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Abstract

As genome-wide association studies (GWAS) are becoming more popular, two approaches, among others, could be
considered in order to improve statistical power for identifying genes contributing subtle to moderate effects to human
diseases. The first approach is to increase sample size, which could be achieved by combining both unrelated and familial
subjects together. The second approach is to jointly analyze multiple correlated traits. In this study, by extending
generalized estimating equations (GEEs), we propose a simple approach for performing univariate or multivariate
association tests for the combined data of unrelated subjects and nuclear families. In particular, we correct for population
stratification by integrating principal component analysis and transmission disequilibrium test strategies. The proposed
method allows for multiple siblings as well as missing parental information. Simulation studies show that the proposed test
has improved power compared to two popular methods, EIGENSTRAT and FBAT, by analyzing the combined data, while
correcting for population stratification. In addition, joint analysis of bivariate traits has improved power over univariate
analysis when pleiotropic effects are present. Application to the Genetic Analysis Workshop 16 (GAW16) data sets attests to
the feasibility and applicability of the proposed method.
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Introduction

Genetic association analysis relies on linkage disequilibrium

(LD) between alleles at two tightly linked loci [1]. With the

availability of high-density maps of single nucleotide polymor-

phisms (SNPs), association studies have become popular tools for

identifying genes underlying complex human traits and diseases

[2]. It is now practical to perform genome-wide association studies

(GWAS) with hundreds of thousands of SNPs in samples

containing large numbers of individuals.

A common design for association studies is population-based,

where unrelated subjects are collected and examined for the

association between genetic variants and traits. Population-based

studies are popular due to the relative ease in recruiting unrelated

subjects. However, when samples are of different ethnic ancestries,

population-based association studies may produce spurious

associations due to population stratification, resulting in excess

false positive or negative rates [3,4]. Several methods have been

proposed to deal with population stratification [5–11].

An alternative design uses family-based studies, where family

members are collected for association analyses [12]. The

application of transmission disequilibrium tests (TDT) [13], and

its various extensions to a variety of genetic models for both

quantitative [14–19] and qualitative traits [20–24], form the basis

of family-based association tests. In these tests, the association

between phenotypic traits and transmission of alleles from parents

to offspring is of primary interest. TDT-based methods possess an

intrinsic property of protecting against population stratification,

even when only one marker is examined. However, compared

with population-based samples, recruiting family members tends

to be more time consuming and costly.

For most current population- and family-based GWAS,

statistical power is usually limited due to the complex interplay

among factors that influence the etiology of diseases [25]. A variety

of approaches, e.g., increasing sample size, population selection on

the degree of LD, and selecting informative tagSNPs, can improve

the power for detecting association. Sample size is often restricted

due to genotyping costs and limited sample resources. However, a

large sample size is required to ensure sufficient statistical power to

detect genes contributing subtle to moderate effects to phenotypic

traits. Several recent studies that have combined unrelated subjects

and nuclear families to form an enlarged sample [26–31] have

demonstrated that analyzing combined samples can be more

powerful than analyzing individual samples separately.

The problem of population stratification can arise again when

analyzing combined samples, however, since neither the afore-

mentioned correction methods for unrelated sample nor the TDT-

based methods for families can be naively applied to the combined

data. Thus, previous studies require a preliminary step to test

whether samples from different studies can be combined. When
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samples are from different ethnic groups they typically fail this test

[26–29], so an obvious limitation for these methods is that they

cannot use samples from different ethnic populations. To

circumvent this limitation, Zhu et al. [30] proposed to correct

for population stratification in the combined sample by using

principal coordinate analysis (PCoA) [8,30,32]. PCoA calculates

principal components on individuals, and retrieves information

equal to that retrieved by PCA [33]. However, when large

numbers of markers (e.g. GWAS data) are involved, the

calculation of PCoA by ordinary singular value decomposition

(SVD) algorithms can be quite demanding in terms of both

computation and computer memory. Recent work on fast matrix

approximation may help speed up these calculations and save

memory capacities [34,35]. We recently proposed an extension of

the method of Price et al. [6] to include familial data [36].

Compared to the method of Zhu et al. [30], this extended method

can be applied to large data sets without additional demand for

computation costs and computer memory.

In addition to combining samples, another approach to

increasing association test power is to perform joint analysis of

multiple correlated phenotypes. For many common multifactorial

traits, several correlated phenotypes are usually recorded for each

individual during sample collection. Joint analysis of these

correlated phenotypes can theoretically provide greater power

than that provided by analysis of individual phenotypes [37].

Multivariate analysis can also improve the ability to detect

susceptible genetic variants whose effects are too small to be

detected in univariate analysis [38], and the literature contains

multiple applications of this approach to linkage studies [37–42].

For genetic association studies, methods have also been proposed

for performing multivariate association tests on unrelated samples

[43] and on families [44], separately. However, studies using

multivariate analysis on combined samples are rare and further

investigations using this approach are warranted [31].

In this study, we propose to perform univariate/multivariate

association analysis for a combined sample of nuclear families and

unrelated subjects. By use of generalized estimating equations

(GEEs) [45–47], the proposed method assumes no specific

distributions on phenotypes. Specifically, we adjust for population

stratification for the combined sample by integrating principal

component analysis and transmission disequilibrium test strategies.

In addition, the proposed method accounts for the data of multiple

siblings as well as missing parents. We evaluate the statistical

properties of the proposed test through simulation studies, and

demonstrate its efficacy by applying it to genetic analysis workshop

16 (GAW16) data sets.

Results

In this section, we will evaluate the performance of the proposed

method under a variety of situations by simulation. We include

two methods, EIGENSTRAT [6] and FBAT [48], for compar-

ison. EIGENSTRAT implements the method of Price et al. [6],

and performs univariate association tests (continuous or binary) for

unrelated samples. FBAT implements the method of Laird et al.

[48] and performs family-based association tests. EIGENSTRAT

and FBAT are typically used in population- and family-based

association analyses, respectively, when protecting against popu-

lation stratification. To make results from separate data compa-

rable to that from the combined data, we perform the fisher

product test to combine p-values from EIGENSTRAT and FBAT

together to form a uniform p-value. While FBAT can perform

univariate or multivariate association tests, EIGENSTRAT can

only perform univariate tests. Thus, we only report the fisher

product test [49] for univariate tests. We notice that a similar

method of Zhu et al. [30] can also perform association tests for

binary traits in combined samples. However, their current

implementation requires that all nuclear families have the same

structure, (e.g., the same number of offspring), a significant

limitation which prevented comparison of their method to ours in

simulation studies.

Type I Error Rates
Table 1 lists type I error rates of the various tests when

unrelated individuals and nuclear families are sampled. We also

present results of the proposed test when analyzing unrelated

samples and nuclear families separately. It is shown that the

proposed test has correct type 1 error rates in all population

structures when performing both univariate and bivariate analyses.

Its application to unrelated samples and nuclear families,

separately, also demonstrates correct error rates. The error rates

for EIGENSTRAT and FBAT are also close to target levels

regardless of the presence of population stratification. Thus, all

tests considered here can correct for population stratification in

both univariate and bivariate analyses.

Table 2 lists type I error rates of the various methods when

unrelated individuals and sib pairs are considered. All the tests

again have correct error rates that are close to target levels. Thus,

the proposed test is also robust to population stratification in

applications with missing parental information.

Power Estimates
Table 3 lists univariate power estimations for binary phenotypes

when unrelated individuals and nuclear families are sampled.

When analyzing combined data, the proposed test has the highest

power in all genetic models. When analyzing unrelated samples

alone, the power of the proposed test is approximately equal to

that for EIGENSTRAT. When analyzing nuclear families alone,

the power of the proposed test is significantly improved compared

to FBAT. We note that parental information in FBAT is used to

control population stratification, but does not contribute to the

association statistic. On the other hand, parental information in

the proposed method can be used to both control population

stratification, and to test the association. The power improvement

demonstrates that parental data are informative for testing the

association.

Table 4 lists univariate power estimations for continuous

phenotypes. Again, the proposed test analyzing the combined

data provides the highest power. Similarly, the proposed test has

an approximately equal power to EIGENSTRAT when analyzing

only unrelated samples, and has improved power over FBAT

when analyzing only nuclear families.

Power estimations when sib pairs, instead of nuclear families,

are considered are listed in Table 5 and 6 for binary and

continuous phenotypes, respectively. The results are similar to

those generated previously with nuclear families. Note that when

analyzing only the data of sib pairs, the proposed test has similar

power to FBAT.

Table 7 lists the gain of power by bivariate analysis for a binary

trait and a continuous trait. Obviously, power for bivariate analysis

is higher than both univariate analyses under all population

structures. The analyses on two continuous phenotypes have

similar patterns, as listed in Table 8.

We also evaluate the loss of power of bivariate analyses in cases

where pleiotropic effects are not present. Figure 1 displays the loss

of power when the causal site contributes only to a binary trait (left

panel) or only to a continuous trait (right panel), under the various

population structures. Obviously, bivariate analysis in such cases is

GWAS for Combined Data
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inferior to univariate analysis, but the power loss is relatively

minor.

Application to GAW16 Data Sets
We apply the proposed method to GAW16 simulated data sets

as described in the Methods section. Figures 2A–2C display the

results of whole-genome scans by FBAT, EIGENSTRAT, and the

proposed method, respectively, when analyzing the trait HDL.

The most significant SNP identified by the proposed method,

rs10820738, reaches a p-value 8.68E-13. This SNP corresponds to

the major contributing gene, ABCA1, which explains 1.0% of

HDL phenotypic variation in the GAW16 simulation. EIGEN-

STRAT and FBAT have p-values 2.30E-5 and 6.57E-4,

respectively, at this SNP; neither of these methods reaches a

genome-wide significant level. At the other four major genes, the

proposed test also has more significant p-values than both

EIGENSTRAT and FBAT, as listed in Table 9. Figure 2D (left)

displays a Quantile-Quantile (QQ) plot of the proposed method. It

is obvious that p-values from the proposed method distribute

uniformly between 0.0 and 1.0, demonstrating the validity of the

proposed method. Most of the outliers in a logQQ plot (Figure 2D,

right) correspond to susceptible loci and/or their nearby SNPs.

We then perform bivariate analysis on the traits HDL and TG.

One of the two major genes presenting pleiotropic effects,

rs3200218, has a lower p-value (3.05E-07) in bivariate than in

univariate analyses (7.20E-06 for HDL and 0.043 for TG). At the

other major gene, rs8192719, bivariate analysis has a p-value

(4.48E-04) that is approximately equal to that obtained by

univariate HDL analysis (3.58E-04) (Table 10). For those loci

that did not exert pleiotropic effects, however, bivariate analyses

generally produce results that are of lower significance than results

generated by univariate analyses.

Discussion

In this study, we propose a simple approach to perform

univariate or multivariate association tests when correcting for

population stratification with data generated by combining

unrelated samples and nuclear families. Simulation studies showed

that the proposed test had improved power over tests typically

used to analyze family and unrelated samples separately. Further,

joint analysis of bivariate traits had improved power over

univariate analysis when pleiotropic effects were present. Appli-

cation of the proposed method to GAW16 data sets verified its

practical applicability.

By combining population- and family-based tests together, the

proposed test provides flexibility in integrating technologies of

family based association tests. Here, we extend the proposed model

to include sib pair data with missing parental information. It is

relatively straightforward to extend the proposed test to include data

of general pedigrees with arbitrary structures [50]. When applied to

pedigree data only, the proposed method still may have improved

power over traditional TDT-based methods, as shown by analyses

using the software FBAT. The power gain is attributable to the fact

Table 1. Type I Error Rates for Unrelated Samples and Nuclear Families.

Nominal Level

5% 1%

Population T TU TF ESTRAT FBAT Fisher T TU TF ESTRAT FBAT Fisher

One Binary Trait

Homogeneous 4.8 5.4 5.1 5.3 3.8 4.7 0.8 1.3 0.7 1.2 0.5 0.4

Stratified 4.8 4.7 4.4 4.4 5.2 4.6 0.7 1.1 0.7 0.8 1.2 1.0

Admixture 4.9 6.1 3.1 5.9 4.3 5.7 1.2 1.2 0.8 1.5 0.2 1.1

One Continuous Trait

Homogeneous 5.9 5.3 4.9 5.3 4.1 4.8 0.9 1.0 1.3 1.0 0.3 1.0

Stratified 6.9 6.3 5.7 5.8 5.1 4.6 1.6 0.8 0.9 0.8 1.4 0.7

Admixture 4.3 4.9 4.7 4.9 5.5 4.9 0.8 0.4 0.8 0.4 1.2 1.1

One Binary Trait and One Continuous Trait

Homogeneous 4.6 6.8 5.4 -a 3.1 - 0.9 1.1 1.1 - 0.9 -

Stratified 6.0 5.5 4.7 - 5.4 - 1.3 0.9 1.1 - 1.0 -

Admixture 4.7 5.7 3.9 - 4.1 - 1.2 0.4 0.4 - 0.8 -

Two Continuous Traits

Homogeneous 5.5 6.9 3.9 - 4.6 - 1.3 1.1 0.9 - 0.9 -

Stratified 4.7 6.0 5.1 - 5.0 - 0.9 0.9 0.9 - 1.1 -

Admixture 5.3 4.8 4.8 - 5.4 - 1.0 1.0 1.1 - 0.6 -

Notes: In homogeneous and admixture population settings, we sampled 400 unrelated subjects and 200 nuclear families when the binary trait was not involved, and
sampled 200 unrelated cases, 200 controls, and 200 nuclear families with at least one affected child when the binary trait was involved. In stratified population settings,
we sampled 250 unrelated subjects and 150 nuclear families from population A, and 150 unrelated subjects and 50 nuclear families from population B when the binary
trait was not involved. When the binary trait was involved, we sampled 150 cases, 100 controls and 150 nuclear families with at least one affected child from population
A, and 50 cases, 100 controls and 50 nuclear families from population B. Type I error rates for univariate and bivariate analyses are estimated for the combined data of
unrelated samples and nuclear families under homogeneous, stratified, and admixed populations. The error rates are estimated on 1,000 replicates.
a: ‘‘-‘‘, for EIGENSTRAT, only univariate analyses are available.
Abbreviations: T, the proposed test applied to the combined sample; TU, the proposed test applied to unrelated sample only; TF, the proposed test applied to nuclear
families only; ESTRAT, the method proposed by Price et al. [6] and implemented in the software EIGENSTRAT, applied to unrelated sample only; FBAT, the program FBAT
[48]; Fisher, the fisher product test on the outputs from EIGENSTRAT and FBAT.
doi:10.1371/journal.pone.0006502.t001
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that the proposed method can use parental information for

association tests, while the alternate methods cannot.

Combining unrelated samples and nuclear families for genetic

association studies has been a focus of research for several years.

Nagelkerke et al. [29] proposed using a logistic-regression model

for combining case-control subjects and case-parents trios to

increase statistical power. Kazeem and Farrall [28] proposed

combining results of case-control tests and TDT to obtain a

weighted odds ratio for a given genetic marker. Epstein et al. [27]

modified the work of Nagelkerke et al. with a likelihood-based

approach to allow for more flexible genetic models, such as less-

restrictive assumptions of Hardy-Weinberg equilibrium (HWE)

and of random mating. Chen and Lin [26] further extended the

work of Epstein et al. to scenarios relaxing assumptions and

Table 3. Univariate Power for Unrelated Samples and Nuclear Families (Binary Trait).

Nominal Level

5% 1%

Population T TU TF ESTRAT FBAT Fisher T TU TF ESTRAT FBAT Fisher

Homogeneous

Recessive 30.7 12.8 12.0 22.2 15.4 15.4 11.7 3.7 3.6 8.5 4.5 4.1

Additive 90.6 54.5 53.5 80.0 49.0 69.4 77.0 29.6 28.8 58.1 26.5 49.3

Dominant 70.3 37.2 36.2 57.5 33.2 53.7 50.5 17.5 17.2 34.2 14.3 29.7

Stratified

Recessive 55.5 31.1 29.3 41.1 25.9 37.8 31.7 13.0 11.8 21.0 9.5 19.0

Additive 92.9 60.7 59.9 80.8 54.4 78.5 81.9 36.2 36.2 62.8 27.8 53.9

Dominant 70.9 33.6 32.8 53.5 31.8 47.2 44.8 14.2 13.0 28.8 14.2 24.6

Admixture

Recessive 59.1 23.8 24.2 49.6 28.6 38.3 36.9 10.7 9.5 25.8 10.7 16.7

Additive 94.9 67.9 67.9 91.0 70.5 79.0 85.9 32.1 33.3 67.9 38.5 57.8

Dominant 72.8 34.9 36.1 51.5 29.6 49.7 45.6 19.5 19.5 30.2 10.6 27.7

Notes: The three modes of inheritance are considered under each population structure. The causal site was assumed to render an OR value of 1.5 for homozygous
mutation genotypes, heterozygous genotypes and homozygous or heterozygous mutation genotypes under recessive, additive and dominant modes of inheritance,
respectively. Powers are estimated on 1,000 replicates for each setting. See Notes in Table 1 for sample sizes and abbreviation detail.
doi:10.1371/journal.pone.0006502.t003

Table 2. Type I Error Rates for Unrelated Samples and Sib Pairs.

Nominal Level

5% 1%

Population T TU TF ESTRAT FBAT Fisher T TU TF ESTRAT FBAT Fisher

One Binary Trait

Homogeneous 4.9 5.0 5.3 4.6 5.2 4.3 1.4 1.2 0.8 1.2 0.8 0.9

Stratified 5.7 5.7 5.5 4.9 5.5 4.5 1.2 1.1 0.7 0.9 0.8 1.0

Admixture 4.2 4.9 4.9 4.6 4.9 4.7 1.4 0.6 1.2 0.7 1.0 1.1

One Continuous Trait

Homogeneous 4.1 4.9 4.7 4.6 4.7 5.7 0.7 1.1 0.7 1.1 0.7 1.3

Stratified 4.3 4.5 5.5 4.2 5.5 5.0 0.9 1.3 1.6 1.3 1.7 0.7

Admixture 4.6 5.6 4.1 5.3 4.2 4.8 0.8 1.7 1.0 1.7 1.0 0.9

One Binary Trait and One Continuous Trait

Homogeneous 5.2 4.7 4.6 - 4.5 - 0.8 1.1 0.8 - 0.8 -

Stratified 4.7 5.3 5.9 - 5.6 - 1.0 1.0 1.2 - 1.2 -

Admixture 4.1 4.2 4.4 - 4.4 - 1.4 1.7 1.0 - 1.0 -

Two Continuous Traits

Homogeneous 5.9 4.7 4.7 - 4.6 - 1.0 1.1 0.8 - 0.6 -

Stratified 5.0 5.7 4.8 - 4.8 - 0.8 1.0 1.4 - 1.4 -

Admixture 6.0 6.8 4.8 - 5.2 - 0.6 1.7 1.2 - 1.0 -

Notes: Sib pair data were obtained by deleting parental information from the simulations. Type I error rates are estimated on 1,000 replicates. See Notes in Table 1 for
sample sizes and abbreviation detail.
doi:10.1371/journal.pone.0006502.t002
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estimations on mating-type distributions using a weighted least-

squares approach. Jung et al. [31] recently proposed performing

combined linkage and association tests for bivariate quantitative

traits using a variance-component model. Despite their potential

advantages, all of these methods have a requirement that both

case-control subjects and case-parents come from a homogeneous

population. This requirement substantially narrows the context to

which these methods can be applied. The method we propose has

a significant advantage in that it is robust to population

stratification. Our simulation results show that the proposed test

remains valid when applied to stratified or admixed populations.

We note that a similar method proposed by Zhu et al. [30] can

also perform association tests on combined data when correcting

for population stratification. However, their current program

implementation, FamCC, can only handle nuclear families with

both parents available and with equal numbers of children, which

rarely occurs with real data. Additionally, analyses of their method

with multivariate and quantitative traits are quite limited.

Another feature of the proposed method that can improve

statistical power is the ability to perform multivariate association

tests. Compared with univariate models, multivariate models can be

more powerful in cases where multiple traits are influenced by a

Table 4. Univariate Power for Unrelated Samples and Nuclear Families (Continuous Trait).

Nominal Level

5% 1%

Population T TU TF ESTRAT FBAT Fisher T TU TF ESTRAT FBAT Fisher

Homogeneous

Recessive 97.3 70.2 69.2 90.9 61.7 85.2 91.0 45.7 44.4 76.5 37.8 67.3

Additive 82.7 43.2 41.9 68.2 38.0 53.7 62.2 21.6 21.2 46.0 17.0 30.9

Dominant 92.5 54.0 53.0 80.8 47.9 67.8 80.7 29.6 29.0 60.6 25.7 47.2

Stratified

Recessive 90.5 51.5 50.6 77.7 32.5 61.3 75.6 30.6 29.4 53.0 13.0 36.2

Additive 84.1 45.6 45.0 65.8 25.2 50.9 60.7 22.6 22.0 40.4 10.6 27.5

Dominant 94.4 61.9 61.2 84.1 43.6 72.9 84.1 37.6 37.0 66.6 20.2 48.8

Admixture

Recessive 90.1 49.6 48.8 74.6 48.8 71.0 72.6 32.5 29.3 57.1 24.2 48.1

Additive 79.5 38.5 38.5 71.8 26.9 53.7 62.8 25.6 25.6 42.3 11.5 29.6

Dominant 95.3 63.9 63.3 85.2 43.2 74.4 82.8 35.0 33.7 60.9 23.7 53.9

Notes: The three modes of inheritance are considered under each population structure. The causal site was assumed to explain 1.0% of total phenotypic variation under
each genetic setting. Powers are estimated on 1,000 replicates for each setting. Please see Notes in Table 1 for sample sizes and abbreviation detail.
doi:10.1371/journal.pone.0006502.t004

Table 5. Univariate Power for Unrelated Samples and Sib Pairs (Binary Trait).

Nominal Level

5% 1%

Population T TU TF ESTRAT FBAT Fisher T TU TF ESTRAT FBAT Fisher

Homogeneous

Recessive 20.4 14.5 14.2 11.5 11.5 14.5 7.7 4.7 4.5 3.4 3.1 5.2

Additive 74.2 55.0 53.8 36.8 36.0 63.0 51.4 30.1 28.4 16.3 16.3 37.4

Dominant 55.2 39.3 38.3 25.2 25.3 44.9 31.1 18.8 17.4 10.8 10.9 24.4

Stratified

Recessive 49.4 33.2 31.6 20.1 20.1 29.5 24.0 14.4 13.4 6.9 7.4 14.0

Additive 82.5 62.4 61.2 42.2 42.7 70.3 58.4 37.5 35.2 17.6 17.1 47.0

Dominant 51.3 34.5 35.0 24.5 24.9 40.9 27.8 17.7 17.0 9.0 9.1 20.7

Admixture

Recessive 36.5 25.4 24.9 16.0 16.6 35.5 18.8 9.4 8.3 6.6 7.2 13.1

Additive 81.8 56.8 57.7 40.9 40.0 71.5 60.0 36.4 34.5 21.4 21.4 44.2

Dominant 51.1 34.3 36.5 22.6 22.6 38.4 27.0 15.3 14.6 10.2 10.2 18.0

Notes: The three modes of inheritance are considered under each population structure. Sib pair data were obtained by deleting parental information from simulations.
The causal site was assumed to render an OR value 1.5 for homozygous mutation genotypes, heterozygous genotypes and homozygous or heterozygous mutation
genotypes under recessive, additive and dominant modes of inheritance, respectively. Powers are estimated on 1,000 replicates for each setting. See Notes in Table 1 for
sample sizes and abbreviation detail.
doi:10.1371/journal.pone.0006502.t005
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common genetic variant. Notably, overall correlations between

multiple traits are not necessary for multivariate analysis. In cases

where the genetic variant contributes to only one trait, a loss of

power will occur with the multivariate model, though the magni-

tude of this loss is moderate. Thus, multivariate analysis should be

implemented with caution, and should only be regarded as one of

the tools for detecting common susceptible loci for multiple traits.

Table 6. Univariate Power for Unrelated Samples and Sib Pairs (Continuous Trait).

Nominal Level

5% 1%

Population T TU TF ESTRAT FBAT Fisher T TU TF ESTRAT FBAT Fisher

Homogeneous

Recessive 86.9 68.4 67.9 47.8 48.0 79.5 68.2 44.7 43.6 25.4 25.3 59.1

Additive 61.4 42.3 41.5 31.7 32.0 51.7 36.2 20.9 19.8 11.0 11.3 27.3

Dominant 74.4 54.5 53.8 38.4 38.6 66.8 50.6 31.1 29.5 18.5 18.7 42.3

Stratified

Recessive 70.1 52.5 51.9 33.6 32.9 61.6 47.1 29.2 27.9 14.9 14.5 36.7

Additive 60.4 44.9 43.6 27.0 26.2 48.2 36.9 23.7 22.3 10.3 9.3 26.1

Dominant 79.3 64.5 62.8 37.1 37.0 72.5 58.6 38.0 37.0 17.0 16.7 46.5

Admixture

Recessive 70.7 53.6 51.4 39.2 37.6 60.5 48.6 29.8 29.3 16.6 17.7 36.6

Additive 58.2 41.8 40.9 30.9 30.9 47.5 34.1 21.8 20.5 8.6 9.0 26.2

Dominant 88.3 65.7 61.3 40.9 40.9 72.0 62.8 35.0 35.8 21.2 21.2 47.1

Notes: The three modes of inheritance are considered under each population structure. Sib pair data were obtained by deleting parental information from simulations.
The causal site was assumed to explain 1.0% of total phenotypic variation under each genetic setting. Powers are estimated on 1,000 replicates for each setting. Please
see Notes in Table 1 for sample sizes and abbreviation detail.
doi:10.1371/journal.pone.0006502.t006

Table 7. Power of Bivariate vs. Univariate Analyses for the
Combined Data of Unrelated Samples and Nuclear Families
(One Binary Trait and One Continuous Trait).

Locus Effects Nominal Level

5% 1%

Population T12 T1 T2 T12 T1 T2

Homogeneous

1.2:0.0025 41.5 30.6 27.2 21.5 13.6 10.8

1.3:0.005 73.7 54.3 52.6 50.1 30.5 29.2

1.4:0.0075 92.3 77.7 70.5 79.2 54.5 46.5

1.5:0.01 98.6 90.6 82.7 93.1 77.0 62.2

Stratified

1.2:0.0025 44.7 32.3 30.2 23.3 14.8 14.0

1.3:0.005 76.6 62.7 52.8 55.9 37.1 30.8

1.4:0.0075 92.7 80.4 70.9 80.8 60.8 46.7

1.5:0.01 98.6 92.9 84.1 93.6 81.9 60.7

Admixture

1.2:0.0025 49.6 40.2 28.5 24.4 18.8 12.3

1.3:0.005 79.1 63.6 57.0 56.7 39.3 31.5

1.4:0.0075 95.0 82.5 72.5 81.9 60.6 44.3

1.5:0.01 100.0 94.9 79.5 94.2 85.9 62.8

Notes: Three population structures are considered. For the binary trait, the OR
value ranges from 12 to 1.5. For the continuous trait, the contribution of the
causal site ranges from 0.0025 to 0.01. Powers are estimated on 1,000 replicates.
See notes in Table 1 for sample sizes.
Abbreviations: T12, the proposed test for bivariate analysis; T1, the proposed test
for only the first trait; T2, the proposed test for only the second trait.
doi:10.1371/journal.pone.0006502.t007

Table 8. Power of Bivariate vs. Univariate Analyses for the
Combined Data of Unrelated Samples and Nuclear Families
(Two Continuous Traits).

Nominal Level

5% 1%

Population T12 T1 T2 T12 T1 T2

Homogeneous

0.0025:0.0025 41.6 28.2 29.6 18.8 12.2 12.2

0.005:0.005 69.9 51.2 50.5 48.5 28.9 27.6

0.0075:0.0075 85.8 67.3 69.3 70.8 44.4 45.9

0.01:0.01 93.4 82.7 82.7 83.2 62.2 62.2

Stratified

0.0025:0.0025 41.9 29.0 29.0 20.5 12.4 13.3

0.005:0.005 72.3 52.9 53.3 49.8 29.0 27.0

0.0075:0.0075 87.4 66.8 68.6 70.1 43.5 45.6

0.01:0.01 100.0 84.1 84.1 82.5 60.7 60.7

Admixture

0.0025:0.0025 45.3 32.3 30.5 30.0 14.2 12.3

0.005:0.005 76.0 52.4 49.4 50.0 29.5 27.7

0.0075:0.0075 87.2 70.1 67.1 70.6 46.0 42.6

0.01:0.01 95.6 80.5 80.5 85.3 62.0 63.6

Notes: Three population structures are considered. The contributions of the
causal site for both the traits range from 0.0025 to 0.01. Powers are estimated
on 1,000 replicates. See notes in Table 1 for sample sizes.
Abbreviations: T12, the proposed test for bivariate analysis; T1, the proposed test
for only the first trait; T2, the proposed test for only the second trait.
doi:10.1371/journal.pone.0006502.t008
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In summary, we have developed a simple and novel method for

performing univariate/multivariate association tests while correct-

ing for population stratification, in samples combining nuclear

families and unrelated subjects. The proposed method is

computationally effective and can complete a typical GWAS scan

within minutes. The java program implementing the proposed

method, Genetic Association analysis Platform (GAP), is freely

available from the authors’ website (http://sites.google.com/site/

zhangleira/GAP).

Methods

We first describe our method on a combined dataset of an

unrelated sample and a collection of nuclear families with both

parents available. Then we extend the method to include sib pairs

with missing parents, to incorporate covariates, and to correct for

population stratification.

Definitions
Assume that there are Nf nuclear families and there are ni (i = 1,

…, Nf) members in the ith family with the first two individuals

being parents. In addition, a random sample with Nc unrelated

individuals is also assumed available. For simplicity, we take each

individual in the random sample as a separate family with size 1 so

that ni = 1 for i = Nf +1, …,, Nf+Nc. Thus, the total number of

individuals is N~
P

i

ni, and the total number of unrelated

individuals (including random sample and the two parents in each

family) is Nu = 2Nf +Nc. Assume that K phenotypes are available for

each individual, and let yij = (yij1, …, yijK) ’ be the vector of

phenotypic values for the jth (j = 1, …, ni) individual in the ith

family. Further assume that genotype data for M SNP markers are

available for all individuals. A score gijm at the mth SNP with alleles

‘‘1’’ and ‘‘2’’ is defined as 0, 1, and 2 for genotypes ‘‘11’’, ‘‘12’’,

and ‘‘22’’, respectively, for the jth individual in the ith family.

Models
We construct our test statistic by use of previous work of score

test. [17,20,23,44,48] For an individual phenotype indexed by k,

we extend the previous work of Lunetta et al. [23] in the

generalized linear model (GLM) framework, to model the

association between genotype scores and phenotypes using. For

a tested marker indexed by m, GLM relates phenotypes and

genotypes by a link function (We omit the index m for simplicity)

Lijk~b0kzb1kgij , ð1Þ

where Lijk is the link function for mijk, the expected value of yijk; b0k

Figure 1. Power Estimations of Bivariate vs. Univariate Association Analysis When Genetic Variant Contributes to Only One Trait.
Powers for bivariate vs. univariate analyses are estimated when the causal site contributes only to binary (left) or continuous traits (right). For binary
traits, four levels of OR: 1.2, 1.3, 1.4, 1.5 with additive genetic models are considered under homogeneous, stratified, and admixture populations,
respectively. For continuous traits, the causal site is assumed to explain 0.25%, 0.5%, 0.75% and 1.0% of the phenotypic variation, respectively. Powers
are estimated by 1,000 replicates.
doi:10.1371/journal.pone.0006502.g001
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Figure 2. Genome-Wide Association Analyses on GAW16 Simulated HDL Data Sets. Genome-wide p-values were displayed for FBAT (A),
EIGENSTRAT (B), and the proposed method (C). The marked SNP, rs10820738, contributes the largest effect to the trait by explaining 1.0% of
phenotypic variation in the simulation. Figure 2D, quantile-quantile (QQ) plot (left) and logQQ plot (right) for the proposed method.
doi:10.1371/journal.pone.0006502.g002
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and b1k represent population mean and genotypic effect,

respectively. The natural link function is the identity for

continuous phenotypes, and is the logit-function for binary

phenotypes.

Defining the Score Statistic
Given genotypes, phenotypes among unrelated individuals and

family members are assumed independently distributed. The log-

likelihood for the sample can then be expressed as

log Lk b0k,b1kð Þ~
X

i

X
j

yijkLijk{a Lijk

� �� �
, ð2Þ

where a Lijk

� �
is a function of Lijk with the property La Lijk

� ��
LLijk

~mijk, i = 1, …, Nf+Nc, j = 1, …, ni. The derivation of the log-

likelihood with respect to b1k yields the score

S1~
X

i

X
j
tijkgij ,

where tijk~yijk{mijk. Under the null hypothesis H0 of no

association (b1k~0), mijk is identical to all subjects, that is,

mijk~mk.

When multiple correlated phenotypes are simultaneously

modeled, it is difficult to specify the log-likelihood function (2),

since joint distribution of phenotypes cannot be explicitly specified

except for multivariate Gaussian distributions. For multivariate

data with arbitrary distributions, Liang and Zeger [46] proposed

an extension of GLM, termed generalized estimating equations

(GEEs), to estimate model parameters while accounting for

correlations among variables. Lange [44] further applied GEEs

to genetic association analysis. Following the work of Lange, we

define a multivariate score as

S2~
X

i

X
j
gijDijVar(tij)

{1tij ,

where Dij is a diagonal matrix depending on the underlying GEE

model, and tij~ tij1,:::,tijK

� �0
is a vector that codes phenotypes.

Under the null hypothesis H0 of no association, Dij and Var tij

� �{1

are identical to all subjects and they will vanish in the

normalization of the test statistic. The resulting score under H0

is then

S~
X

i

X
j
tijgij :

Obviously, S1 is a special case of S where only one phenotype is

modeled.

Distribution of the Test Statistic
The score test statistic is defined as

T~ S{E Sð Þð Þ
0
Var Sð Þ{1 S{E Sð Þð Þ,

where E(S) and Var(S) are the mean and variance of the score,

respectively. Under the null hypothesis H0, the statistic T will

asymptotically follow a chi-square distribution with degree of

freedom being the rank of Var(S).

For simplicity, let Z = S–E(S), so that

T~Z
0
Var Sð Þ{1Z:

Z and Var(S) are estimated by conditioning the distribution of

genotype on traits, e.g., tij is fixed as constant, so that

Z~
X

i

X
j
tij gij{E gij

� �� �
,

and Var Sð Þ~
XNf

i~1

X
j

tijtij
0
Var gij

� �
z
X

j1

X
j2=j1

tij1 tij2

0
Cov gij1 ,gij2

� �" #

z
XNf zNc

i~Nf z1

ti1ti1
0
Var gi1ð Þ:

To obtain estimations for above variables, we divide the total

sample into two complement sets U and R, where U contains Nu

unrelated individuals, and R contains the remaining N - Nu related

offspring in each family. For the set U, population genotype mean

and variance, denoted by �gg and v(g) respectively, are estimated. For

each individual in the set R, its genotype mean and variance are

estimated from its parents’ genotypes according to the Mendel’s

law. Note that as the estimation on offspring is conditional on the

parental genotypes, there will be no genotypic correlations

between offspring and parents and between offspring themselves.

Thus, Z and Var(S) are expressible as

Table 9. P-Values at the Major Genes for the Various Tests
When Analyzing GAW16 Simulated HDL Trait.

T ESTRAT FBAT

SNP h2 P Value

rs10820738 0.010 8.68E-13 2.30E-5 6.57E-4

rs8103444 0.002 2.53E-3 3.24E-3 0.775

rs8035006 0.003 4.60E-3 0.010 0.108

rs3200218 0.003 7.20E-6 0.014 0.011

rs8192719 0.003 3.14E-4 3.58E-4 0.508

Notes: p-values for five major genes and their contribution proportions (h2)
were listed. Abbreviations: T, the proposed test; ESTRAT, the method proposed
by Price et al. [6] and implemented in the software EIGENSTRAT, applied to
unrelated samples only (including parents from each nuclear family); FBAT, the
program FBAT [48].
doi:10.1371/journal.pone.0006502.t009

Table 10. Bivariate vs. Univariate p-values at Two Major
Genes Presenting Pleiotropic Effects When Analyzing GAW16
Simulated HDL and TG Traits.

T12 T1 T2 FBAT12 FBAT1 FBAT2

SNP P Value

rs3200218 3.05E-07 7.20E-06 0.043 0.016 0.011 0.628

rs8192719 4.48E-04 3.14E-04 0.014 0.798 0.508 0.954

Notes: P-values for two major genes presenting pleiotropic effects to both HDL
and TG were listed. Abbreviations: T12, T1 and T2, the proposed test applied to
HDL and TG, to HDL, and to TG respectively. FBAT12, FBAT1 and FBAT2, the
program FBAT [48] applied to bivariate analysis of HDL and TG, to univariate
analysis of HDL, and to univariate analysis of TG respectively.
doi:10.1371/journal.pone.0006502.t010
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Z~
X
i,jð Þ[U

tij gij{�gg
� �

z
X
i,jð Þ[R

tij gij{
gi1zgi2

2

� �
,

and Var Sð Þ~v gð Þ
X
i,jð Þ[U

tijtij
0
z
X
i,jð Þ[R

Igi1
zIgi2

4
tijtij

0
,

where Igi1 and Igi2 are the indicators of heterozygous genotypes for

the two parents in the ith family.

The above expressions of Z and Var(S) render intuitive

interpretations: the first part in each expression attributes to

unrelated individuals, and the second part attributes to related

individuals in each family. We note that when considering only

related individuals in the set R, the second parts of Z and Var(S)

constitute a family-based test statistic proposed by Rabinowitz and

Laird [50] and is implemented in the software FBAT [48]. When

considering only unrelated individuals in the set U, the first parts of

Z and Var(S) constitute a valid score test in an apparent manner

for random samples. Thus, the proposed test T can be regarded as

the uniform integration of population- and family-based associa-

tion tests. This characteristic allows a great deal of flexibility in

including nuclear families with various structures.

Including Data with Missing Parents
When parental genotype information is missing, the conditional

means and variances for offspring genotypes in the set R can no

longer be estimated from their parents. For families with incomplete

parental data, Rabinowitz and Laird [50] propose to obtain the

conditional distributions of offspring genotypes via the sufficient

statistic of missing parental genotypes, which is derived from

offspring genotypes and partially observed parental genotypes. By

using sufficient statistic, the distributions of test statistics remain

valid in the presence of population stratification. Application of the

method of Rabinowitz and Laird to the proposed test with missing

parents is straightforward. We replace the conditional expectations

and variances of offspring genotypes in the second parts of Z and

Var(S) by the ones that are estimated by conditioning on sufficient

statistic of missing parental genotypes. Note that correlations among

offspring in such circumstances would not vanish and they will be

included in the test statistic.

Incorporation of Covariates
When covariates are strongly predictive factors of phenotypes,

incorporating them into the model can increase test efficiency. Let

Wijk be the vector of covariates at the k-th phenotype for the j-th

individual in the i-th family. The link function (1) modeling

covariates under H0 will turn to

Lijk~b0kzbWk

0
Wijk:

Estimation of b0k and bWk is used for construction of test

statistic in follow-up steps.

We first adjust phenotypes by covariates and then construct the

test statistic with the residual of phenotypes. Let yij
* be the residual

phenotype for the jth individual in the ith family so that tij = yij
*2m

codes phenotypic information of subjects. The resulting test

statistic T depends on the nuisance parameter m. Though the

statistic T remains valid regardless of the choices of m, a good

choice of m can improve test efficiency [23]. In theory, m is the

population mean of phenotypes. In cases where ascertainment

depends upon phenotypes, such as in case-control and case-

parents designs, m cannot be appropriately estimated from the

sample. A variety of strategies have been proposed for different

choices of m to improve test efficiency [17,20,23], among which is

the one that minimizes Var(S) [23]. For the kth phenotype, it is

obvious that Var(Sk) is the quadric form of mk, and is minimized

when mk~
P

i

P
j

y�
ijk

vij

,P
i

P
j

vij , where vij~
v gð Þ for i,jð Þ[U

Igi1
zIgi2
4

for i,jð Þ[R

�
.

For multivariate test, we select individual m in turn for single

phenotype to obtain approximate performance.

Correcting for Population Stratification
When population stratification exists, the above test statistic

may no longer be valid since the evaluations of the variance for the

set of unrelated individuals are sensitive to population stratifica-

tion. The adjustment for population stratification is straightfor-

ward by using our previously proposed extension [36] of PCA-

based adjustment [6] that includes data with nuclear families.

Briefly, we apply PCA to all unrelated individuals to calculate for

each of them a vector of principal component. Individual

genotypes and phenotypes are then adjusted through linear

regression on principal components. For those related individuals,

we propose a TDT-like strategy to infer their principal

components as well as to adjust their genotypes and phenotypes.

We denote the genotype score and the phenotype coding vector

after adjustment as gij
* and tij

*, respectively, for the jth individual in

the ith family, and denote population genotype mean and variance

after adjustment as �gg� and v(g*), respectively. In the appendix S1,

we show that Z and Var(S) have the following forms (assuming

parental information is available)

Z~
X
i,jð Þ[U

t�
ij

g�
ij
{�gg�

� �
z
X
i,jð Þ[R

t�
ij

gij{
gi1zgi2

2

� �
:

and Var Sð Þ~v g�ð Þ
X
i,jð Þ[U

t�
ij
t�

ij

0
z
X
i,jð Þ[R

Igi1
zIgi2

4
t�

ij
t�

ij

0
:

Note that the genotype deviation and variance in the second

parts of Z and Var(S) are invariant to the adjustment by PCA.

This is intuitively interpreted since the second parts are not

affected by population stratification during construction.

Data Simulation
To evaluate the performance of the proposed test, we conducted

a variety of simulation studies. In all simulations, we simulated two

SNPs with specified allele frequencies, one as causal site and the

other as test site that was both tightly linked to and strongly

associated with the causal site. We also simulated additional 998

random SNP markers to conduct principal component analysis,

resulting in a total number of 1,000 SNPs. Both binary and

continuous traits were simulated. Although the proposed test was

applicable to multivariate analyses with arbitrary number of traits,

we only considered bivariate situations for simplicity. For bivariate

simulation, we simulated a binary trait and a continuous trait or

two continuous traits. Samples were generated under one of three

following population structures: a homogeneous population, two

discrete populations, and an admixture population with two

ancestral populations.

Simulation 1. Homogeneous Population
In the homogeneous population structure, minor allele fre-

quency (MAF) for both the causal and the test SNP was set to 0.2,

and the allele frequency for each random SNP was drawn from

a uniform distribution U(0.1, 0.9). Genotypes for unrelated

individuals and parents were generated based on the corresponding

GWAS for Combined Data
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allele frequencies with an assumption of linkage equilibrium

between adjacent random markers, and genotypes for children in

each family were generated according to parental genotypes with

recombination rate 0.01 between the causal and the test sites. The

number of children in each family was drawn from a Poisson

distribution with mean 2.

When binary trait was not involved, we sampled 400 unrelated

individuals and 200 nuclear families. When binary trait was

involved, we sampled 200 cases, 200 controls and 200 nuclear

families with at least one affected child. The disease prevalence

was set to 30%, which was used to assign an individual’s disease

status under the null hypothesis. Under the alternative hypothesis,

the probability of an individual being affected was calculated using

the logistic regression model

Logit Pr Dij jgij

� ��
~log ORð Þ � gijzcons,

where Logit() was the logistic function; OR was the specified odds

ratio and cons was a constant rendering the disease prevalence. gij

was the genotype code under recessive, additive, or dominant

modes of inheritance. Unless otherwise specified, we set OR to be

1.5 for all simulations under alternative hypothesis.

Continuous phenotypes were drawn from normal distributions

with uniform phenotypic mean and variance. Background

polygenic effects were assumed to account for 40% of the

phenotypic variability in simulating phenotypes for nuclear

families. Under the alternative hypothesis, the causal site was

assumed to explain a specified proportion of phenotypic variability

under recessive, additive, or dominant modes of inheritance.

Unless otherwise specified, we set the proportion explained by the

causal site to 1% for all simulations under alternative hypothesis.

Simulation 2. Two Discrete Populations
In discrete population structure, MAF at both the causal and

the test site was set to 0.2 and 0.4 for two populations A and B,

respectively. Allele frequencies at random markers for the two

populations were generated using the Balding-Nichols model [51].

Briefly, for each marker an ancestry allele frequency p was drawn

from the uniform distribution U(0.1, 0.9). The allele frequencies

for the two populations were then drawn from a beta distribution

with parameters p(1-FST)/FST and (1- p) (1- FST)/FST, where FST

was a measure of genetic distance between the two populations

[52]. We set FST to 0.05 to simulate moderate population

stratification.

When binary trait was involved, we sampled 150 cases, 100

controls and 150 nuclear families from population A, and 50 cases,

100 controls and 50 nuclear families from population B. The

disease prevalence in populations A and B was set to 30% and

10%, respectively, to produce the confounding effect due to

population stratification. Population mean (mA and mB) of

continuous phenotype also varied between population A and B.

mA and mB were set such that a proportion of 20% of phenotypic

variation was explained by population stratification.

Under the alternative hypothesis, phenotypes were again

simulated conditional on the causal site under recessive, additive,

and dominant modes of inheritance.

When the binary trait was not involved, we sampled 250

unrelated individuals and 150 nuclear families from population A,

and 150 unrelated individuals and 50 nuclear families from

population B. Simulation of continuous phenotypes was the same

as the above.

Simulation 3. Admixed Population with Two Ancestral
Populations

In admixed population structure, we first generated two discrete

populations A and B as in Simulation 2. We then adopted a

continuous gene flow (CGF) model [53] to generate an admixed

population from A and B. Specifically, an initial generation was

produced by sampling 20,000 unrelated individuals from popula-

tion A. To produce the second generation, a proportion (l) of

randomly selected individuals from initial population mated to

individuals drawn from population B, and the remaining proportion

(1–l) mated among themselves. The number of children for each

mating was drawn from a Poisson distribution with mean 2, and

children from all marriages comprised the second generation. The

second generation repeated the same process to produce the third

generation, the forth, and so on. We set l to 0.1 and repeated the

process 5 times, resulting in the current admixed population of

approximately 60%/40% of ancestry from population A/B.

We sampled the same number of unrelated individuals and

nuclear families as in Simulation 1. On producing binary trait, the

probability of being affected for an individual was set to

0.3a+0.1(1-a), where a was the ancestral proportion of population

A for the individual. Similarly, phenotypic mean was set to mA

a+mB (1-a) when simulating continuous traits.

Again, under the alternative hypothesis, phenotypes were

simulated conditional on genotype scores at the causal site.

Besides nuclear families, we also simulated samples of sib pairs

with missing parental information, which were obtained by deleting

the two parents from each family after all the above simulations.

GAW16 Simulated Data Sets
As an application, we analyzed the Genetic Analysis Workshop

16 (GAW16) Problem 3 data sets with the proposed test. The

GAW16 data sets consist of 6,476 subjects from Framingham

Heart Study (FHS), where each subject has real genotypes at

approximately 550,000 SNP markers and simulated phenotypes.

Subjects are distributed among 3 generations and singletons. After

dividing large families into smaller nuclear families and applying

some quality controls to the data (for example, as the proposed test

cannot analyze half-sibs, we deleted one of sibs from the data), we

finally identified 5,942 subjects for analysis, 5,456 of which are

family members from a total of 1,815 nuclear families and the

remaining 486 are singletons. When analyzing unrelated sample,

we also included parents in each family besides the 486 singletons,

resulting in a total of 1,480 unrelated subjects.

A total of six correlated traits, termed HDL, LDL, TG, CHOL,

CAC, and MI, respectively, are simulated on the observed genetic

variation in order to mimic the lipid pathway underlying the

development of cardiovascular disease [54]. Phenotype data are

simulated at three pseudo-visits with 10 years apart to mimic the

context of longitudinal study, and at each visit, 200 simulated data

sets are replicated. We analyzed only the data set from the first

replicate of the first visit, as suggested by the workshop. For

univariate analysis, we focused on the trait HDL, which is

influenced by five major genes each contributing 0.3% to 1% to

the phenotypic variation. For bivariate analysis, we included the

trait TG as well. TG is influenced by three major genes

contributing to 0.3% or 0.4% to the phenotypic variation. Two

major genes affecting TG also present pleiotropic effects to HDL.

Both phenotypes were adjusted by age and sex.

Supporting Information

Appendix S1

Found at: doi:10.1371/journal.pone.0006502.s001 (0.03MB DOC)
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