppler) and/or oxygenation

(e.g. PET scanning with hypoxia sensitive tracers) [54–57]; hence,

our hypothesis could be tested in a pilot clinical trial.
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