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d’Anatomie et Cytologie pathologiques, AP-HP, Hôpital A. Béclère, Clamart, France

Abstract

Background: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is
not restored by highly efficient anti-retroviral therapy (HAART). Because longitudinal investigations of primary HIV-infection
is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian
immunodeficiency virus (SIV) mac251-infected Cynomolgus macaques.

Methods and Findings: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on
three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.). We have
simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various
lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD2CD27+) B-cells in spleen
and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small
intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig
production was only detectable after D14p.i., coinciding with the presence of CD8+ T-cells and IgG-expressing plasma cells
within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to
memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had
minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus–B-
cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired
SIV/HIV-specific antibody response.

Conclusions: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and
steady memory B-cell loss in secondary lymphoid organs. Characterization of underlying mechanisms would be helpful in
designing new therapeutic strategies to dampen B-cell activation and increases HIV/SIV specific antibody response.
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Introduction

B-cell dysfunction represents a central feature of HIV infection

and an important pathogenic mechanism [1–5]. In the absence of

highly active antiretroviral therapy (HAART), HIV-1 infection is

associated with a wide range of B-cell defects, including polyclonal

hypergammaglobulinemia and the presence of immature/transi-

tional CD10+ or exhausted CD27 negative B-cells in blood [5,6].

Decreased expression of CXCR5 on blood B-cells [7] but

increased proportions of CD38-expressing B-cells have been

described as a consequence of abnormal trafficking of germinal

centre (GC)-like B-cells into blood [8]. More recently, Cagigi et al

have shown that the decrease in CXCR5 expression is

concomitant to abnormal CXCL13 production by peripheral

and lymph node B-cells and increased B-cell responsiveness to

CXCL13 in HIV-1 infected patients with low CD4+ T-cells

counts [9]. As CXCR5/CXCL13 pair is essential for the entry of

naive B-cells and marginal zone (MGZ) B-cells into follicles

[10,11], altered expression of this chemokine receptor-ligand pair

may contribute to abnormal B-cell trafficking during the course of

HIV-1 infection. In secondary lymphoid tissue from HIV-1

infected individuals, follicular hyperplasia and alterations in the

architecture of GC and splenic MGZ were observed [12–14].

Despite polyclonal activation, the humoral response is strongly

impaired, resulting in a decreased response to natural or vaccine

T-independent and T-dependent antigens [15] and a loss of

peripheral memory B-cells [16–18]. Most of these defects are

considered as the hallmarks of the chronic phase of infection and

are frequently correlated with increased plasma viral load (pVL)

and loss of CD4+ cells [5]. However, recent studies in humans
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[15,19] suggest that early activation has a major role in shaping B-

cell (memory and plasma cell) repertoire and trafficking [19–21].

In particular, primary HIV-infected patients have severe and

irreversible damage to several blood B-cell subsets, which is not

counteracted by HAART despite an increase in CD4+ T-cell

counts and a decreased viral load [3].

The study of primary HIV-1 infection in humans is limited by

the availability of lymphoid organs and the difficulties associated

with performing longitudinal investigations using tissues other than

blood or tonsils. We thus used a model of experimental pathogenic

infection in cynomolgus macaques—a well-known, suitable model

that reproduces long-lasting HIV-1 disease [22]—to investigate B-

cell dysfunctions during acute HIV infection. Experiments were

performed on three groups of macaques infected by SIVmac251

strain for 14, 21 or 28 days (placebo-treated groups) and on three

groups of animals treated with HAART for two-weeks either

initiated at 4 h, 7 or 14 days post-infection (p.i.) and sacrificed at

D14, 21 and D28 p.i. (HAART-treated groups). After having

characterized naive, memory and MGZ B-cell subsets in various

lymphoid organs from non-infected animals, we have compared

the changes in these B-cell subsets in blood, lymph nodes (LN) and

spleen of placebo- and HAART-treated macaques and examined

whether correlations could be established with immunological or

virological parameters. Changes in B-cell functions in vitro

(proliferation, apoptosis or immunoglogulins (Ig) production) as

well as in tissue organization of areas populated by B-cells within

lymphoid tissues (spleen, small intestine and mesenteric LN) were

concomitantly examined in placebo- or HAART-treated animals.

Our data show that SIV induced a transient increase in B-cell

apoptosis and SIV non-specific Ig production by D14p.i., a steady

loss of memory B-cells in spleen and peripheral LN but promoted

preferential B-cell trafficking to the small intestine and spleen.

HAART initiated 4 hp.i. strongly decreased B-cell apoptosis and

B-cell seeding of gut mucosa, but not memory B-cell loss. The

production of SIV non-specific IgG was similar in placebo- and

HAART-treated animals whereas that of SIV-specific antibodies,

only detectable after D14p.i., was abrogated by HAART initiated

on D7p.i.. These data establish tissue-specific impairments in B-

cell trafficking and functions but a generalized and steady memory

B-cell loss in secondary lymphoid organs. Our results provide a

clearer understanding of the effects of SIV/HIV-1 on the B-cell

compartment during the acute/primary phase of infection.

Results

SIV infection induces a B-cell increase in spleen
We compared the proportions of lymphocyte subsets in blood,

spleen and peripheral (inguinal and axillary) LN from various

groups of animals infected for 14, 21 or 28 days. Baseline values

for blood samples were obtained from each animal before

infection, whereas those for spleen and LN were obtained from

non-infected animals (controls).

Consistent with previous reports [23,24], SIVmac251 infection

induced a decrease in blood CD4+ and CD8+ T-cell and NK-cell

counts, detectable by D7 p.i., but reaching their nadir on D14 p.i.,

with reductions of 53% for CD4+, 49% for CD8+ and 85% for

NK cells (Table 1). Plasma VL was inversely correlated with

CD4+ (Rho = 20.57, p = 0.05) and CD8+ (Rho = 20.65, p = 0.03)

T-cell counts (supplemental Figure S1). In these SIV-infected

animals, the number and percentage of B-cells (Figure 1.A)

decreased to a nadir reached on D14 p.i. (87% and 60% decrease,

respectively) and remaining at 35% and 40% below the baseline

values on D28 p.i.. B-cell counts correlated with percentages of B-

cells (Rho = 0.57, p = 0.02) and CD4+ cell number (Rho = 0.88,

p,0.01) and inversely correlated with pVL (Rho = 20.79; p,0.01)

in SIV-infected animals (supplemental Figure S1). In contrast

to blood, the proportion of B-cells in the spleen steadily increased,

with a 40% increase detected from D14 p.i. on (4064%, 3365%

and 4062% on D14, 21 and 28p.i., respectively versus 2765% in

non-infected animals) and the proportion of B-cells varied by less

than 10% of baseline values in LN (2063%, 2466% and 2261%

on D14, 21 and 28p.i., respectively versus 2362% in non-infected

animals) (Figure 1.A). These data suggest that SIV infection

induces a preferential accumulation of B-cells in the spleen during

the acute phase of infection.

Memory B-cell loss is induced early in acute SIV infection
Consistent with previous data obtained in humans [25–27], the

combined analysis of CD20, CD27 and Surface IgD (SIgD)

expression allows the delineation of three blood B-cell subsets in

the macaque: SIgD+CD272 naive B-cells, SIgD2CD27+ memory

B-cells and SIgD+CD27+ MGZ B-cells (Figure 1.B). In constrast

to humans, we found that the proportion of peripheral memory B-

cells was higher than that of naive B-cells (6864% versus 1162%

of B-cells, respectively) in non-infected macaques (Figure 1.C).

The proportions of blood MGZ B-cells were similar in humans

(1262%) [25] and macaques (1765%). In LN, memory cells

accounted for 5965%, naive cells for 1564% and MGZ B-cells

for 2266% of the total B-cell population (Figure 1.D), whereas

they accounted for 39610%, 3065% and 1765% of the total B-

cell population in spleen (Figure 1.E). In agreement with our

data, Vugmeyster et al reported that smaller proportions of naive

(CD20+ CD272) B-cells and higher proportions of CD20+CD27+

B-cells are present in blood and LN of cynomolgus macaques than

those in humans [28]. A population of GC B-cells of variable size

has been characterized in human lymphoid organs by the co-

expression of CD20 antigen with CD10, CD38 and CD77

antigens. Unfortunately, staining with any of the specific

antibodies (Ab) was not suitable to define a similar GC population

in macaques (data not shown).

SIV infection induced an early but transient loss of peripheral

memory B-cells, with a two- and 1.4-fold decrease observed in

the percentage of cells at D7p.i. and D28p.i., respectively. A 4.3-

and three-fold increase in peripheral naive B-cells was observed

on D7 and D28p.i., respectively. Changes in MGZ B-cells were

only detected on D21 and D28 p.i. (1.4- and 1.2-fold decrease,

respectively) (Figure 1.C). In LN, the proportion of memory B-

cells had decreased by factors of 1.3 by D14 p.i., 2.6 by D21p.i.

and 2.2 by D28 p.i., respectively, whereas the percentage of

naive B-cells increased by a factor of 2.7 from D14p.i.

(Figure 1.D). The percentage of MGZ B-cells transiently

decreased with a nadir observed at D14p.i. (1.6-fold decrease)

and values approaching baseline at D21 p.i.. Results were similar

for axillary and inguinal LN (data not shown). In spleen, memory

B-cells were decreased by a factor of 2.3 by D14, 5.6 by D21

and 3.9 by D28 p.i.. The percentages observed for MGZ B-cells

between D14 and D28 p.i. were between 1.2 and 1.5 times lower

than baseline. In contrast, the percentage of naive B-cells steadily

increased from D14p.i. by a factor of 2.3. (Figure 1.E).

Differences in the proportion of memory and naive B-cells in

blood, LN and spleen between non-infected and SIV-infected

animals were significant (p,0.05) at each time point (Figure 1C,
D and E). The percentage of MGZ B-cells only differed

significantly between non-infected and SIV-infected animals in

LN at D14p.i. (p,0.05). These results reveal a substantial

depletion of memory and MGZ B-cells in all organs during the

first four weeks of SIV infection. This depletion was transient in

blood but longer lasting in lymphoid organs.

B-Cells during SIV Infection
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Figure 1. Changes in B-cell subsets in blood, peripheral LN and spleen of SIV-infected animals. (A) Cell suspensions from various organs
were analyzed by flow cytometry for CD20 expression. Absolute cell numbers (cells/ml) or percentages of blood B-cells before infection (pre, black
square, n = 13), on D7, 14, 21 p.i. (open circle, n = 5 per group) or on D28p.i. (open circle, n = 3). *, p values,0.05 are shown. ND: Not Done. (B) CD27
and SIgD expression was studied by 3-paramater immunofluorescence analysis on CD20-gated populations from various organs. Cells are gated on
forward and side scatter (R1), then on CD20 (R2). Expression of CD27 and SIgD in CD20+ cells is shown on a representative dot plot of PBMC staining.
The percentage of positive cells is indicated in each quadrant. Flow cytometry plots depict Log10 Fluorescence. (C–E) The mean percentages of naive

B-Cells during SIV Infection
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Differential changes in memory B-cells from various
lymphoid organs during SIV infection

It is well established that memory SIgD2CD27+ B-cells preferen-

tially express SIgG/A over IgM in humans. We therefore quantified

the relative levels of CD27+B-cells expressing SIgG and SIgM in

macaques. The ratio between SIgM and SIgG in blood B-cells did not

differ significantly between non-infected and SIV-infected animals at

any time point tested during the four weeks of infection (Table 2). By

contrast, this ratio progressively increased in LN and spleen, with 2.4-

and 2.8-fold increases detected at D28 p.i. in these two tissues,

respectively. These data suggest that switched memory B-cells were

preferentially depleted in secondary lymphoid organs.

As in humans, macaque memory B-cells can express CD80 and

CD86 co-stimulatory molecules: most peripheral memory B-cells

Table 1. Peripheral B cells (CD20+) strongly decrease during infection by SIVmac251.

Days after
infection SIV pVLa CD4+CD3+ CD8+CD3+ NKb CD20

copies/ml number/ml
%
modulation number/ml

%
modulation number/ml

%
modulation number/ml

%
modulation

0 2 2 1493 6 167 1464 6 310 911 6 186 992 6 104

7 + (763)6104 1173 6 219c (2)1369 1108 6 334c (2)16611 536 6 180c (2)29614 748 6 167 (2)22612

0 2 2 573 6 66 770 6 74 988 6 322 918 6 154

14 + (20610)6106 256 6 103c (2)53616 386 6 149 (2)49619 168 6 85c (2)8567 102 6 43c (2)8765

0 2 2 1493 6 167 1464 6 310 911 6 86 992 6 104

21 + (3165)6105 1181 6 122 (2)5613 1651 6 177 (+)44617 666 6 105c (2)1618 531 6 66c (2)4266

0 2 2 1134 6 215 1028 6 205 351 6 28 961 6 206

28 + (47613)6104 877 6 81 (2)16613 1541 6 424 (+)60646 521 6 209 (+)40646 568 6 77 (2)3569

aPlasma Viral Load.
bNK subset defined as CD8+CD32.
cp,0.05 compared with animals before infection.
All values are means6SEM.
doi:10.1371/journal.pone.0005966.t001

Table 2. Selective decreases in SIgG+, CD80+, CD86+ or CD95+ memory B cells.

Lymphoid
organs

Days post-
infection n Memory B cells

Ratio SIgM+/SIgG+a % SIgD2CD27+ % SIgD2 CD80+ % SIgD2 CD86+ % SIgD2 CD95+

Blood Ctlb 4 1.5960.29 68 6 4 68 6 5 59 6 5 74 6 5

7 3 1.6160.09 34 6 3c 36 6 1c 31 6 3c 34 6 3

21 3 2.1560.65 53 6 4c 55 6 4 47 6 7 57 6 3

28 3 1.5960.09 50 6 10 49 6 11 41 6 11 51 6 10

LN Ctl 4 0.6060.07 59 6 5 30 6 8 34 6 4 62 6 10

14 6 1.0560.21 46 6 3 20 6 3 26 6 1 58 6 4

21 5 1.1360.20 23 6 6c 29 6 11 23 6 5 26 6 1

28 6 1.8860.24c 27 6 2c 27 6 1 22 6 2 33 6 2c

Spleen Ctl 3 0.4860.15 39 6 10 18 6 6 28 6 3 47 6 10

14 3 1.1560.12c 17 6 5 8 6 1 14 6 3c ND

21 3 1.7160.16c 7 6 1c 11 6 2 12 6 3c ND

28 3 1.3460.11c 10 6 1c 6 6 1 8 6 1c 16 6 1c

aThe SIgM+ and SIgG+ populations are restricted to CD27+ B cell subsets.
bCtl as control for non-infected animals.
cp,0.05 compared with non-infected animals.
All values are means6SEM.
doi:10.1371/journal.pone.0005966.t002

(SIgD+ CD272, open area), memory (SIgD2 CD27+, hatched area) and MGZ (SIgD+ CD27+, black area) B-cells for each group of animals are shown in
panels C to E. Data in blood before (n = 3) or after exposure to SIV (n = 3 per group) are shown in panel C. Data from spleen of non-infected or SIV-
infected animals (n = 3 for all groups) are shown in panel D. Data in LN from non-infected animals (Ctl, n = 4) or SIV-infected animals (n = 5 for all
groups) are shown in panel E.
doi:10.1371/journal.pone.0005966.g001

B-Cells during SIV Infection
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(SIgD2CD27+) co-expressed CD80 and CD86 in non-infected

animals (Table 2). After infection, the percentages of both

peripheral CD80+ and CD86+ memory B-cells decreased,

reaching a nadir at D7 p.i. (1.8- and 1.9-fold decreases,

respectively). A significant correlation was observed between the

percentages of SIgD2CD27+ memory B-cells and those of

SIgD2CD86+ (Rho = 0.93, p,0.003) or SIgD2CD80+

(Rho = 0.92, p,0.003) B-cells. In LN, most memory B-cells were

either CD80+ or CD86+ in non-infected animals (data not shown).

By D14 p.i., the percentage of CD80+ cells had decreased by a

factor of 1.5, CD86+ had decreased by a factor of 1.2 and total

memory B-cells by a factor of 1.3. At D21 and D28 p.i., the

percentage of CD80+ had increased, approaching the baseline

value, whereas the percentages of both CD86+ and total memory

B-cells continued to decrease by similar amounts. The percentage

of total SIgD2CD27+ memory B-cells was correlated with that of

SIgD2CD86+ (Rho = 0.65, p,0.004) but not SIgD2CD80+ B-

cells. In spleen, the percentage of CD80+ was lower than that of

CD86+ B-cells within the memory B-cell subset, about 10% of

memory B-cells were CD80+CD86+ (data not shown). After

infection, the percentages of CD80 and CD86 memory B-cells

had decreased by factors of 2.2 and 2 by D14 p.i., by factors of 1.6

and 2.3 by D21 p.i. and by factors of 3 and 3.5, respectively, by

D28 p.i.. At the same time, the proportion of total memory B-cells

decreased by factors of 2.3, 5.5 and 3.9 by D14, D21 and D28 p.i..

The percentage of total (SIgD2CD27+) memory B-cells was

correlated with that of SIgD2CD86+ (Rho = 0.69, p,0.03) but not

SIgD2CD80+ B-cells.

Consistent with the expression of CD95 by most memory B-cells

in all organs, the percentage of total and CD95-expressing

memory B-cells decreased concomitantly in SIV-infected animals

(Table 2). A significant correlation was found between these

percentages in blood (Rho = 0.98, p,0.002) and LN (Rho = 0.79,

p,0.001) during acute SIV-infection.

Our data thus show a transient depletion of blood

CD80+CD86+CD95+ memory B-cells without modification of

the ratio between SIgM- and SIgG-expressing cells. In contrast, a

preferential and sustained depletion of SIgG-, CD86-, CD95-

expressing memory B-cells was observed in LN and spleen.

SIV infection transiently affects B-cell survival,
proliferation and Ig production

To assess whether the decrease in memory B-cells results from

apoptosis, anergy or terminal differentiation, we investigated the

effect of SIV infection on spleen B-cell function. The proliferation

rate of SIV-infected spleen B-cells to B-cell receptor (BCR)

stimulation was three (IL2+ SAC) and four (IL4+ anti-Ig H+L Ab)

times lower than in non-infected animals at D14 p.i., but three and

1.4 times higher thereafter. Similarly, the response to CD40

stimulation was four times lower at D14p.i. and six and 8.4 times

greater at D21 and D28 p.i., respectively (Figure 2.A). Levels of

spontaneous and BCR-induced apoptosis were 20% higher in

SIV-infected animals than in non-infected ones at D14p.i..

(Figure 2.B). Spontaneous and BCR-induced apoptosis at D21

and D28 p.i. were two and three times lower, respectively, than

those observed in non-infected animals.

In addition to these effects on B-cell proliferation and apoptosis,

a strong increase in plasma Ig concentration was observed in SIV-

infected animals from D7 p.i.. However, the kinetics of IgG and

IgM production differed (Figure 2.C): as compared to baseline

values, IgM production was significantly increased by 29% up to

D14 p.i. and by 54% to 69% thereafter, whereas IgG production

was transiently increased by 50 to 60% by D14p.i. (p,0.001).

Changes in IgG production were a direct result of an impaired B-

cell response. Indeed, spontaneous and cytokine (IL2+IL10)-

mediated IgG production by purified spleen B-cells was increased

in SIV-infected animals at D14p.i. (Figure 2.E), probably

reflecting the in vivo commitment to plasma cell differentiation.

At D21p.i., IgG levels were still higher than control values in

supernatants from spleen cells cultured with medium or stimulated

with cytokines. The addition of CD40 mAb further enhanced

cytokine-mediated IgG production in culture supernatants from

non-infected and SIV-infected macaques on D21p.i. but not on

D14p.i.. This suggests that available SIV-responsive B-cells are

committed to plasma differentiation by D14p.i., whereas new SIV-

responsive B-cells can be recruited into plasma cell differentiation

from D21p.i.. Consistent with this notion, SIV-specific Ab were

detected in only two out of seven plasma samples from D14p.i. but

were present in most plasma samples from D21p.i. The median

Ab plasma concentration thus significantly increased between D21

and D28 p.i. (Figure 2.D).

Early HAART strongly decreases plasma viral load but not
depletion of blood B-cells

To improve our understanding of the kinectics of B-cell

dysfunctions during the acute phase of SIV infection, we

compared data obtained in placebo- and HAART-treated

macaques. Animals were subjected to HAART for two-weeks

initiated at 4 h (beginning of the infection), 7 or 14 (peak of pVL)

days p.i. and sacrificed at the end of HAART (i.e.: on D14 (H14),

21 (H21) and 28 (H28) p.i.) (Figure 3.A). At each time point,

comparisons were done between placebo and HAART-treated

groups infected for the same time period. A 106 fold decrease in

pVL was detected at D14 p.i. in H14 animals as compared to P14

animals whereas treatment initiated at D7 and D14 p.i. only led to

103 fold (H21) and 10-fold (H28) decreases in pVL (Figure 3.B).

Despite its efficiency in decreasing pVL in H14 animals, CD4 T-

cell (Figure 3.C) and CD20 cell counts (Figure 3.D) were less

than 10% higher in these animals than relevant placebo-treated

animals. CD4+ T-cell and B-cell counts were correlated in

HAART-treated animals (Rho = 0.925, p,0.0005).

The percentage of total blood B-cells was 20% and 10% higher

in H14 and H21/28 animals respectively, than in placebo-treated

animals (P14, 21 or 28). These differences were not statistically

significant (Figure 3.E, left panel). However, percentages of

memory and MGZ blood B-cells were partially restored at D21

and D28p.i.. In H28 animals, percentages of naive, MGZ and

memory B-cells almost reached baseline values (Figure 3.E right
panel). Only the difference between percentages of MGZ B-cells

between P28 and H28 was statistically significant (p,0.05). The

SIV-mediated increase in total spleen B-cells (Figure 3.F, left
panel) was less marked in animals receiving HAART than in

placebo-treated animals but loss of memory and MGZ B-cells was

still prominent at D21 and D28 p.i. (Figure 3.F, right panel).
The differences between percentages of total B-cells in placebo-

and HAART-treated groups were not statistically significant but

those between percentages of naive and memory B-cells on D21/

28p.i. and of MGZ B-cells on D14p.i. were statistically significant

(p,0.05).

Although HAART initiated at 4 h p.i. abrogated both

spontaneous and BCR-induced apoptosis (Figure 2.B), the

impairment in BCR- and CD40-mediated proliferation was only

partially counteracted (Figure 2.A). Early HAART had no effect

on the plasma IgG/M increase detected before D14p.i.

(Figure 2.C), but led to a 50% decrease in IL2+IL10-induced

IgG production in vitro (data not shown). HAART potently reduced

SIV-specific Ab and total IgM production when initiated on D7

p.i. but was less efficient when initiated on D14p.i. (Figure 2.C).

B-Cells during SIV Infection
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Figure 2. Functional impairment of B-cell response during early SIV infection. (A) Splenocytes were cultured with medium, IL2+SAC,
IL4+anti-Ig (H+L) Ab or IL2+IL10+anti-CD40 mAb for three days. Proliferative response was evaluated in at least four non-infected animals (Ctl, black
diamond), two (P21, H21), three (P28, H28) and four (P14, H14) SIV-infected animals. Each point represents the stimulation index (SI) for one animal.

B-Cells during SIV Infection
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Changes in B-cell areas occur with different kinetics in
mesenteric LN and spleen

To extend our data obtained from cell suspensions, we

investigated the tissue organization in lymphoid organs of placebo-

or HAART-treated SIV-infected animals. Spleen and mesenteric

LN (MLN) taken on D14, 21 and 28 p.i. were analyzed by

immunohistochemistry (IHC) with a large panel of primary

antibodies (supplemental Table S2). The number of follicles

and the size of GC were decreased in MLN on D14p.i. whereas

the sizes of both follicles and GC were increased from D21 p.i..

(Figure 4.A). Although the numbers of spleen follicles were

similar in non-infected and SIV-infected animals during the 28

days of infection, their size rapidly increased, peaking at D21p.i.

(1.6- and 1.3-fold increase observed at D21 and D28p.i.,

respectively). The spleen GC size was 1.5 times greater at

D14p.i.. and 3.6 times greater at D28p.i. than at baseline.

(Figure 4.B). Changes in size of the spleen MGZ were analyzed

after staining with CD20 (Figure 4.B), ASM (Alpha Smooth

Muscle Actin) (Figure 4.C) or ICAM1 (data not shown) mAb.

Measurement of the width of MGZ did not reveal any significant

increase in size.

Whereas B-cell follicles were generally rare in the duodenum of

non-infected animals, increasing numbers of B-cell follicles

accumulated in this area in SIV-infected animals from D14p.i.

(Figure 4.D). The size of these follicles also progressively

increased and was frequently associated with well-developed GC

from D28p.i.. Thus, trafficking to intestinal mucosa could

transiently decrease the B-cell numbers in MLN before D14p.i.

but this loss could be balanced by homeostatic mechanisms

thereafter.

Loss in follicular helper T-cells and infiltration of
granzyme B+ and CD8+ cells in GC during acute SIV
infection

According to the loss in CD4+ T-cells during primary SIV/

HIV-1 infection [29,30] and the infiltration of cytotoxic CD8+ T-

cells within the GC of various lymphoid organs in chronically

infected individuals [12–14], we stained sections from spleen (data

not shown) and MLN on D28 p.i. (Figure 5) for CD3, CD4, CD8

and CD45RO. We observed less intense staining with CD3 and

CD4 mAb in the extrafollicular zone (EFZ) of placebo-treated

animals than of non-infected animals, suggesting that there were

fewer, positive cells. CD4 and CD3 staining on sections from

HAART-treated animals appeared similar to that observed in

non-infected animals. Due to their high number and low intensity

staining, the number of CD4 T-cells present in the GC of non-

infected and SIV-infected animals could not be quantified.

However, we found that the number of CD45R0-positive cells

in GC was 1.8 times lower in SIV-infected than in non-infected

animals on day 28 p.i. (1464.3 versus 25.468.3 cells per follicle,

p,0.05, in SIV-infected and non-infected animals, respectively)

(Figure 5.C), and two times lower in spleen (data not shown)

suggesting a depletion in follicular helper T cells.

Although an increase in the number of CD8+ cells in the EFZ

could be detected from D14p.i., infiltrating CD8+ cells were only

detectable in GC from D21p.i. (Figure 5.D). The numbers of

CD8+ cells were four (D21p.i.) and twenty (D28p.i.) times higher

in the spleen of infected animals and five (D21p.i.) and 11 (D28p.i.)

times higher in MLN (Table 3). We then examined their potential

cytolytic activity by granzyme B (GrB) staining. This revealed

increased numbers of positive cells in MLN and spleen from

D14p.i., not only in EFZ but also in GC. In spleen and MLN, GC

contained two to three times more GrB+ cells in placebo-treated

animals than in control animals at D14 p.i. and about four times

more at D28 p.i. (Table 3). However, the number of CD8+ cells

was four times higher than that of GrB+ cells at D28p.i.. The

mean number of CD8+ and GrB+ cells strongly decreased

following HAART. The number of CD68 cells present in the EFZ

zone and GC increased by a factor of two in spleen (24611.5 vs

13.167. cells on D28 p.i., p,0.0001) but remained similar in

MLN (21.369.7 vs 19.267.3, on D28p.i., non-significant p value)

(Figure 5.E).

Changes in GC organization and plasma cells during
acute SIV infection

As described above, the sizes of total (CD20 staining) and GC

(staining with Bcl6) B cell-populated areas were already increased

on D14p.i. and even more at D28p.i. in spleen (Figure 6) and

MLN (supplemental Figure S3). In contrast, the mantle zone

was thinner in SIV-infected animals than in controls on D28p.i..

Several other striking differences between control and SIV-

infected animals were observed from D14p.i. on: (i) a strong

increase in Ki67+ proliferating cells, with Ki67 staining delineat-

ing the dark zone (DZ) of GC in non-infected individuals; (ii) a

strong increase of Ki67+ cells in EFZ; (iii) reorganization of the

follicular dendritic cell (FDC) network, revealed by staining with

CD23 or ICAM1 (data not shown). CD23 staining was distributed

throughout the GC of control animals, but was frequently patchy,

with preferential staining at one side of GC, probably in the light

zone (LZ) in placebo-treated animals. These observations are

indicative of an impaired expansion of the FDC network and LZ

during early SIV infection. HAART significantly reduced these

alterations (Figure 7 and supplemental Figure S2).

In the absence of appropriate CD138 and CD38 mAb for IHC

analysis in cynomolgus macaques, we used IRF4, IgG and -IgA Ab

to detect plasma cells. (Figure 6). An increase in the number of

IRF4-positive cells was detected in GC and EFZ (including red

pulp) in spleen on D14. and D28p.i. (Figure 6). From D14p.i.on,

increased numbers of IgG, but not IgA, plasma cells were observed

Filled and open circles represent P and H animals, respectively. Bars represent the mean SI in each group. SEM is less than 27%. *, p values,0.05 are
shown. (B) Apoptotic cell percentages were determined in splenocyte cultures from four non-infected animals (Ctl, black diamond) and two (P21,
H21, P28) or three (P14, H14, H28) SIV-infected animals. Each point represents the percentage of hypodiploid B-cells for one animal. Filled and open
circles represent P and H animals, respectively. Bars represent the mean% in each group. SEM is less than 12%. *, p values,0.05 are shown. (C) IgG
and IgM concentration were quantified in plasma taken before infection (Ctl, n = 14 for IgG and n = 16 for IgM,diamond). IgG concentrations were
quantified in plasma from 10 (D7p.i.), 8 (D14p.i.), 7 (D21p.i.) and 3 (D28p.i.) placebo-treated animals (Filled circle) and from 4 (D14p.i.), 5 (D21p.i.) and 5
(D28p.i.) HAART-treated animals (open circle). IgM concentrations were quantified in plasma from 16 (D7p.i.), 9 (D14p.i.), 7 (D21p.i.) and 3 (D28p.i.)
placebo-treated animals (Filled circle) and from 4 (D14p.i.), 5 (D21p.i.) and 4 (D28p.i.) HAART-treated animals (open circle). Median concentration is
indicated for each group. Significant difference (*: p,0.05; **: p,0.01; ***: p,0.001) between values is indicated. (D) SIV-specific Ig (G+A+M)
concentrations were measured in plasma from seven (D14p.i.), five (D21p.i.) and three (D28p.i.) placebo-treated animals (Filled circle) and from two
(D14p.i.), four (D21p.i.) and five (D28p.i.) HAART-treated animals (open circle). Median OD value is indicated for each group *, significant difference
(p,0.05) between values is indicated. (E) IgG production was measured in supernatants from spleen B-cell cultures of two non-infected animals and
four (P14), or two (P21) SIV-infected animals. Results are mean values6SEM. *, p values,0.05 are shown
doi:10.1371/journal.pone.0005966.g002
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Figure 3. HAART has minimal effects on SIV-induced changes in B-cells. (A) The curve represents changes in plasma viral load (pVL,
Log10copies/ml) in placebo-treated animals (median values) Arrows indicate the time of initiation of the two-week HAART treatment (4H, 7 or 14
days p.i.). Placebo and HAART-treated animals were therefore sacrificed at D14 p.i. (P14, H14), D21p.i. (P21, H21) and D28p.i. (P28, H28). (B) Plasma
viral load (pVL, Log10copies/ml) at sacrifice in placebo- (open symbol) and HAART-treated (hatched symbol) animals are shown. Median value6IQ is
indicated for each group. Significant differences (*: p,0.05; **: p,0.01) between groups are indicated. (C, D) CD4 T-cell (C) or B-cell (D) counts in
placebo- (black bars) and HAART-treated (hatched bars) animals as compared to baseline values of the same animals before infection (open bars) are
shown. Median value6IQ is indicated for each group. Significant differences (*: p,0.05; **: p,0.01) between groups are indicated. (E, F): Left panels.
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in EFZ, including spleen red pulp. The number of IgG plasma

cells within the GC was similar in control and non-infected

animals on D14p.i. but was increased from D21p.i. on in spleen

and at D28p.i. in MLN. The number of IgG plasma cells in GC at

D28p.i. was increased by a factor of four in spleen and six in MLN

of SIV-infected animals. No IgA plasma cells were detected in the

GC of spleen (Figure 6) or MLN (data not shown) whereas they

were present in similar proportions in the extrafollicular zones of

the spleen (Figure 6) or MLN (data not shown). HAART

significantly reduced these alterations (Figure 7 and supple-
mental Figure S2).

Discussion

Impaired production of neutralizing HIV-specific antibodies

during natural exposure to virus or during vaccination protocols is

one major hallmark of HIV infection [15,31]. Even long-term

HAART is only partially efficient in preserving the humoral

response in HIV+ patients, suggesting that alternative immune-

modulators are required. Given that the nature of the events

taking place during primary infection is critical for initiation of

antiviral responses and predictive of long-term disease progression,

a better understanding of the early pathogenic effects of HIV on B-

cells is needed. Since early time points of acute HIV infections are

very difficult to study in humans, we specifically examined changes

in B-cell subsets from several lymphoid organs during the acute

phase of the disease in SIVmac251-infected cynomolgus macaques.

Our data reveal a transient peripheral B-cell lymphopenia (count

and percentage) with a nadir at D14p.i., coinciding with the

plasma viremia peak and the nadir in NK and CD4+ or CD8+ T-

cells. Similar panleukopenia is observed during the acute phase of

most viral infections in primates and mice.

In contrast to blood, the percentage of total B-cells increased in

spleen from D14p.i. despite few changes in the percentage of T-

cells in spleen before D21p.i. (data not shown). During the same

time, the percentage of total B-cells did not vary in peripheral LN

(axillary and inguinal LN) whereas a consistent influx of B-cells

into the small intestine occurs from D14p.i. with the number and

size of follicles progressively increased between D14 and D28p.i..

Altogether these data suggest that blood B-cells traffick to

lymphoid organs but preferentially accumulate in the spleen and

the small intestine. A drop in blood B-cells associated with a

selective tissue homing has previously been reported in mice

acutely infected by various pathogens [32–34]. Local sequestration

of B-cells in these mice correlated with type I IFN-induced up-

regulation of CD69. In these murine infection models, membrane

CD69 interferes with surface expression of sphingosine 1-

phosphate receptor 1 and blocks B-cell egress from particular

lymphoid organs [34,35]. Consistent with the B-cell hyper-

responsiveness to CXCL13 observed in HIV-infected patients

[9], a similar mechanism may underlie B-cell accumulation in

spleen follicles and MGZ during acute SIV infection. Indeed, early

peaks of type I IFN and TNFa are detectable in plasma during

HIV/SIV infection, before or at the same time as the viremia peak

[24,36–39]

Regardless of changes in total B-cells, a selective loss in CD27+

memory B-cells occurred in blood, LN and spleen. This loss was

also demonstrated by decreases in CD80-, 86- and 95-expressing

B-cells in these three organs. The decrease in circulating memory

B-cells was transient, correlating with that of total B-cells, and

occurred without any change in the ratio of SIgM+/SIgG+

memory B-cells. This suggests that this decrease mainly resulted

from B-cell trafficking to lymphoid organs, where a B-cell response

is initiated. The relative percentage and number of memory B-cells

increased in blood from D21p.i., suggesting that memory B-cells

are newly formed or are sent back into circulation from tissues.

This coincides with reduced levels of inflammatory cytokines in

plasma, observed in SIV-infected macaques after 2 weeks p.i.

[36,40]. Given previous findings in primary HIV-infected patients

[15], the blood B-cell repertoire in SIV-infected macaques must

undergo significant changes at four weeks p.i. and probably also

later on. This hypothesis remains to be verified in SIV-infected

macaques previously vaccinated with recall antigens.

Memory B-cells in spleen or LN steady declined until D28p.i.,

correlating with a preferential depletion in SIgG-expressing

memory B-cells. This cell loss peaked at D14p.i. in spleen but

was more progressive in LN. This loss may have been initiated by

SIV-induced B-cell apoptosis by D14p.i. and early commitment to

terminal differentiation. Most of the IgG molecules produced in

vitro were non-specific for SIV, with SIV Ab remaining

undetectable in culture supernatants (data not shown). Given that

HAART initiated 4 h p.i. fully prevented apoptosis but partially

reduced in vitro IgG production, independent control mechanisms

may be involved. Previous data obtained in SIV- or HIV-infected

individuals suggest that apoptosis is induced by various virus-

induced signals [41,42], whereas Ig production is rather promoted

by increased cytokine production [43,44].

Plasma IgG and IgM levels were increased by D14p.i., whereas

SIV-specific antibodies were detectable only from D21p.i. on.

Therefore, we suggest that an early T-independent response takes

place before D14p.i.. In humans, unlike in mice, MGZ contains

both CD27+SIgM+SIgD+ MGZ and CD27+ SIgD2SIgG+

memory B-cells poised to differentiate rapidly into plasma cells

in response to T-independent signals, including BAFF, APRIL and

IL21 [45]. Elevated BAFF plasma levels have only been reported

in chronically HIV-infected patients with a low CD4 count

[46,47]. Inflammatory cytokines and CD40 ligand are well-

established inducers of BAFF production by monocytes, macro-

phages and dendritic cells [48] and, moreover, He et al have

recently shown that gp120-induced production of BAFF by

monocytes enhances the polyclonal IgG and IgA production by

a subset of gp120-activated MGZ-like B-cells [19]. BAFF

production may therefore be triggered during acute SIV-infection

and contributes to the early, potentially T-independent increase in

plasma IgG/M. Although the histological size of MGZ did not

significantly vary, the frequency of (CD27+SIgD+) MGZ B-cells

decreased transiently in LN between D14 and D21p.i. and steadily

in spleen and blood from D14p.i. which could be due to their

commitment to T-independent terminal differentiation. Similarly,

a loss in IgM-only memory B-cells, associated withan impaired

response to T-independent antigens has been reported in primary

and chronically HIV-infected patients [15,17] whereas a splenic

MGZ hypoplasia was reported only in chronically HIV-infected

Percentages of blood B-cells before infection (E, pre, black square, n = 13), in non-infected animals (black square in F, n = 2 and G, n = 3), in placebo-
(black circle, n = 3) and HAART-treated (open circles, n = 3) SIV-infected animals. Mean percentage6SEM is indicated for each group. Non significant p
values between placebo and HAART-treated groups are indicated. Right panels. The relative percentages of naive (SIgD+ CD272, open area),
memory (SIgD2 CD27+, hatched area) and MGZ (SIgD+ CD27+, black area) B-cells were determined in controls (Ctl, 13 blood samples before
exposure to SIV) for blood (E) or three non-infected animals for spleen (F).Three placebo- (P14, P21 and P28) or HAART-treated (H14, H21 and H28)
SIV-infected animals were similarly investigated. Mean percentage6SEM is indicated for each group. ND: Not Done
doi:10.1371/journal.pone.0005966.g003
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Figure 4. Changes in MGZ and B-cell areas in spleen and LN from SIV-infected animals. MLN (A) and spleen (B) sections from two non-
infected (Ctl) or SIV-infected animals of each group (P14, P21, P28) were stained with CD20 mAb. Scale bars corresponding to 100 mm are shown in
black. Staining from one representative animal of Ctl and P groups is shown. For each animal, the number of follicles was quantified for the whole
section; results are expressed in number of follicles per 106 mm2. The size of follicle and GC were quantified for 2563 (MLN) and 3463 (spleen)
follicles per section. Mean values6SEM from two animals per group are shown. (C) Spleen sections from two non-infected (Ctl) or SIV-infected
animals of each group (P14, P21, P28) were stained with ASM mAb for visualization of the MGZ. Scale bars corresponding to 100 mm are shown.
Staining from one representative animal of Ctl and P groups is shown. For each animal, MGZ width was measured in 2263 ASM-stained regions or
1961 CD20-stained regions for each section. Mean values6SEM from two animals per group are shown. (D) Duodenum sections from one non-
infected (Ctl) or two SIV-infected animals of P14 or P28 group were stained with CD20 mAb. Scale bars corresponding to 400 mm are shown. Staining
from one representative animal of Ctl and P groups is shown.
doi:10.1371/journal.pone.0005966.g004
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Figure 5. T-cell zone changes in placebo- and HAART-treated SIV-infected animals. MLN sections from two non-infected (Ctl), P28 and H28
animals were stained for CD3 (A), CD4 (B), CD45R0 (C), CD8 (D) and CD68 (E). Staining from one representative animal of each group is shown.
Brown indicates positive staining; cell nuclei were counterstained blue by hematoxylin. Original magnification 6200 for all panels.
doi:10.1371/journal.pone.0005966.g005
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patients [12]. An increase in IgG-expressing plasma cells was

observed in the EFZ of spleen and LN from D14p.i.. The fact that

HAART had a moderate effect on increased plasma IgG/M by

D14p.i. suggests that this increase was independent of viral

replication per se but is correlated with SIV-induced inflammatory

signals, including BAFF as also suggested by the work of He et al

[19]

IgG-expressing plasma cells were only detectable in GC from

D21p.i.. The SIV-specific response was therefore likely to have

been initiated between D14 and D21p.i.. Initiation of the specific

response is likely to be delayed until viral antigens are locally

available in sufficient amounts. Consistent with a recent study by

Cinamom, showing that MGZ B-cells transport immune com-

plexes into the GC [11,49], shuttling of MGZ B-cells to follicles

could enhance the SIV-specific Ab response. According to recent

data in HIV-infected patients, hyper-responsiveness to CXCL13

might favour the homing of MGZ B-cells into GC [9]. The

marked and concomitant decrease in SIV-specific Ab and plasma

IgM observed after D14p.i. in HAART-treated animals is

consistent with SIV-specific Ab being essentially IgM until

D28p.i.. Although IgM in nature, these early Ab would be

protective and probably play an essential role in generating

immune complexes to be transported into GC [49]. Viral particles,

through interactions between trimeric gp120 and B-cells, could

trigger a T-independent, SIV non-specific Ab response before

D14p.i., predominantly targeting gp120-associated carbohydrates.

As viral replication progresses, a T-dependent response might

occur. Similar conclusions have been drawn by Trkola et al. in

chronically infected patients subjected to short-term interruption

of treatment [50]. Alternatively, soluble Nef present in GC of

HIV-infected patients might inhibit CD40-dependent Ig-switching

of GC B-cells [51]. The immunosuppressive effect of Nef on the B-

cell response to SIV was previously suggested by the work of

Chakrabarti et al, who showed that Nef-deleted SIV strain

induced a more rapid development of GC and circulating SIV-

specific Ab than pathogenic SIV strain [52]. Therefore, soluble

Nef is likely to contribute to the delayed SIV-specfic Ab response

observed during the acute phase of infection.

GC hyperplasia was detected in spleen and MLN of SIV-

infected animals from D14 and D21p.i., respectively. The less

intense staining observed in spleen and MLN suggests that fewer

CD4+ T-cells may be present in EFZ of infected animals than in

non-infected ones. However, the distribution of CD4+ cells in GC

of infected animals was similar to those observed in non-infected

animals before D28p.i.. This contrasts with the impaired

polarization of GC observed in chronically infected patients

[13]. A decrease in CD45R0 cells, likely CD4 follicular helper T-

cells, was detected within GC on D28p.i.. Consistent with their

activated/memory phenotype, SIV infection might lead to their

apoptosis in situ or prevent their homing to GC. In contrast,

infiltrated GrB+ cells and CD8+ cells were present in GC from

D14p.i. and D21p.i. respectively. Given previous findings in

chronically infected macaques [53] or patients [13,54], it seems

likely that these cells are cytolytic T-cells involved in virus control.

Similarly, GC of SIV-infected animals contained more Ki67+
positive cells, demonstrating an expanded DZ, whereas follicular

dendritic cells (FDC) had a patchy distribution localized to one

edge of GC. The numbers of total plasma cells (Vs38c, IRF4) and

IgG-expressing plasma cells increased in the red pulp, EFZ and

GC of SIV-infected animals, whereas IgA-expressing cells were

present in similar proportions in the red pulp of non-infected and

SIV-infected animals. In spleen, most of these changes were fully

or partially (plasma cells) cured by HAART, no matter when

HAART was initiated. HAART did not prevent the decrease in

GC size in MLN, observed at D14p.i., but cured the increase in

GC and other changes observed at D28p.i.. This dual effect is

mainly independent of virus replication and is probably sustained

by inflammatory signals.

In conclusion, we have combined IHC studies of lymphoid

organs with phenotypic and functional analyses of B-cells to

further elucidate the mechanisms underlying B-cell dysfunction

during acute SIV infection. Consistent with unresponsiveness to

early HAART, we suggest that T-independent signals, possibly

triggered by direct contact with virions and relayed by

inflammatory cytokines, are important in early B-cell dysfunc-

tion—a major feature of the SIV/HIV-specific B-cell response

strongly favoring non-specific Ig production. A better understand-

ing of the inflammatory signals acting on B-cell subsets should help

to design of new therapeutic strategies, potentially delaying the

initiation of HAART which strongly decreases the HIV/SIV

humoral response.

Materials and Methods

Animals, virus and treatment and plasma viral load
Thirty adult male cynomolgus macaques (Macaca fascicularis)

were inoculated intravenously (i.v) with 50 AID50 of the

pathogenic SIVmac251 strain, as previously described [23].

Animals were housed and cared for in accordance with European

Guidelines for animal care. All protocols used in this study were

reviewed and approved by an regional animal care and use

committee. Three groups of five animals were killed on days (D)

14, 21 or 28 post-infection (p.i.) respectively; these were placebo-

treated groups P14, P21 and P28. The three other groups of five

animals initiated a two-week HAART from 4 h, 7 or 14 days p.i..

HAART was a combination of 4.5 mg/kg 3-azido-2,3-dideox-

ythymidine (AZT), 2.5 mg/kg 2,3-dideoxy-3-thiacytidine (3TC),

and 20 mg/kg indinavir given twice daily, via the oral route, as

previously described [23]. These animals were sacrified at the end

of HAARTand referred to as HAART-treated groups H14, H21

and H28, accordingly. All procedures with animals were

performed after general anesthesia with ketamine chlorhydrate

(Rhone-Merieux, Lyon, France). Plasma viral load was determined

Table 3. CD8 and Granzyme B cells infiltrate GC of SIV-
infected animals.

Cell number/GC

Spleen LN

CD8+ cells
Granzyme
B cells CD8+ cells

Granzyme
B cells

Ctla ,1 ,1 ,1 ,1

P14 ,1 2.761.3** ,1 1.661.4*

H14 ,1 0.560.7NN ,1 0.160.3N

P21 4.060.3** 2.862.5** 5.161.6** 3.662.3**

H21 1.360.5N 1.661.2 1.360.9N 0.661.0

P28 20.261.6** 4.161.4*** 11.261.2*** 4.362.2*

H28 5.263.0N 0.860.7NN 3.261.7NN 0.660.7

aCtl as control for non-infected animals.
Results are mean6SEM; n = 2 animals.
862 GC per animal were analyzed.
*p,0.05; ** p,0.01; *** p,0.001: Ctl vs. placebo-treated macaques.
Np,0.05; NN p,0.01; NNN p,0.001: placebo- vs. HAART-treated macaques.
doi:10.1371/journal.pone.0005966.t003
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Figure 6. Progressive changes within splenic B-cell areas from placebo treated SIV-infected animals on D14 and D28p.i. Spleen
sections from two non-infected (Ctl) and two P28 SIV-infected animals were stained for CD20 (A), CD23 (B), Ki67 (C), Bcl6 (D), IgG (E) and IgA (F)
expression.Staining from one representative animal of each group is shown. Brown indicates positive staining; cell nuclei were counterstained in blue
by haematoxylin. Original magnification 6100 (A–C), 6400 (D) and 2006 (E–F).
doi:10.1371/journal.pone.0005966.g006
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Figure 7. Phenotypic change within splenic B-cell areas from placebo- and HAART-treated SIV-infected animals. Spleen sections from
two non-infected (Ctl) and two P28 and H28 SIV-infected animals were stained for CD20 (A), CD23 (B), Ki67 (C), IRF4 (1006and 4006) (D, E), IgG (F)
and IgA (G) expression. Staining from one representative animal of each group is shown. Brown indicates positive staining; cell nuclei were
counterstained in blue by haematoxylin. Original magnification 6100 for all but panel E.
doi:10.1371/journal.pone.0005966.g007
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by real-time PCR, as previously described [55]. Non-infected

animals were used as controls.

Mononuclear cell counts and phenotypes
PBMC were obtained from peripheral blood on BD Vacutai-

nerH CPTTM. Absolute numbers of leukocytes (cells/ml) were

obtained by analysis of 15 ml of blood, collected on EDTA, in

Micro Diff II (Beckman Coulter, Fullerton, USA). B-cells (CD20),

monocytes (CD14), total T (CD3), CD4, CD8 cells and NK

(CD32CD8+) cells were quantified by flow cytometry with 50 ml

of titrated combinations of fluorochrome–conjugated mAbs added

to 100 ml of whole blood, as previously described [55]. After

incubation for 15 min at 20uC in the dark, cells were subjected to

red blood-cell lysis and were then post-fixed with 300 ml of Cell Fix

16 (BD Biosciences) and kept at 4uC in the dark. Surface marker

expression was analyzed with a LSR I flow cytometer and by

FlowJo software (Tree Star Inc., Ashland, OR). Similar combina-

tions of mAb were used on isolated lymph node mononuclear cells

and splenocytes to determine the percentage of each lymphoid

subset.

Immunophenotyping of B-cell subsets in blood, LN and
spleen

Spleen, axillary and inguinal LN were collected from SIV-

infected animals and four non-infected ones as controls.

Splenocytes and LN mononuclear cells were obtained by

mechanical disruption, passed through nylon mesh cell strainers

with 40-mm pores and further purified by Ficoll gradient

centrifugation (BD Biosciences, Franklin lakes, NJ). Freshly

isolated cells were subjected to phenotypic analysis or kept at

280uC until use. Blood, spleen and LN B-cell subsets were

identified by three-colour flow cytometry detecting the combined

expression of CD20 with CD27, CD80, CD86, CD95, surface IgD

(SIgD), SIgM or SIgG. Briefly, cells were stained with 50 ml of

titrated combinations of fluorochrome–conjugated mAbs listed in

supplemental Table S1. Data were analyzed as described

above.

Isolation of spleen B-cells and functional assays
Spleen B-cells were purified using PE-conjugated CD20 mAb

(L27, BD Biosciences) and PE-conjugated magnetic beads (Easy-

Sep, StemCell, Vancouver, Canada). The cell suspension was

incubated with CD32 mAb (2E1, Beckman Coulter) before CD20-

PE addition according to the manufacturer’s instructions. Only B-

cell fractions that contained $80% CD20+ cells were used for

functional studies. Splenic B-cells were cultured in RPMI 1640-

glutamax medium supplemented with 1 mM sodium pyruvate,

100 mg/ml streptomycin, 100 U/ml penicillin, 10 mM HEPES

buffer, 2 mM non-essential amino acids (all from Invitrogen,

Carlsbad, CA) and 2% (proliferation) or 10% (apoptosis and IgG

production) heat-inactivated FCS (PAA laboratories GmbH, Les

Mureaux, France).

Apoptosis. Splenocytes were cultured in triplicate with

25 mg/ml F(ab’)2 rabbit anti-human Ig(H+L) Ab (Jackson

ImmunoResearch Laboratories, West Grove, PA) or medium

(spontaneous apoptosis) for 24 h. After several washes, cells were

fixed and permeabilized in 70% ethanol overnight, at 4uC. Cells

were then treated for 30 min at 37uC with 100 mg/ml RNAse A

(Sigma, St Louis, MO) and labelled with DAPI (Molecular Probes,

Invitrogen) for 15 min at 20uC and analyzed by flow cytometry.

Apoptotic cells were defined as hypodiploid cells.

Cell proliferation. Splenocytes were cultured in triplicate

with 25 mg/ml F(ab’)2 rabbit anti-human Ig(H+L) Ab (Jackson

ImmunoResearch Laboratories) and 20 ng/ml IL4 (R&D systems,

Abingdon, UK), Staphylococcus Aureus cowan I (1/10.000,

Calbiochem, La Jolla, CA) and 20 ng/ml IL2 or 10 mg/ml

CD40 mAb (G28.5) plus 20 ng/ml IL2 and 50 ng/ml IL10 (both

cytokines from R&D systems) for 72 h. Proliferative responses

were measured by pulsing cultures with 1 mCi per well [methyl-3H]

thymidine (Amersham, les Ulis, France) for the last 12 h of the

culture. Results are cpm means6SEM of triplicate measurements.

Stimulation index (SI) was calculated as the ratio between the cpm

means for cultures with and without stimuli.
Ig quantification. Splenocytes were cultured for 10 days at

37uC with medium, 20 ng/ml IL2 plus 50 ng/ml IL10, with or

without 10 mg/ml CD40 mAb. Ig concentrations were determined

in cell-free culture supernatants or in plasma by specific ELISA.

Rabbit anti-human IgG+M+A, HRP-conjugated goat anti-rhesus

IgM (m chain-specific) (both from Nordic Immunological

Laboratories, Tilburg, The Netherlands) and rhesus IgM

(Gentaur, Brussels, The Netherlands) were used for IgM

quantification. Goat anti-monkey IgG, HRP-conjugated goat

anti-rhesus IgG (both from AbD Serotec, Oxford, UK) and

rhesus IgG (Rockland, Gilberstville, PA) were used for IgG

quantification. Results are expressed as mean concentration (mg/

ml; 6SEM) of duplicate measurements.
Anti-SIV Ab. Specific anti-SIV Ab were detected in plasma

by ELISA using Genscreen HIV1/2 kit, version2 (Bio-Rad

Laboratories, Redmond, WA). Results are expressed in OD

obtained from A450 nm readings.

Immunohistochemistry (IHC) and quantitative image
analysis

Paraffin-embedded tissues. IHC were performed on

deparaffinized spleen, MLN or small intestine sections, with

primary mAb (supplemental Table S2). Ab binding was

visualized with the StreptABComplex/HRP duet kit and DAB (3,3

Diaminobenzidine) (Dako). Slides were counterstained with

Mayer’s hematoxylin and mounted in permanent mounting

media (Dako).
Frozen tissues. MLN and spleen biopsies were frozen and 5-

mm cryostat sections were fixed in acetone, blocked in 1% BSA

and stained with CD8 mAb (supplemental Table S2). Ab

binding was visualized with StreptABComplex/HRP duet kit and

DAB. Slides were counterstained with Mayer’s hematoxylin and

mounted in permanent mounting media (Dako).

Images from spleen and MLN sections were obtained with a

light microscope Zeiss (Laboandco, Mandres-les-Roses, France),

captured by a Microfire microscope camera system (Optronics,

Goleta, CA) and analyzed with Mercator 4.42 software (Explor-

aNova, La Rochelle, France).

Statistical analysis
Data are expressed as mean6SEM, unless otherwise indicated.

Non-parametric analysis (Wilcoxon signed-rank test and Mann-

Whitney test) and correlations (Spearman’s rank coefficient) were

performed using StatView software (SAS Institute, Cary, NC). p

value#0.05 was considered as significant.

Supporting Information

Table S1 Antibodies used in FCM

Found at: doi:10.1371/journal.pone.0005966.s001 (0.28 MB

DOC)

Table S2 Antibodies used in IHC

Found at: doi:10.1371/journal.pone.0005966.s002 (0.23 MB

DOC)

B-Cells during SIV Infection

PLoS ONE | www.plosone.org 15 June 2009 | Volume 4 | Issue 6 | e5966



Figure S1 Correlation between plasma viral load and blood T-

or B-cell counts during SIV infection. Correlation between plasma

viral load (pVL, Log10copies/ml) and blood CD4 (A), CD8 (B) or

CD20 (C) cell count (cells/ml) in SIV-infected animals is shown.

Correlation between blood B-cell count and percentage (D) or

CD4 cell count (E) in SIV-infected animals is shown. Statistical

significance was assessed by Spearman’s rank correlation test; Rho

and p values are indicated.

Found at: doi:10.1371/journal.pone.0005966.s003 (0.38 MB TIF)

Figure S2 Phenotypic change within MLN B-cell areas from

placebo- and HAART-treated SIV-infected animals. MLN

sections from two non-infected (Ctl), P28 and H28 animals were

stained for CD20 (A), CD23 (B), Ki67 (C), Vs38c (D) and IgG (E)

expression. Staining from one representative animal of each group

is shown. Brown indicates positive staining; cell nuclei were

counterstained in blue by hematoxylin. Original magnification

6100 for A to E and 6200 for C.

Found at: doi:10.1371/journal.pone.0005966.s004 (8.77 MB TIF)

Figure S3 Phenotype change within mantle zone of follicles

from placebo and HAART-treated SIV-infected animals. Spleen

sections from two non-infected (Ctl), P28 and H28 animals were

stained for CD3 (A) and CD68 (B) expression. Staining from one

representative animal of each group is shown. Brown indicates

positive staining; cell nuclei were counterstained in blue by

hematoxylin. Original magnification 1006 and 4006 for both

markers.

Found at: doi:10.1371/journal.pone.0005966.s005 (4.49 MB TIF)
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