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Abstract

Deviation from proper muscle development or homeostasis results in various myopathic conditions. Employing genetic as
well as chemical intervention, we provide evidence that a tight regulation of Wnt/b-catenin signaling is essential for muscle
fiber growth and maintenance. In zebrafish embryos, gain-of-Wnt/b-catenin function results in unscheduled muscle
progenitor proliferation, leading to slow and fast muscle hypertrophy accompanied by fast muscle degeneration. The
effects of Wnt/b-catenin signaling on fast muscle hypertrophy were rescued by misexpression of Myostatin or p21CIP/WAF,
establishing an in vivo regulation of myofibrillogenesis by Wnt/b-catenin signaling and Myostatin. Epistatic analyses suggest
a possible genetic interaction between Wnt/b-catenin and Myostatin in regulation of slow and fast twitch muscle
myofibrillogenesis.
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Introduction

Understanding muscle development is crucial for generating

novel regenerative therapies for muscle diseases and treating

muscle injuries. Extensive research has contributed to the current

understanding of various aspects of somitogenesis and myogenesis.

The periodicity of rostral-caudal somite formation [1] as well as

their differentiation into the axial skeleton, skeletal muscle and

dorsal dermis are similar in all vertebrates [2]. Furthermore, the

zebrafish determinate muscle growth by hyperplasia, the increase

in muscle fiber number, and by hypertrophy, the increase in

muscle fiber size, are comparable to mammalian muscle growth

making it a suitable model system to study myofibrillogenesis and

various myopathies [3–5].

Wnt/b-catenin pathway plays a crucial role in early somitogen-

esis and myogenesis in birds [6,7], mice [8–10] as well as in

zebrafish [11] by affecting skeletal muscle development at several

levels, including mesodermal patterning, segmentation clock and

myoblast differentiation [12,13]. The Wnt/b-catenin signaling

regulates Lef/Tcf–mediated transcription of downstream target

genes via the transcriptional coactivator b-catenin [14]. In the

absence of Wnt ligand, b-catenin is targeted for proteosomal

degradation by a ‘‘destruction complex’’ comprising of CK1,

GSK3b, Axin1 and Apc1. The fine balance between proliferation

and differentiation required for proper development and growth of

the myotome depends on signaling cues originating from tissues

surrounding the somites [15,16], including Wnt ligands. Cumu-

lative evidence implicates Hedgehog and Fgf8 signaling in

specification and differentiation of slow and fast twitch muscle

fibers respectively, during the first wave of myogenesis [17–20].

Although recent work has shown the role of Hedgehog signaling in

differentiation of a subset of secondary slow twitch muscle fibers

[19], the precise molecular mechanism underlying specification

and maintenance of secondary fast twitch muscle fibers as well as

the Hedgehog independent slow twitch muscle fibers remains to be

elucidated.

This study shows that upward deviation from the tightly

controlled physiological level of Wnt/b-catenin activity by genetic

and chemical intervention in zebrafish embryos leads to

compromised growth and maintenance of slow and fast muscle

fibers. This phenotype derives from hyperproliferation of the

Pax3/7+ pre-myogenic precursors. Hence, misexpression of

p21CIP/WAF or mstn in the embryos with gain-of-Wnt/b-catenin

function restores the integrity as well as morphology of the fast

muscle fibers. We further discuss the possibility that this tight and

opposing regulation of myofibrillogenesis by Wnt/b-catenin and

Myostatin in zebrafish could operate through their genetic

interaction.

Results

Wnt/b-catenin hyperactivity causes loss of somites and
aberrant muscle fibers

Wnt/b-catenin gradient has been shown to be important for

somite segmentation [9]. Importantly, it has been suggested that

Wnt/b-catenin is downregulated in the somite following skeletal

muscle differentiation [21]. We investigated the expression of

Wnt/b-catenin reporter TOPdGFP [22] during post-segmenta-

tion corresponding to the second wave of myogenesis. Consistent

with previous studies [21], we observed only faint expression in the

trunk and tail of wild-types at 28 hours post-fertilization (hpf)

(Fig. 1A). Next, by employing the homozygous compound

zebrafish mutants of axin1 [23,24] and apc1 [25] (hereafter referred

to as axin1/apc1), we investigated whether Wnt/b-catenin is
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Figure 1. Hyperactivation of Wnt/b-catenin pathway leads to late somite-loss. (A) TOPdGFP transgenic embryos report activated Wnt/b-
catenin signaling, i.e. TOPdGFP transcripts. Cartoon depicts the level of vibratome sectioning i.e. left panel at the yolk extension and right panel
caudal to the yolk extension. Scale bar, 50 mm. (B) Hyperactivation of a target of Wnt/b-catenin pathway lef1, as shown with WISH, in axin1/apc1
mutants matches the expression of TOPdGFP. Scale bar, 250 mm. (C) The axin1/apc1 embryos are slightly shorter compared to wild-type embryos at
36 hpf, top panels. At 54 hpf, the difference becomes striking, bottom panels. Scale bar, 500 mm. (D) Somite counts at 36 hpf and 54 hpf,
corresponding to embryos depicted in (C) with error bars showing the standard deviation.
doi:10.1371/journal.pone.0005880.g001
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hyperactivated in the somites. Indeed, there was strong ectopic

expression of the TOPdGFP reporter in axin1/apc1 mutants in a

rostro-caudally rising gradient (Fig. 1A). This corresponded to

enhanced expression of the Wnt transcription factor and its direct

target gene lef1 [26] throughout the somites (Fig. 1B), showing that

Wnt pathway is overactivated in the somites of axin1/apc1 mutants.

At completion of segmentation and the first wave of myogenesis

at 24 hpf, axin1/apc1 embryos had a normal number of somites,

size of somites (Fig. S1), as well as normal muscle fiber formation

(data not shown). The earliest clear somite phenotype in axin1/

apc1 mutants was at 36 hpf, with a slight decrease in somite

number from approximately 31 to 29 (Fig. 1, C and D). Strikingly,

at 54 hpf, there was a severe tail truncation due to loss of

approximately 10 somites (Fig. 1, C and D). The formation of

normal somites at 24 hpf (Fig. S1) eliminates somite fusion and

abnormal initiation of segmentation as an underlying cause of

somite loss. Hence, this late and gradual somite-loss strongly

suggests that the underlying mechanism does not entail a defect in

somite induction and/or patterning.

Next, we examined whether upregulation of the Wnt/b-catenin

signaling would affect the fast- and slow-twitch muscles that make

up the myotome. The slow muscle fibers appeared to be

hypertrophic, as well as hyperplastic with an additional 2–4 fibers

per somite (n = 4) (Fig. 2A). Strikingly, the fast muscle fibers were

disorganized, with some muscle fibers detaching from the vertical

myoseptum, forming small lesions, while becoming hypertrophic

only at 54 hpf (Fig. 2A). Confirming the distinct effects of

hyperactive Wnt/b-catenin on slow versus fast muscle fibers,

quantification by RT-qPCR of myosin heavy chain specific for

slow or fast twitch muscle fibers revealed an increase in fast muscle

myosin at 54 hpf (Fig. 2B). However, there is no significant

difference observed for slow muscle myosin (Fig. 2B).

We confirmed the specific role of Wnt/b-catenin by employing

a chemical activator of the Wnt/b-catenin pathway, lithium

chloride (LiCl). The wild-type embryos treated with LiCl prior to

completion of somitogenesis, at tailbud and mid-somitogenesis

were truncated and curled albeit no detached muscle fibers were

present (Fig. 2C, early treatment). In contrast, the embryos treated

after 24 hpf showed severe muscle fiber detachment and

hypertrophy (Fig. 2C, mid-treatment and late-treatment), resem-

bling axin1/apc1 mutants. Hence, the muscle fiber defect in the

axin1/apc1 mutants is likely also caused by late Wnt/b-catenin

hyperactivation.

The fast muscle fiber degeneration beginning at 36 hpf,

corresponded with gradual increase in apoptosis (Fig. 3A), with

apoptosis occurring within the myotome (Fig. 3B) and along the

vertical myoseptum (Fig. 3, A and C).

Hyperactive Wnt/b-catenin drives muscle progenitors
into unscheduled proliferation

The ability of Wnts to enhance proliferation in the dermomyo-

tome [27] led us to hypothesize that unscheduled proliferation in

the somites might lead to muscle hypertrophy in axin1/apc1

mutants. While at 16 hpf there was no difference in proliferation

between mutants and wildtypes (data not shown), from 28 hpf

onwards, BrdU pulse experiments identified a sharp increase in

number of cells in S-phase (Fig. 4A), which was confirmed by

increased labeling of phosphohistone H3 (PH 3)+ mitotic cells

(data not shown) and their quantification by FACS (Fig. S2B). To

investigate whether this unscheduled increased proliferation

caused muscle hypertrophy, we partially inhibited cell division

with a combination of aphidicolin [28] and hydroxyurea (HUA)

[29] from 24 hpf until fixation at 54 hpf. Strikingly, the fast muscle

hypertrophy (Fig. 4B; compare to Fig. 2A, right panels) and

degeneration (Fig. S3A) as well as the number of somites were

partially rescued (Fig. 4B) confirming that hyperproliferation leads

to the fast muscle hypertrophy and degeneration.

Pre-myogenic embryonic muscle progenitor cells expressing

Pax3/7 transcription factors give rise to myoD+ myoblasts,

myogenin+ myocytes and myotubes, that terminally differentiate

into muscle fibers [30]. To determine whether these Pax3/7+
progenitors were stimulated by Wnt/b-catenin to hyper-prolifer-

ate, we performed co-labeling of PH 3 and Pax3/7 in the axin1/

apc1 mutants. There was a significant increase in co-localization of

PH 3+ mitotic nuclei and Pax3/7+ nuclei in the axin1/apc1

mutants (Fig. 4C) as compared to wild-types, suggesting that Wnt/

b-catenin drives unscheduled proliferation of pre-myogenic

progenitors. Surprisingly, the absolute number of Pax3/7+ cells

was unaltered in axin1/apc1 mutants (data not shown), suggesting

that the newly born progeny of dividing Pax3/7+ cells was not

maintained in a Pax3/7+ precursor state, but instead was

instructed to differentiate. Hence, we examined myogenic

differentiation in the mutants. Consistent with the unperturbed

Pax3/7+ muscle progenitors at 16 hpf, myoD was unaltered in

axin1/apc1 mutants during initial myogenesis (data not shown).

Importantly, later in development, its timely downregulation failed

and its expression was sustained (Fig. S3B). Consistent with

prolonged myoD expression in mutants, myogenin expression was

also extended in axin1/apc1 (Fig. S3C). As myoD+ myoblasts are

known to proliferate it is possible that the ectopic and extended

myoblast maintenance also contributes to the hyperproliferation in

the mutants. To test this, we performed co-labeling of anti-MyoD

with anti-BrdU antibody (with BrdU incorporation chased for

2 hours). We observed substantial increase in MyoD+ cells in

axin1/apc1 embryos (Fig. S3D), confirming the increased myoD

RNA expression in the mutants. However, we do not observe an

increase in proliferating (BrdU+) myoD+ cells (data not shown).

The data is consistent with a positive role of Wnt/b-catenin

signaling in driving myogenic differentiation [13].

Myotomal proliferation and hypertrophy in axin/apc
mutants are counteracted by misexpression of Mstn and
its downstream target p21CIP/WAF

Reportedly, Wnt/b-catenin through its direct target c-myc, can

downregulate p21CIP/WAF (also known as cyclin-dependent kinase

inhibitor 1A) [31]. We hypothesized that sustained myotomal

proliferation in axin1/apc1 mutants works through Wnt/b-catenin-

mediated inhibition of p21CIP/WAF. We tested the hypothesis by

examining the capacity of p21CIP/WAF mRNA injected into axin1/

apc1 mutant to rescue muscle fiber phenotype. Employing

misexpression with p21CIP/WAF mRNA concentration that only

subtly affected the wildtypes, muscle fiber hypertrophy was

rescued in injected axin1/apc1 embryos (Fig. 5A), suggesting that

muscle fiber degeneration is due to hyperproliferation caused by

failure of timely p21CIP/WAF-dependent cell cycle exit. However,

we cannot exclude the possibility that forced cell cycle exit

mediated by p21CIP/WAF misexpression in itself, and independently

of its postulated positioning downstream of the Wnt pathway, may

have brought about the rescue.

p21CIP/WAF has been implicated in muscle differentiation as the

downstream target of Mstn, a TGF-b family member. Mstn is a key

negative regulator of muscle growth that promotes terminal

differentiation of embryonic muscle progenitors through the

activation of p21CIP/WAF [32]. Decreased levels of Mstn, context

dependently lead to muscle hypertrophy [32]. Based on the

hypertrophic muscle phenotype in the compound mutants and

upon late LiCl treatment of wildtype embryos, we hypothesize that

p21CIP/WAF may be epistatic to Mstn and that overactive Wnt

Wnt-Mstn in Myofibrillogenesis
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Figure 2. Late hyperactivation of Wnt/b-catenin pathway leads to aberrant myofibrillogenesis. (A) axin/apc1 embryos at 36 hpf have
thickened slow muscle fibers, left panels. The fast muscle fibers at 36 hpf are detached from the vertical myoseptum, forming lesions (white arrow
heads) and are disorganized, middle panels. At 54 hpf, fast muscle fibers are thickened (hypertrophic), right panels. All embryos were imaged at the
positions as depicted in cartoons. Images for F59 and Eb165 at 36 hpf are cumulative z-stacks. Images for Phalloidin at 54 hpf are single z-plane at the
level of fast muscle fibers. Scale bar, 25 mm. (B) Quantitative real-time PCR (qRT-PCR) of myhz2 (fast muscle specific) and myhz5 (slow muscle specific)
mRNA expression normalized to actin. Graphs show that the quantity of myhz5 is not significantly different in axin1/apc1 embryos, failing to identify
subtle difference as shown in Fig. 2A. The quantity of myhz2 is upregulated in axin1/apc1 embryos at 54 hpf. (C) LiCl treatment during various time
intervals. Early treatment = tailbud stage and 16 hpf for 40 minutes each on the same clutch of embryos, mid treatment = at 16 hpf and 24 hpf and
late treatment = at 24 hpf and 30 hpf. Embryos were stained with Phalloidin for visualization of all muscle fibers. All embryos were imaged at the level
of the yolk extension, as depicted in cartoon. Images are cumulative z-stacks. Scale bar, 25 mm.
doi:10.1371/journal.pone.0005880.g002
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pathway may through inhibition of Mstn downregulate p21CIP/WAF.

We tested this possibility by performing rescue of muscle fiber

degeneration in the axin1/apc1 mutants via misexpression of mstn

mRNA. While at this particular concentration of mstn, wild-types

showed slightly hypotrophic muscle fibers, the axin1/apc1 embryos

showed a partial rescue of the hypertrophic muscle fibers (Fig. 5A).

Consistently, misexpression of mstn rescued the number of somites

(n = 8) and length of mutant embryos (Fig. 5, B and C). Importantly,

cell survival in axin1/apc1 mutants was also rescued (Fig. 5C, right

panels).

To further explore opposing effects of Wnt/b-catenin and

Myostatin on phenotypic aspects of myofibrillogenesis we asked

whether morpholino (MO)-mediated knock-down of Mstn would

result in a similar hypertrophic phenotype as hyperactive Wnt/b-

catenin in zebrafish embryos. Injection of 5 ng mstn MO resulted

in hypertrophic muscle fibers, while injection of 2 ng Lef1 MO

Figure 3. Apoptosis at somite boundaries and muscle fibers. (A) From 36 hpf onwards, axin1/apc1 embryos show an increase in apoptosis as
labeled by TUNEL. Insets show the imaged area. Scale bar, 100 mm. Apoptotic cells labeled with acridine orange lining up at the somites boundaries,
right panel. Arrows and lines mark the somite boundaries. Scale bar, 25 mm. (B) TUNEL labeling at 54 hpf show an increase in apoptotic cells in the
myotome. Cartoon depicts the level of sectioning i.e. left panel at the posterior end of the yolk extension and right panel posterior end of the tail. NT-
neural tube; M-myotome. (C) Co-labeling of fluorescent TUNEL assay (apoptotic cells) and phalloidin labeling (muscle fibers), left and middle panel.
This CLSM image was taken caudal to the yolk extension, at a single z-plane of 5 mm of fast muscle fibers.
doi:10.1371/journal.pone.0005880.g003
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resulted in hypotrophic muscle fibers (Fig. 6). We further co-

injected 2 ng Lef1 MO with 10 ng Mstn MO, and asked whether

muscle fibers would be hypertrophic or hypotrophic. The slow and

fast muscle fibers appear hypertrophic (Fig. 6). As a loss of Mstn

signaling would be expected to lead to hyperproliferation, and loss

of Wnt/b-catenin signaling to reduction of proliferation of pre-

myogenic precursors, the data suggests that loss of Mstn is

dominant over the loss of Wnt/b-catenin signaling.

As expression profiling in Mstn loss-of-function (LOF) identified

modulation of Wnt- pathway components [33], we examined for

possible genetic interaction between the two pathways, by using

gain and loss of Wnt/b-catenin signaling. To establish a suitable

genetic means for analysis of mstn mRNA upon loss of Wnt/b-

catenin function, we first tested whether morpholino (MO)-

mediated knock-down of Lef1 [22], which is upregulated in

axin1/apc1 mutants (Fig. 1B) would rescue their aberrant

somitogenesis. Knockdown of Lef1 with 2 ng MO in wild-types

resulted in loss of a number of somites (59%, n = 54) at 54 hpf

(Fig. 7A), suggesting that Lef1 is required for normal somitogen-

esis. Notably, in 50% of Lef1-MO-injected axin1/apc1 mutants, the

normal number of somites was restored, establishing a mechanistic

link between Lef1 hyperactivity and somite loss (Fig. 7A).

Figure 4. Myotome hyperproliferation and sustained differentiation in axin/apc1 embryos. (A) BrdU pulse was performed at 36 hpf,
chased for 12 hours, and imaged at 48 hpf. Embryos were imaged at the level of the yolk extension. Scale bar, 25 mm. BrdU+ pulse was performed at
28 hpf or 36 hpf, and quantification of number of BrdU+ proliferating cells per somite was done 12 hours later at 40 hpf or 48 hpf, respectively. (C)
HUA treatment of embryos from 24 hpf until fixation at 54 hpf. Inhibition of proliferation with HUA from 24 hpf results in rescue of muscle
hypertrophy. Muscle fibers were stained with Phalloidin, and imaged at 54 hpf at the level of the yolk extension. Compare with untreated wild-types
in Fig. 2A (right panels). Scale bar, 25 mm. Quantification of number of somites is increased in axin1/apc1 mutants upon HUA treatment. (E)
Colocalization of Pax3/7+ and PH 3+ cells shows proliferating muscle progenitors. Quantification of proliferating Pax3/7+ and Pax3/7- cells in the
wild-types vs. axin1/apc1 mutant embryos shows significantly more proliferating Pax3/7+ cells in the mutants. Scale bar, 50 mm.
doi:10.1371/journal.pone.0005880.g004
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To test whether GOF and LOF of Wnt/b-catenin signaling

affected the levels of mstn RNA, we employed quantitative real-time

PCR to quantify expression of mstn mRNA in axin1/apc1 mutants

versus Lef1-morphants at different developmental times. The data

showed that reduced Wnt/b-catenin signaling in Lef1 morphants

resulted in upregulation of mstn mRNA (Fig. 7B, C), whereas

hyperactivity of the pathway in the axin1/apc1 mutants led to a slight

mstn downregulation at 36 hpf (Fig. 7B), and a more significant

downregulation at 54 hpf (Fig. 7C). We then analyzed the level of

Myostatin protein at 54 hpf. Predictably and in agreement with the

qPCR data, the level of processed mature monomeric Myostatin

protein was significantly induced in Lef1-morphants suggesting that

reduced Wnt signaling through Lef1 leads to de-repression of

Myostatin. Surprisingly, in axin1/apc1 embryos, the level of

Myostatin protein is similar to that of wild-type embryos, suggesting

that subtle increase of myostatin mRNA in the Wnt/b-catenin GOF

context, does not translate into an increase in the stable protein

(Fig. 7D). Why and how this mechanistically takes place need

further investigation. As lef1 was upregulated in the somites of axin/

apc mutants at 30 hpf, we tested whether misexpression of mstn

would alter this Wnt/b-catenin downstream target gene. Misex-

pression of mstn downregulated ectopic lef1 in the mutants as well as

slightly downregulating lef1 expression in wildtype siblings (Fig. 7E)

showing genetic interaction between Mstn and Wnt/b-catenin

signalling and probably underlying the mechanism of muscle fiber

rescue. To corroborate possible interaction between the two

pathways we performed in silico analysis to identify putative TCF-

binding elements (TBE) in myostatin promoter, as have been

identified in the promoters of Wnt target genes [34]. Indeed, we

found 3 putative TBE (NNCAAAG) within a 2.8 kb sequence

upstream of the myostatin gene at positions -2790, -2389 and -1578

(data not shown) opening up the possibility of a direct interaction

between Wnt and Myostatin.

Together, these data suggest an existence of a genetic

interaction between Wnt/b-catenin and Mstn in myofibrillogen-

esis possibly existing as a negative feedback loop. We propose a

model describing regulation of fast muscle fiber growth and

maintenance during secondary myofibrillogenesis with respect to

Mstn and Wnt signaling (Fig. S4).

Discussion

Most zebrafish mutants such as after eight (aei) and deadly seven

(des) that harbor mutations in genes of the Delta-Notch pathway

[35] display a reduction in somite numbers secondary to

patterning. Together with Delta-Notch signaling, Wnt/b-catenin

signaling contributes to somite clock establishment, mediating

early somite patterning [36,37]. The unique phenotype of the

axin1/apc1 mutant is characterized by normal somite patterning

followed by a gradual loss of approximately 10 most caudal

somites. Our data show that this somite loss, resulting from

sustained, ectopic and hyperactive Wnt/b-catenin, is secondary to

cell fate alterations, ultimately leading to hypertrophic and

degenerative fast muscle fibers. The hyperactive Wnt signal is

transduced mainly through Lef1 and leads to an imbalance

between proliferation and differentiation in the myotome. The late

activation of Wnt/b-catenin in wild-type embryos by treatment

with LiCl phenocopies the fast muscle fiber hypertrophy and

degeneration observed in axin1/apc1 embryos. This corroborates

the notion that the mutant muscle fiber phenotype arises

independently and is subsequent to normal somite establishment,

providing an opportunity to decouple roles of Wnt/b-catenin in

myofibrillogenesis versus somite patterning.

High Wnt/b-catenin activity is required for somite patterning,

as well as for proliferation i.e. expansion of the Pax3/7+ pre-

myogenic progenitor compartment. Pax3 and Pax7 transcription

factors, that mark the pre-myogenic progenitors in the developing

dermomyotome [38] and satellite cells in the adult muscle,

Figure 5. Misexpression of mstn rescues axin1/apc1 embryos. (A)
Injection of 5 pg p21CIP/WAF or mstn mRNA into 1 cell stage embryos,
and phenotype assessment at 54 hpf. Slightly hypotrophic muscle
fibers are observed in p21 as well as mstn-injected wild-type embryos
confirming efficiency of misexpression. Muscle hypertrophy in mstn-
injected axin1/apc1 embryos is partially restored to normal. (B)
Quantification of the somite number of uninjected and p21CIP/WAF or
mstn mRNA (5 pg) injected embryos. (C) Misexpression of mstn partially
restores the truncated somite phenotype, as well as cell survival in
axin1/apc1. Scale bar, 0.5 mm.
doi:10.1371/journal.pone.0005880.g005
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positively regulate cell proliferation [39,40]. Wnt/b-catenin has

been implicated in induction of Pax3/7+ precursors in cell culture

systems [41,42]. A high Wnt/b-catenin activity is probably also

required for proliferation of differentiating myoblasts. Our data

suggest that the sustained upregulation of myoD and myogenin in

axin1/apc1 reflects propensity towards differentiation of hyperpro-

liferating pre-myogenic Pax3/7+ precursors being consistent with

the known role of Wnt/b-catenin signaling in myogenic

differentiation in several systems [43,44].

We show that hyperproliferative fast muscle fibers underlie the

fast muscle fiber degeneration in the axin1/apc1 mutants, as partial

inhibition of proliferation restored to near normal impaired cell

survival and fast muscle fiber hypertrophy. The hypertrophic

muscle fibers in axin1/apc1 embryos indicate that a myotomal cell

population(s) hyperproliferates and differentiates, thus resulting in

an increase in the mass of the muscle fiber. Simultaneously,

conflicting instructions to myoblasts to undergo premature

differentiation likely leads to apoptosis. To our knowledge, Wnt/

b-catenin has as yet not been implicated in muscle hypertrophy in

vivo. Ex vivo studies of the adult muscle reveal the synergistic effect of

insulin and Wnt/b-catenin in causing myotube hypertrophy [45].

In addition, it has been shown that Wnt/b-catenin is upregulated in

overload-induced hypertrophy of the adult muscle [46]. As a

conserved transcriptional hierarchy is thought to regulate the

myogenic differentiation in embryos and adults [47], these reported

data may be extrapolated to the developing myotome.

Several in vitro and in vivo studies showed that Mstn

overexpression prevents proliferation and differentiation of muscle

precursors by inducing expression of the cell cycle inhibitor

p21CIP/WAF, while endowing muscle progenitors with competence

to respond to signals favoring muscle differentiation [32]. We

showed that simultaneous knockdown of Lef1 and Myostatin,

resulted in a hypertrophied muscle fiber, similar to knockdown of

Myostatin. This suggests that Wnt/b-catenin signaling could lie

upstream of the Mstn regulatory pathway, as knockdown of Lef1 is

unable to rescue the myofiber phenotype (Fig. 6), while

misexpression of mstn partially rescues the fast muscle hypertrophy

in axin1/apc1 embryos (Fig. 5A). Thus, Wnt/b-catenin might

mediate sustained proliferation of muscle progenitors by repressing

mstn. However, there is also the possibility that the rescue of

myofiber growth is non-specific and Myostatin might work

independently of and/or in parallel with Wnt/b-catenin signaling

in regulating myoblasts proliferation and differentiation. We favor

the possibility of a Wnt/b-catenin-Mstn negative feedback loop, as

our experimental evidence points towards a specific interaction,

direct or indirect, between Wnt/b-catenin signaling and Myostatin

as follows: (1) We observe an upregulation of mstn RNA transcripts

and protein upon Lef1 knock-down which may reflect release from

repression of mstn by Wnt/b-catenin (2) The downregulation of lef1

mRNA expression upon mstn misexpression in axin1/apc1 and

wildtype embryos suggests a negative feedback loop between Wnt/

b-catenin and mstn, likely reflecting the mechanism that underlies

phenotype-rescuing capacity of Lef1; (3) The identification of 3

putative TBE within a 2.8 kb region upstream of the Myostatin

ATG start site opens up a possibility of a molecular interaction

between Mstn and Wnt/b-catenin signaling. However, Wnt/b-

catenin could also mediate repression of Mstn indirectly, through

induction of its direct target follistatin [48] that is a known

negative regulator of Mstn [49]. Whether and how this genetic

hierarchy regulating myofibrillogenesis translates into direct

molecular interactions is an important avenue for further research.

Unlike mice expressing dominant negative Mstn, which equally

affects both fast and slow muscle fibers, the axin1/apc1 embryo

exhibits different phenotypes with both slow and fast muscle fibers.

Although hypertrophy and hyperplasia is observed in the slow

muscle fibers at 36 hpf, there is a reduction in the total amount of

slow muscle myosin RNA. We speculate that the lack of

quantitative differences observed in the slow muscle fibers could

be due to the fact that slow muscle fibers only make up a small

portion of the myotome. Therefore, a small increase of slow

Figure 6. Mstn is dominant over Wnt/b-catenin in myofibrillogenesis. Representative images of injection of 5 ng (n = 30) or 10 ng (n = 30)
Mstn MO results in muscle hypertrophy, whereas injection of 2 ng Lef1 MO (n = 30) results in hypotrophic muscle fibers. Co-injection of 10 ng Mstn
MO with 2 ng Lef1 MO (n = 10) results in hypertrophic muscle fibers. Images of all embryos are cumulative z-stacks and taken at the level of the yolk
extension, as depicted in cartoons. Scale bar, 50 mm.
doi:10.1371/journal.pone.0005880.g006
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muscle myosin is not quantifiable by qPCR. On the contrary, the

fast muscle fibers exhibit muscle fiber degeneration and disorga-

nization at 36 hpf, and at 54 hpf, they appear hypertrophic

(Fig. 2A). This is confirmed by a significant increase of the total

amount of fast muscle myosin at 54 hpf (Fig. 2B). The fast muscle

hypertrophy is likely to reflect a compensatory response to

decreased muscle stability. Significantly, it is only the fast muscle

fibers that degenerate in response to hyperactive Wnt/b-catenin

signaling even prior to overt hypertrophy. In agreement to the

upregulation of fast muscle myosin in axin1/apc1 embryos, it has

recently been shown in cattle that knock-out mutations in

myostatin result in preferential downregulation of fast 26myosin

heavy chain [50]. Consistently, mstn, which we showed is affected

by Wnt/b-catenin pathway is predominantly found in fast twitch

muscle [51]. This study opens up a prospect to unravel the poorly

understood difference in regulation of maintenance and growth of

secondary slow versus fast muscle fibers.

Although our work showed that Mstn negatively regulates Wnt/

b-catenin, it is very likely that there is an involvement of other

signals that mediate timely and dosage-regulated restriction of the

Wnt/b-catenin pathway, thereby safeguarding myofibrillogenesis

and regulated muscle growth. The pathogenetic mechanism of the

muscle hypertrophy in muscle degenerative diseases is still unclear.

Our data, implicating a possible role of Wnt/b-catenin signaling in

interaction with Mstn and p21CIP/WAF, which have been shown to

be important in muscle diseases, might pave a way to approaching

muscle diseases from a novel angle.

Materials and Methods

Zebrafish embryos
Zebrafish embryos were raised and staged as previously

described[52]. apcCA50a/CA50a is a lethal recessive zygotic mutation

identified in a three generation forward mutagenesis screen [25]

Figure 7. mstn is upregulated in LOF Wnt/b-catenin. (A) 2 ng Lef1 MO was injected at 1-cell stage into wild-type or axin1/apc1 embryos, and
the number of somites was counted at 54 hpf. Two independent clutches of axin1/apc1 heterozygous incross were analyzed (Total n = 64), in which
10 were genotyped as axin1/apc1 homozygous. (B) Quantitative real-time PCR (qRT-PCR) of myostatin mRNA expression normalized to actin. Total
RNA was isolated from 36 hpf wild-type, axin1/apc1 and Lef1 morphant embryos. Graphs show that expression of mstn is upregulated in Lef1
morphants, corresponding to the in situ hybridization with mstn probe in bottom panels. Scale bar, 100 mm. (C) Quantitative real-time PCR (qRT-PCR)
of myostatin mRNA expression normalized to actin. Total RNA was isolated from 54 hpf wild-type, axin1/apc1 and Lef1 morphant embryos. Graphs
show that expression of mstn is downregulated in axin1/apc1 embryos and upregulated in Lef1 morphants (D) Western blot on lysates collected from
54 hpf wild-type, axin1/apc1 and Lef1 morphant embryos. Graph shows upregulation of Mstn in Lef1 morphants. However, there is no significant
difference in levels of Mstn protein in axin1/apc1 embryos versus wildtypes. (E) Misexpression of mstn mRNA downregulates the Wnt target gene lef1
in axin1/apc1 mutants shown with WISH for lef1 riboprobe. Scale bar, 100 mm.
doi:10.1371/journal.pone.0005880.g007
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according to standard mutagenesis protocol. axin/mbl(tm13) is a

recessive lethal zygotic mutant obtained in the large scale

Tubingen screen[24]. axin1/apc1 compound mutants were gener-

ated from crossing apcCA50a/CA50a with axin/mbl(tm13).

Fish/embryo genotyping
To verify phenotype/genotype correspondence, nested PCR was

performed to amplify the template. First amplification was done

using outer primer pair apc1forward(1)-apc1reverse(4) for identifi-

cation of apc1 mutants, and outer primer pair axin1forwards(1)-

axin1reverse(4) for identification of axin1 mutants. Second ampli-

fication for apc1 and axin1 was done using primer pair apc1for-

ward(2)-apc1reverse(3) and primer pair axin1forward(2)-axin1re-

verse(3) respectively. Primer sequences are as follows:

apc1forward(1) 59-GTGCCTTAGAGGTGCAGAAG-39, apc1for-

ward(2) 59-GCAGTGTCCTTGTGGTTATG-39, apc1reverse(3)

59-TGCCTTTACACATTGGTGAG-39, apc1reverse(4) 59-CAC-

AATCCTAACAAGCCATTC-39, axin1forward(1) 59-ATGTGT-

CCTCCATTTGTCTG-39, axin1forward(2) 59-TTTGTCTGTC-

CACATACCTG-39, axin1reverse(3) 59-ACACCAGGAAATTC-

ATCCAG-39, axin1reverse(4) 59-GATGCTCCTTCATTCCAA-

AC-39. DNA sequencing was performed using apc1forward(2) and

axin1forward(2) to identify the specific genetic mutations as

described previously [24,25].

In situ hybridization and immunohistochemistry
Whole-mount in situ mRNA hybridization (WISH) was carried

out as previously described[53]. Embryos were fixed in 4%

paraformaldehyde (PFA) overnight at 4uC and digoxigenin-tagged

probes were made with Roche labeling mix to TOPdGFP, myoD,

myogenin, lef1, and titin. For mstn, exonic fragments were generated

with the primers: T3mstn(f) 59-ATTAACCCTCACTAAAGGGA-

GAATGAACATGCCACCACAGAA-39 and T7mstn(r) 59-TAA-

TACGACTCACTATAGGGAGATAATCCAGTCCCAGCCA-

AAG-39, and digoxigenin-tagged probes were made. Embryos were

fixed for antibody staining with 4% PFA or Carnoy’s and whole-

mount immunohistochemistry was performed according to Du et al.

[54], using primary antibodies A4.1025 (Developmental Studies

Hybridoma Bank) 1:20, Eb165 (Developmental Studies Hybridoma

Bank) 1:250, Pax3/7 1:20 (gift from Prof. N. Patel), PH 3 (Upstate

Biotechnology #06570) 1:1000, MyoD 1:250 (Santa Cruz, C-20,

sc-302). Appropriate secondary antibodies were used at 1:200.

Immunohistochemistry was analyzed at the level of yolk extension

where there is minimal muscle degeneration, unless otherwise

stated, as caudal to the yolk extension there is massive apoptosis.

Phalloidin staining
Phalloidin-TRITC (Sigma) staining (1:50) was performed at

room temperature overnight. Muscle fibers were analyzed at the

level of the yolk extension where there is minimal muscle

degeneration, as caudal to the yolk extension there is massive

apoptosis.

Microinjection of mRNAs and morpholinos (MO)
Morpholino antisense oligonucleotides were obtained from

Gene Tool (Philomath, OR): zflef1 (ATG) 59-CTCCTCCACCT-

GACAACTGCGGCAT-39 [22] and zMstn (ATG) 59-

TGCATGTTCCAAGGCGTGCTAAAGG-39. We validated ef-

fectiveness of Mstn morpholino by showing its capacity to knock-

down the protein (Fig. 7D). Capped synthetic mRNA was

prepared from pCS2+ constructs encoding zebrafish mstn (gift

from L.D. Valle) or human p21CIP/WAF (gift from C.J. Weijer)

using the mMessage mMachine kit (Ambion), and injected into

one-cell stage embryos using a microinjector (World Precision

Instruments). A concentration range of 2.5–100 pg of mRNA was

injected into one-cell stage embryos to test for viability and effect,

and the concentration which had only a subtle effect on wild-type

embryos was selected. For axin1/apc1 rescue experiments, 5 pg of

mstn or p21CIP/WAF mRNA was used.

Cell quantification and imaging
Fluorescent labelings were imaged using a Leica TCS SPE

confocal microscope. For each set of experiments, all laser and

software settings were standardized. Images from each embryo

were cropped in Volocity (Improvision) to exclude the neural tube.

Cell counts in the somites were done manually from a z-stack of

the whole somite. For each set of experiments, cells were counted

and imaged at the first four somites of the yolk extension, unless

stated otherwise. For quantification of Pax3/7+ pre-myogenic

progenitor cells, only weakly labeled Pax3/7+ nuclei were counted

as previously described [38]. Digital pictures of WISH embryos

were obtained using the Zeiss Axioplan Stereomicroscope

(comparable available microscope is Zeiss Axio Imager) equipped

with a Leica digital camera and were adjusted for brightness and

contrast using Adobe Photoshop 7.0.

Western blot and quantification
Embryos (54 hpf) were dechorionated, deyolked in deyolking

buffer (5 mM KCl, 10 mM D-glucose in PBS), and lysed by

sonification for 15 seconds in 50 mM Tris pH 7.5, 150 mM NaCl,

1 mM EDTA, 1% NP-40, 0.1% sodium deoxyocholate and

protease inhibitor cocktail (Complete mini, Roche). An equivalent

of 12 embryos per lane was fractionated by 17.5% SDS-PAGE gel

and blotted semi-dry to PVDF membrane (Millipore). Membranes

were stained with Coomassie blue stain to verify loading.

Membranes were blocked in blockbuffer (50 mM Tris-HCL,

150 mM NaCl, 0.25% gelatin, 0.5% Triton X-100, pH 7.4) and

incubated overnight at 4uC with rabbit anti-Myostatin antibody

(AB3239, Millipore, 1:2500), washed 3610 min with 100 mM

Tris HCl pH 7.5, 0.1% Tween-20 and incubated for 1 h at RT

with secondary horseradish peroxidase conjugated anti-rabbit IgG

antibody (#554021, BD Transduction Laboratories, 1:10000),

followed by enhanced chemiluminescence (Sigma Aldrich). For

actin-loading control, membrane was stripped in 62.5 mM Tris

HCl pH 6.8, 2% SDS, 0,14% b-mercaptoethanol, blocked in

TBS-0.05% Tween +5% milk and incubated with rabbit anti-actin

antibody (A5060, Sigma Aldrich, 1/5000) in TBS-0.05% Tween

+2% milk overnight at 4uC, followed by HRP-conjugated anti-

rabbit IgG antibody in TBS-0.05% Tween for 1 h at RT, and

developed by enhanced chemiluminescence. The film was scanned

with GS-800 Calibrated Densitometer (BioRad) and quantitated

with Quantity One 4.6.7 program.

Lithium chloride treatment
LiCl treatment (0.3 M) was repeated twice on the same clutch of

embryos for each of the 3 developmental intervals: (1) Early: LiCl

treatment pulse for 40 minutes at tailbud and again at 16 hpf, (2)

Mid: LiCl treatment pulse for 40 minutes at 16 hpf and again at

24 hpf, and (3) Late: LiCl treatment pulse at 24 hpf and again at

30 hpf. Embryos were washed 3 times in between treatments.

Upon treatments, embryos were fixed at 36 hpf, and stained with

Phalloidin to visualize all muscle fibers.

HUA treatment
Embryos were cultured in both 75 mM aphidicolin with 0.25%

DMSO (Sigma-Aldrich) and 20 mM hydroxyurea (Sigma-Aldrich)

Wnt-Mstn in Myofibrillogenesis

PLoS ONE | www.plosone.org 10 June 2009 | Volume 4 | Issue 6 | e5880



from 24 hpf to 54 hpf. Embryos were then fixed for further

experiments.

BrdU labeling
For BrdU labeling experiments, embryos (16 hpf, 28 hpf,

36 hpf) were dechorionated and placed in 10 mM BrdU with

15% DMSO on ice for 1 hour. After pulsing, embryos were

washed in embryo medium several times and incubated at 28uC
for 12 hours. Embryos were then fixed with 4% PFA and

immunohistochemistry was performed as above, with incubation

in 2 N HCl for 1 hour prior to blocking.

RNA isolation and qRT-PCR
For experiments in Figure 2B, total RNA was isolated from

36 hpf (n = 40) or 54 hpf (n = 40) wild-type and 36 hpf axin1/apc1

(n = 40) or 54 hpf (n = 40) axin1/apc1 embryos. DDCT of wild-type

was set as 1 for both 36 hpf and 54 hpf, and corresponding values

for axin1/apc1 36 hpf and axin1/apc1 54 hpf were normalized to

this wild-type. For experiments in Figure 7B and C, embryos were

injected with 2 ng Lef1-MO. At 36 hpf, 40 of each wild-type,

axin1/apc1 homozygous and lef1-MO injected embryos were

collected. Total RNA extraction and purification was performed

using standard Trizol and isopropanol precipitation. cDNA

synthesis was performed using hexamers and M-MLV Reverse

Transcriptase. Concentration of purified cDNA was measured

with Nanodrop. 50 ng cDNA was used for each set of primers.

Transcript levels of myhz2, myhz5, actin and mstn were quantified by

real-time PCR using iQTM SYBRH Green Supermix (Bio-Rad) on

an iCycler iQ Real-Time PCR Detection System (Bio-Rad).

Results were expressed as a relative ratio to the housekeeping gene

actin according to a mathematical method as described [55].

Primer sequences are as follows: mstn(F) 59-GATTAACGCA-

TATGACGCGAAG-39, mstn(R) 59-ACAGTGAGAGGG-

TACCTGCAG-39, myhz2(F) 59-ACAGTTTTTCAACCACCA-

CATGTT-39, myhz2(R) 59- AATGCAAGCGGCCAAGTC-39,

myhz5(F) 59- GCTGGAGAATGAGGTGGAGTTG-39,

myhz5(R) 59- AGTCTGGTAGGTGAGCTCCTTGA-39, Actin-

Control(F) 59-CAACAGGGAAAAGATGACACAGAT-39, Ac-

tinControl(R) 59-CAGCCTGGATGGCAACGT-39. Accession

numbers for mstn is NM_131019, myhz2 is NM_152982, myhz5 is

AY333451 and actin is AF025305. Triplicates were carried out for

each amplification.

Statistical analysis
Shapiro-Wilk normality test was performed with SPSS 16.0. All

data followed normal distribution, with the exception of wild-type

DMSO controls in Fig. 3d. Unpaired two-tailed student’s t-test

was performed using SPSS 16.0. For wild-type DMSO controls in

Fig. 3d, where no normal distribution was observed, non-

parametric Mann-Whitney test was used. All significant differences

(p,0.05) are marked with an asterisk (*) and highly significant

differences (p,0.005) are marked with two asterisks (**). All bars

in graphs depict mean values with error bars depicting standard

deviations.
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