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Abstract

Revealing organizational principles of biological networks is an important goal of systems biology. In this study, we sought
to analyze the dynamic organizational principles within the protein interaction network by studying the characteristics of
individual neighborhoods of proteins within the network based on their gene expression as well as protein-protein
interaction patterns. By clustering proteins into distinct groups based on their neighborhood gene expression
characteristics, we identify several significant trends in the dynamic organization of the protein interaction network. We
show that proteins with distinct neighborhood gene expression characteristics are positioned in specific localities in the
protein interaction network thereby playing specific roles in the dynamic network connectivity. Remarkably, our analysis
reveals a neighborhood characteristic that corresponds to the most centrally located group of proteins within the network.
Further, we show that the connectivity pattern displayed by this group is consistent with the notion of ‘‘rich club
connectivity’’ in complex networks. Importantly, our findings are largely reproducible in networks constructed using
independent and different datasets.
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Introduction

Dynamic architecture of the protein interaction network has an

important role in the regulation of cell behavior. Understanding

the functional organization of protein interaction networks is of

utmost importance for our understanding of the principles

regulating cellular behavior and consequently in understanding

the diseases where cellular behavior is misregulated.

Accumulation of biological data through large-scale genomics

and proteomics and the introduction of mathematical and

computational tools have launched a quest for deciphering

principles governing the organizational framework of protein

networks. Several previously characterized notions from statistical

physics and computer science regarding network topology have

been adapted into systems biology in order to explain the

functional organization of protein networks [1–5]. However most

of these studies have considered the protein interaction networks

without taking into account the dynamic nature of protein

expression, which is essential for a proper representation of

biological networks. In addition, some of these notions have been

met with criticisms in the field [6–9], underlining the non-trivial

nature of the organization of biological networks and the need for

more rigorous analyses in gaining insight into the functional

organization of protein networks.

In order to gain an in-depth understanding of the dynamic

organization of the protein interaction network and its role in the

regulation of cellular processes, we derived several graph

theoretical metrics in order to capture the dynamic expression

properties of proteins as well as of their neighborhoods (i.e. set of

interacting partners in the network). Using these metrics, we

identified several classes of proteins with distinct dynamic

expression profiles (dynamical classes). We show that each of

these dynamical classes has specific roles in the connectivity of the

protein interaction network, regulation of cell behavior or both.

Among these classes, we identify one with the most central

positioning in the network and reveal a special connectivity pattern

of proteins in this group that is important for the robust regulation

of signaling within the cell. Importantly, our findings on the

dynamic organization of the protein network are consistent across

two other independent interaction datasets. Finally, we show that

our analysis can resolve the discrepancy between recent reports

regarding the dynamic modularity in the protein interaction

network by providing a more in-depth view of the protein network

organization.

Results

In order to account for the dynamic properties of proteins as

well as their dynamic relationship with their neighbors in the

network, we used gene expression information from a large

compendium of microarray data and a high quality collection of

protein interaction data to derive 9 network metrics that describe

the dynamic behavior of a protein and of its neighborhood in the

network (see Methods). Briefly, we defined expression variance
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(EV) in order to capture the variability of a protein’s expression

across multiple conditions, neighborhood EV in order to describe

the neighborhood of a protein in terms of their EV, neighborhood

EV variance (vEV) to account for variability of EVs of neighbors of

a protein, average interactor Pearson correlation coefficient

(avPCC) to describe how a protein is co-regulated with its

neighbors, neighborhood PCC (nPCC) to ask if the neighbors of a

protein are co-expressed with each other, nPCC2 to describe co-

expression of proteins in the second neighborhood of a protein,

neighborhood PCC variance (vPCC) to account for variability of

expression profiles of proteins in the neighborhood, dynamic

degree (yK) to ask if a protein is co-regulated with other proteins in

the network, and neighborhood yK (nyK) to account for average yK

in the neighborhood. These metrics are explained in detail in the

Methods. Collectively, these metrics define a dynamic profile for

each protein.

Classification of proteins according to their dynamic
profiles in the network

First, a dynamic profile (values based on each metric) was

assigned to each protein in the network based on these metrics.

Then, we performed a hierarchical clustering of proteins in order

to identify distinct classes of dynamic profiles in the network and to

test if they represent specific functions of proteins in the network.

We only evaluated highly connected proteins (i.e. those that have

.6 interaction partners, which is the upper 30th percentile of the

node degree distribution), as they produced best clustering with

these values when compared to the clustering performed by

proteins having lower node degrees (not shown). From the

graphical representation of the clustering, it is possible to dissect

three main groups of proteins (Fig. 1). Group S1 is characterized

by the highest nPCC, avPCC, nEV and EV values, while S2 has

the lowest values in these categories. An obvious distinguishing

feature of S1 and S2 from the group S3 is their lower vEV values,

indicating that S1 and S2 proteins are located in neighborhoods

with homogeneous expression profiles. Despite having higher

variation in terms of most values, S3 proteins consistently have

higher vEV values, suggesting that these proteins are located within

highly variable neighborhoods.

In order to get a first impression about the connectivity profiles

of these groups in the network, we examined the protein-protein

interactions of these groups within and between each other. For

this purpose, we binned the proteins into 114 bins of 10 proteins,

respecting the order of proteins in the clustering above, and

Figure 1. Dissection of proteins into dynamical classes. Hierarchical clustering of proteins, using Ward’s method, by their dynamic profiles
(upper panel) and the interaction matrix showing the protein-protein interaction patterns between different dynamic profiles (lower panel). In order
to make clustering possible, we normalized each row to have a mean of 0 and a variance of 1. For the lower panel, proteins were binned into 114 bins
with the exact ordering as in the clustering in the upper panel. Each square in the matrix represents the number of interactions between respective
bins.
doi:10.1371/journal.pone.0006017.g001

Statistical Network Analysis
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calculated the number of interactions between every bin pair.

Strikingly, we see a significant interaction density within the S1

and S2 groups, but not in S3 or between S1 and S2, immediately

suggesting the existence of densely connected clusters in these

groups (Fig. 1a). Indeed, a network plot of these groups reveals

densely connected clusters of high and low EVs respectively

(Fig. 1a), indicating that the groups S1 and S2 are mainly

composed of highly co-regulated dynamic and non-variant static

densely connected clusters of proteins.

Densely connected clusters are likely to represent specialized

modules in the cell [10]. Indeed, S1 proteins have significantly

higher nPCC and nPCC2 values, which indicate that S1 proteins

represent dynamically expressed modules. In addition, these

proteins have higher nEV and EV values, pointing to their highly

dynamic expression pattern. S2 proteins, on the other hand, have

the lowest EV, nEV, vEV, vPCC, nPCC and nPCC2 values, which

strongly suggests that these proteins are located in neighborhoods

with non-variant expression patterns. Static neighborhoods have

been shown to be highly specialized functional modules [9].

Therefore, S1 and S2 groups represent dynamic and static

modules, respectively.

Of S1, S2 and S3, dynamic profiles of S3 proteins are the most

disparate. The only common characteristic of proteins in this

group seems to be the almost invariant high vEV or vPCC values,

which excludes these proteins from modules, where expression

properties of proteins are similar. The disparity of the dynamic

profiles of these proteins may stem from the versatility of their

functions, as they are located more centrally in the network (as

judged from their betweenness centrality scores, not shown) and

therefore may have functions in multiple processes. However, a

close analysis of the clusters generated by hierarchical clustering of

S3 reveals subgroups of proteins with distinct dynamic profiles

(Text S1). We hypothesized that these different dynamic profiles

may correspond to different functional classes of S3 proteins and

therefore analyzed them in more depth.

Dynamic classes have distinct roles in network
connectivity

In order to analyze if the dynamic profiles have distinct roles in

network connectivity, we separated S1 and S3 groups into more

subgroups based on their dynamic profiles (see Text S1). These

classes are distinguished from each other by one or more

characteristics that give insights about the dynamic nature of

their neighborhood and suggest specific functions that these

proteins may be performing in their respective localities in the

network (see Text S1). For example, separation of S1 into 3

subgroups suggests that there are two subclasses of dynamic

modules, those with high EV and those with lower EV (see Text

S1). Interestingly, there seems to be a functional distinction even

between these two, high EV dynamic modules being almost

exclusively those involved in ribosomal RNA synthesis and

processing as well as translation, whereas dynamic modules with

lower EV are almost exclusively proteasomal complexes (not

shown).

In order to analyze the specific roles of these dynamic classes in

the organization of the protein network, we undertook an in silico

loss-of-function approach where we remove the desired set of

proteins from the network and observe where the connectivity has

been perturbed in the network (see Methods). We removed each

dynamic class of proteins from our network, and measured where

the network path lengths of proteins has increased. An increase in

the path length between two nodes a and b upon removal of a node

c indicates that the node c lies on the path between nodes a and b.

Here, we only measured changes in path lengths between proteins

that are separated by one node in the original network (path

length = 2). Thus, when we remove a group c of proteins from the

network and see that the network paths from a group a of proteins

to another group b of proteins has been increased, we conclude

that the group c proteins are directly linking proteins of groups a

and b.

Fig. 2a shows the results for the removal of each dynamical class

from the network as compared to the removal of the same number

of randomly selected proteins of similar node degrees. The

removal of subgroup S1.1, which mainly contains ribosome

biosynthesis dynamic modules, impairs the connection between

S1.2 proteins as well as the connection of other proteins to S1.2.

Removal of S1.2 has an even stronger impact on the connectivity

of S1.1 proteins to each other as well as to most of the rest of the

network. These results indicate that S1.2 and S1.1 proteins are

inter-linked to each other and that S1.2 proteins are probably

located between proteins S1.1 and most of the rest of the network,

thereby bridging the two.

Removal of subgroups S1.3 and S2 does not seem to impact the

connectivity of the network, corroborating with the idea that these

proteins are isolated modules with highly specialized functions (not

shown). Connections of S2 to S3.6 and S3.7 are however impaired

by the removal of S3.1, which is in accordance with the dynamic

profile of this subgroup, which shows that although these proteins

are mainly surrounded by static proteins, they are also interacting

with dynamic proteins (see Text S1). An important role of S3.1

proteins in the network may be in connecting the static modules to

the rest of the network.

The dynamic profile of S3.2 suggests that these proteins interact

with dynamic proteins that are not modular (see Text S1). Fig. 2a

shows that their removal has the most significant impact on the

connection of S1.2 to the proteins of S3.6 and S3.7, indicating that

S3.2 proteins are coordinating the connections between proteins in

S1.2 and proteins in S3.6 and S3.7.

The most significant feature of proteins in S3.4 is their high

nPCC2 but low nPCC values, which suggest that these proteins

are found ‘‘just outside’’ of dynamic modules (Text S1).

Accordingly, their removal from the network results in an

impaired connectivity between dynamic modules of S1.3 and the

proteins in S3.6 and S3.7. Therefore, it can be concluded that S3.4

proteins are playing a role as coordinators of dynamic modules in

S1.3.

Although the overall betweenness centrality values of groups

S3.5 through S3.7 are not significantly different from each other

(not shown), removal of each has markedly different effects on the

network connectivity. While removal of S3.5 does not significantly

affect the network connectivity when compared to randomly

selected proteins (not shown), removal of S3.6 proteins seems to

affect the connectivity of most of S3 proteins to each other as well

as to S1.1 and S1.2 (Fig. 2a). However the most potent effect on

the network connectivity is seen with the removal of S3.7, where

connections within and between almost every group of proteins

becomes impaired (Fig. 2a). This observation argues that S3.7

proteins may be the most centrally located proteins in the network

as their deletion results in a severe network disorganization. Since

our in silico loss-of-function approach only takes into account node

pairs that are only 1 node apart in the original network (see above

and Methods), the profile of S3.7 deletion may indicate that these

proteins are highly dispersed throughout the network as opposed

to more localized positioning of other groups. Given its

significantly higher impact on the network connectivity as

compared to other groups, we hypothesized that S3.7 may contain

proteins that play roles as the central coordinators of cellular

events, and therefore analyzed this group in more depth.

Statistical Network Analysis
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S3.7: a ‘‘rich club’’ of central organizers in the network
Although deletion of S3.7 from the network results in a

significantly greater disintegration of connectivity among other

groups, S3.7 proteins are not significantly more centrally located

in the network as judged from their betweenness, degree or

closeness centralities (three metrics commonly used to measure a

node’s centrality in the network [11]) (not shown). This is

surprising at first sight, because betweenness centrality of a node

measures the frequency of paths between all node pairs that pass

through that node, and Fig. 2a shows that the paths between most

node pairs get impaired upon removal of S3.7 proteins. It is

conceivable, therefore, that S3.7 proteins may not be as central

individually as they are as a group. In order to test this, we

calculated group betweenness values (measures the centrality of a

group of proteins) of all groups, and find that S3.7 proteins have a

more significant group betweenness than other S3 groups (not

shown).

An observation that a group of nodes are significantly central as

a group but not as individuals suggests that there is some

redundancy among group members regarding connectivity of the

Figure 2. Characterization of roles of subgroups in the network connectivity. a) Deletion profiles of select subgroups. White stripes in the
heatmaps indicate the deleted group. Please see Methods for a detailed description of the deletion profiles. b) Normalized rich club coefficients (see
Methods) of each group.
doi:10.1371/journal.pone.0006017.g002

Statistical Network Analysis

PLoS ONE | www.plosone.org 4 June 2009 | Volume 4 | Issue 6 | e6017



network. This notion requires that the group members are tightly

connected to each other so that the absence of one node would be

compensated by another in the network. Indeed, a network plot of

the dynamic classes shows that S3.7 has a considerable within-

group interaction density as compared to others (Figure S1), which

corroborates with a possibility of a within-group redundancy in

terms of connectivity. Interestingly, among the S3 groups, only

S3.1 and S3.7 seemed to be displaying significant overall within-

group connectivity (Figure S1). In order to test if the observed

density of interactions among S3.7 proteins is expected by chance,

we compared within-group interaction densities of the groups with

those in 100 randomized instances of the network, and find that

S3.7 proteins are significantly more inter-connected than what

would be expected by chance (Fig. 2b). Only S3.1 and S3.3 groups

have within-group interaction densities close to that of S3.7.

However unlike S3.7, where proteins are inter-linked to each other

predominantly in a single connected web, S3.1 and S3.3 groups

contain some proteins that form small dense clusters with each

other, thus contributing to their high densities of within-group

interactions. Therefore, it follows that S3.7 proteins form a well-

connected web in the cellular network that regulates the

connectivity among different classes of proteins. This specific

connectivity pattern, where instead of being dispersed in the

network, central proteins are tightly inter-connected in a web,

resembles so-called ‘‘rich-club’’ connectivity pattern in social

networks and may have important implications about the cellular

mechanisms of regulating information flow within the protein

network (see Discussion).

Another striking feature of S3.7 is that proteins in this group are

highly regulated as evidenced from their high EV, but nevertheless

are not subject to a significant co-regulation with other genes in

the network as evidenced from their low yK (see Text S1), despite

the high correlation between EV and yK (Spearman’s r= 0.68).

This indicates that S3.7 proteins are not likely to be a part of

cellular gene expression programs and therefore have less

constraint in their expression when compared to other high EV

proteins (compare to S1, S3.5 and S3.6). This property may

corroborate with the notion that these proteins are the central

regulators of cellular processes (see Text S1). Accordingly, S3.7

contains the master regulators of processes like pheromone

response: STE11, FUS3 and STE12; and cell cycle: SWI5,

TEM1 and CKS1.

Global dynamic layout of the protein interaction network
Next, in order to generate a visualization of the dynamic layout

pattern across the network suggested by our analyses, we

constructed a reduced network by using the bins used to construct

the interaction matrix in Figure 1. Figure 3 shows the network of

bins, where each interaction represents at least 4 protein-protein

interactions between the proteins in respective bins (Figure 3). A

clear organized pattern of the network is evident from this plot,

where proteins with different dynamic profiles seem to be

positioned within well-defined network localities relative to each

other. It is possible to dissect three distinct classes of dense

modules, static modules (S2), high EV dynamic modules (S1.1) and

low EV dynamic modules (S1.3), with S1.2 connecting S1.1 to the

rest of the network, as suggested by our in silico loss-of-function

approach, and S3.4 coordinating the connections of S1.3 to most

of other proteins in the network, which was also suggested by our

in silico loss-of-function analysis. Importantly, the three classes of

modules are each specialized for a specific process, high EV

dynamic modules (S1.1) are those performing rRNA synthesis,

processing and translation, low EV dynamic modules (S1.3) are

those performing protesomal protein degradation, and static

modules (S2) are those performing mRNA synthesis, splicing and

transcriptional control. Other proteins in the network are

positioned between these modules according to their dynamic

profiles, possibly coordinating functions of these modules.

Most of S3.7 proteins are positioned in the center of this

network and seem to be densely connected to each other, also in

accordance with our observations above. This plot provides a

graphically intuitive representation of our analyses presented

above regarding the dynamic organization pattern within the

protein interaction network.

The dynamic organization pattern is reproducible across
different datasets

An important factor to be considered in protein network studies

is the high rate of false positives in high throughput protein-protein

interaction data. Even though our dataset contains only high

quality data [12,13], we wanted to check if the dynamic profiles in

this study and their interaction profiles can be reproduced using

other high quality datasets. For this purpose, we used high quality

datasets from two recent studies that reported contradictory

findings with respect to each other about network modularity

[7,14]. A clear separation of S1 and of its subgroups, S2 and S3

groups as well as their interaction patterns very similar to the one

in Figure 1 can be seen in both datasets (Fig. 4). Out of each

dataset, we extracted a cluster that most resembled S3.7 according

to their dynamic profiles. Our criterion for S3.7 was that the

cluster must have a high EV, low yK, low nPCC and avPCC,

moderate nEV and high vEV or vPCC, in accordance with the profile

of S3.7 (see Text S1). The resulting set of proteins had a significant

overlap with S3.7 (p,1025, hypergeometric distribution), which

suggests that this set is enriched for S3.7 proteins. In both datasets,

the cluster we extracted had a significantly higher within-group

density of interactions than what would be expected by chance

(not shown), supporting our observations above.

Using their high quality dataset, Batada et al (2007) argued

against the model of organized modularity in the protein

interaction network [6,7] that was proposed earlier [15].

Interestingly, using our approach, we show that their dataset in

fact supports the model of organized dynamic modularity. We

suggest that our multi-dimensional approach can resolve the

discrepancy in literature by providing a more comprehensive view

of the protein network characteristics.

Discussion

In this work, we first derived several novel graph theoretical

metrics to explain the dynamic behavior of a protein and of its

neighborhoods in the network, and then out of a global

distribution of dynamic profiles of proteins we revealed a highly

specific and organized functional dynamic layout model of the

protein network, which seems to be consistent across different

datasets.

We had previously characterized static and dynamic modules

[9]. In this work, by taking a more comprehensive approach, we

confirm the existence of static and dynamic modules. In addition,

we also identify a different subclass of dynamic modules that have

lower EV values. Interestingly, this subgroup of dynamic modules

is mainly composed of proteasomal complexes. It follows that high

EV dynamic modules are mainly involved in protein synthesis

(through rRNA synthesis and translation), while lower EV

dynamic modules are specialized for protein degradation.

We have found that the most central organizers of the protein

interaction network have a high preference of interactions for each

other and therefore form a highly connected web at the core of the

Statistical Network Analysis
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network. This connectivity pattern is reminiscent of the ‘‘rich

club’’ phenomenon in complex networks, which is characterized

by a significant connection density among ‘‘important’’ hubs (i.e.

‘‘rich’’ nodes) in the network (hence ‘‘rich club’’), and has

implications in the network routing efficiency, redundancy and/

or robustness [16,17]. The rich-club in the internet network has

been suggested to serve as a super traffic hub and provide a large

selection of shortcuts for a greater efficiency and flexibility of the

traffic routing [16]. In the case of protein interaction networks,

dense connectivity between central proteins may indicate fast

communication between different parts of the network and/or a

highly coordinated control of cell behavior through dense within-

group interactions.

Another dimension to this intriguing scenario is added by the

consideration of highly regulated expression pattern of S3.7

proteins, as evidenced from their high EV (see Text S1). The

pattern of signal transduction between different parts of the

network, therefore, may be regulated by modulating the

expression levels of central proteins, thereby fine-tuning network

behavior according to the conditions at hand. Therefore, it is

tempting to speculate that the presence of rich clubs among highly

dynamic proteins in the protein interaction networks of eukaryotes

may be an evolutionarily selected mechanism of highly efficient yet

regulated signal propagation across the network.

Since the initial observation of differential positioning of

proteins in the network according to their expression profile

based on a single metric (avPCC) [15], there has been some

debate regarding whether the original observations by Han et al

(2004) reflected an artifact of the specific network they used for

their study [6,7]. By utilizing a comprehensive survey of

expression characteristics of proteins as well as of their

immediate network localities in several datasets, our study

confirms the notion of dynamic modularity in the eukaryotic

protein interaction network. We show that a multidimensional

analysis can resolve the discrepancy between these studies by

offering a higher resolution view of the dynamic network

organization. For example, the initial proposition of so-called

‘‘date’’ hubs to be central proteins by Han et al is refined in this

study by showing that date hubs also contain highly modular

static proteins as well as non-central organizer proteins.

Moreover, most of the characteristics attributed to date hubs

(like higher evolutionary rate, higher synthetic lethality rate,

higher density of genetic interactions) turn out to be the

characteristics of proteins in static modules, which, importantly,

logically dissociates the notion of centrality from the variability

in protein networks suggested earlier [18]. In addition,

suggestion that the protein network lacks an organized pattern

[6,7] (and hence displays a disorganized highly inter-connected

‘‘stratus’’ pattern) is shown to be incorrect in this study by using

a more comprehensive approach, even using the same dataset as

in the original study of Batada et al [7]. We believe that further

development of novel methodology for the analysis of biological

networks is crucial for systems biology to be successful in

discovering the complex fabric of life.

Figure 3. The reduced network plot. Each node in this network represents one of bins used to construct the interaction matrix in Figure 1.
Therefore, each bin represents 10 proteins with most similar dynamic profiles. In this network, there is an interaction between two bins only if there
are at least 4 number of protein-protein interactions between proteins in the two bins. Bins are colored according to which dynamic class they
belong.
doi:10.1371/journal.pone.0006017.g003

Statistical Network Analysis
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Methods

Datasets
Protein interaction network was compiled from studies of

Krogan et al (2006) [13] (high quality binary interaction data) and

Bader et al (2004) [12] (high quality interactions with a confidence

cut-off of 0.65). For microarray compendium, we used the same

dataset as in ref. 9.

Deriving novel network metrics
First, we consider an |N|6|N| adjacency matrix A of the

network with a node set N and an |N|6|N| expression

correlation matrix C, constructed by calculating all pair-wise

Pearson Correlation coefficients of expression profiles of genes

using our microarray compendium. A is such that Ai,j is 1 if and

only if proteins i and j interact, and 0 otherwise. C is such that Ci,j is

the variance of the expression profile of gene i if i = j, otherwise it is

the Pearson correlation coefficient of expression profiles of genes i

and j. Variances of expression profiles of genes in the diagonal of C

are normalized so that their values reflect their quantile in the

whole distribution of variances [9] (i.e. these values range from 0

to 1).

Expression variance (EV). As defined previously [9],

expression variance (EV) of a protein is the statistical variance of

its expression levels across all the conceivable conditions and

reflects the extent of transcriptional regulation of a gene; so that a

low EV indicates that the gene has a static expression pattern and

therefore is not transcriptionally regulated, while a high EV

indicates a highly regulated expression pattern.

EVi~si~Ci,i

Neighborhood EV (nEV). nEV is the average EV in the

immediate neighborhood of a protein and is defined as

nEVi~

P
j[N

Cj,j
:Ai,jP

j[N

Ai,j

Neighborhood EV reflects the expression variances of a

protein’s neighbors in the network. We have shown that nEV

can be particularly informative about a protein’s location in the

network [9]; low nEV of proteins being a strong indicator that the

protein is located within densely connected modules in the

network (i.e. set of proteins dedicated to a specific cellular process).

Variance in neighborhood EV (vEV). This is variance of EV

values in the neighborhood and is defined as:

vEV
i ~

P
j[N

Ai,j Cj,j{nEVi

� �2

P
j[N

Ai,j

where nEVi is the neighborhood EV of gene i. This metric shows

how variable the neighborhood of a protein is in terms of their EV,

so that a neighborhood with high vEV would suggest that the

neighborhood of the protein is composed of proteins with variable

levels of regulation and may indicate that the protein is not located

within a module.

Neighborhood Pearson correlation coefficient

(nPCC). This is the average expression correlation between

neighbors of a protein and is defined as:

Figure 4. Heatmaps for the dynamic profiles of proteins in two independent datasets and their protein-protein interaction profiles.
a) High confidence dataset from Bertins et al (2006). b) High confidence dataset from Batada et al (2006). Ordering of proteins in bins of the
interaction matrices are exactly like in the heatmaps above each matrix. Clustering was done the same way as for our dataset (see text).
doi:10.1371/journal.pone.0006017.g004
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nPCCi~

P
j,k[n

Cj,k

n2

where n is the set of neighbors of protein i. nPCC is a dynamic

equivalent of the clustering coefficient in social networks, and as

opposed to connectivity coherence in social networks, it shows the

extent of expression coherence in a protein’s neighborhood. High

nPCC indicates that the neighbors of the protein are highly co-

regulated and that the protein is probably located within a

dynamically regulated module (dynamic module) whose protein

constituents are highly co-expressed.
2nd neighborhood Pearson Correlation Coefficient

(nPCC2). This is the average nPCC among neighbors of a

protein. nPCC2 reflects the extent of co-regulation in the second

neighborhood of a protein. A protein with high nPCC2 but low

nPCC is most likely to be located ‘‘just outside’’ of a dynamic

module and interacting with one or more proteins inside the

module.
Variance in the neighborhood Pearson Correlation

Coefficient (vPCC). This is variance in correlation between

neighbors of a protein and is defined as:

vPCC
i ~

P
j,k[n

Cj,k{nPCCi

� �2

P
j,k[n

Aj,k

PCC variance (vPCC), reflects the variation in the co-regulation

of proteins in the neighborhood. Like vEV, vPCC shows how variable

the neighborhood is, but unlike vEV, vPCC also reports how similar

or dissimilar the expression profiles of the neighbors are.

Dynamic degree (yK): yK is a dynamic equivalent of node degree in

social networks. It is defined as the sum of its absolute PCC values

with all proteins in the network,

yKi~
X
j[N

Ci,j

�� ��
and reflects the number of proteins that it is co-regulated with.

Formally, yK measures the size of the co-expression neighborhood

of a protein, so that a protein with a high yK is probably a member

of a gene expression program with many genes and therefore its

expression may be tightly regulated, while a low yK would indicate

that the protein’s expression is not coupled to the expressions of

other proteins in the network.
Neighborhood dynamic degree (nyK). nyK is simply the

average yK in a protein’s neighborhood.

In silico loss of function method for network connectivity
analysis

D is an |N|6|N| matrix of shortest path distances between all

node pairs in the network, where N is the set of nodes. Let Dx be

the distance matrix of a network formed by the deletion of a set

x(N of nodes from the original network. A difference matrix Dk

is such that Dk
i,j~Dx

i,j{Di,j if and only if Di.j#k, and 0 otherwise.

Value k denotes the distance of interest. For example if k = 2 (our

case), differences in distances between node pairs that are 1 node

apart in the original network are considered, so that if Dk
i,jw0, we

conclude that some node(s) in x are directly linking nodes i and j in

the original network. If all distances are to be considered, k = ‘

should be chosen.

We consider a null model for matrixDk, by performing 20

random deletions of |x| number of proteins with node degrees

similar to x. Dk
null is such that

Dk
null i,j~SDnull

i,j {Di,jT,

where Dnull is the distance matrix of network formed by a random

deletion of |x| number of nodes, of which there are 20.

Normalized form of the difference matrix therefore becomes

Dk
norm i,j~log

Dk
i,j

Dk
null i,j

 !

where each i, j position gives the amount of impact on the path

length between nodes i and j relative to what would be expected by

chance.

Rich club coefficients
Rich club coefficient (w) is defined as the density of interactions

between nodes having node degrees larger than a specific value

[17],

w
wk~

2Ewk

nwk nwk{1ð Þ

where E.k is the number of edges between, and n.k is the number

of, nodes that have node degrees higher than k. We define rich

club coefficient within the group as

wS~
2ES

nS nS{1ð Þ

where ES is the number of edges between, and nS is the number of,

nodes in group S. A null model is considered by randomly shuffling

the positions of nodes at one side of the adjacency matrix 100

times (equivalent to random rewiring of each node’s connections),

and calculating the corresponding rich club coefficients at each

time. Normalization of the within-group rich club coefficients

against null model is performed by

w
0

S~
wS{mnull

snull

where mnull is the mean and snull is the standard deviation of the

distribution of the null model.

Supporting Information

Text S1 Detailed analysis of S3 subgroups.

Found at: doi:10.1371/journal.pone.0006017.s001 (0.25 MB

PDF)

Figure S1 Network plots of the dynamical classes. Plots were

generated using gplot() function in sna package for R (http://

erzuli.ss.uci.edu/R.stuff).

Found at: doi:10.1371/journal.pone.0006017.s002 (1.8 MB TIF)
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