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Abstract

Background: Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement
membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context,
comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation
and resistance to anti-angiogenic therapeutics.

Methods and Findings: To better understand the basis for mural cell regulation of angiogenesis, we conducted high
content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human
endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells
undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation:
Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular
matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This
phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2
signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation.
Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF.

Conclusions: These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.
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Introduction

Mural cells, a peri-endothelial localized mesenchymal cell type

including vascular smooth muscle cells and pericytes, exert a

dominant effect on endothelial cell behavior, driving vessel

maturation, regulating vascular function and influencing respon-

siveness to anti-angiogeneic therapeutics [1–4]. Maturation of

blood vessels is a stepwise transition from an actively growing

vascular bed to a quiescent functional network [5]. This entails

strict temporal and spatial coordination of endothelial cell

signaling pathways that govern proliferative, migratory and

morphogenic endothelial phenotypes [6]. The recruitment of

mural cells to the abluminal surface of nascent blood vessels is a

key prerequisite for vessel maturation. Mural cells define a context

comprising heterotypic cell-cell contacts, ECM deposition and

soluble factors that inhibits endothelial proliferation, maintains

capillary diameter, regulates blood flow and provides survival

signals [7].

Prior to mural cell coverage, nascent vessels are susceptible to

remodeling and VEGF-signaling inhibitors [1]. Genetic and

pharmacological inhibition of PDGFR-b reduces mural cell

recruitment to growing vessels and is associated with exacerbated

angiogenesis, endothelial hypertrophy and irregular, enlarged

vessels [8,9]. Interestingly, endothelial cell VEGF expression can

alter mural cell responsiveness to PDGF via growth factor

crosstalk, modulating mural cell recruitment and mural function

[10]. Abnormal mural cell interactions in tumor vasculature

contribute to the presence of non-perfused vessels, aberrant vessel

size, loss of the hierarchical vessel organization and sensitivity to

anti-angiogenic agents [11].

Heterotypic cell-cell contact at interdigitations between endo-

thelial cells and mural cells provides a unique presentation context

for paracrine factors such as VEGF and angiopoietins that

regulate endothelial cellular responses [4,10,12]. Mural-endothe-

lial cell-cell contact leads to TGF-b1 activation, which in turn

inhibits endothelial cell proliferation, while inducing differentia-

tion of mesenchymal stem cells into pericytes [13,14]. An

important system governing vessel maturation is endothelial Tie2

receptor activation by mural cell Ang-1 [15,16]. Angiopoietin-

Tie2 signaling, where endothelial Ang-2 competes with mural cell-

derived Ang-1, controls endothelial responsiveness to VEGF and

angiogenic remodeling [17,18]. Indeed, differential requirements
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for VEGF in immature and mature vessels accounts for the

observed vascular ‘‘normalizing’’ effect of VEGF signaling

inhibitors in clinical use [19,20].

In spite of the central role that mural cells play in determining

vascular maturation and anti-angiogenic therapeutic responses,

our understanding of the molecular mechanisms mediating these

effects is incomplete. In vitro organotypic angiogenesis models, such

as the co-culture of primary endothelial (umbilical vein EC or

microvascular EC) and mural cells (pericytes, vascular smooth

muscle cells (vSMC), fibroblasts, mesenchymal stem cells) in two-

and three-dimensional (imbedded in extracellular matrix) assays

[21], have been used to study heterotypic interactions required for

EC-mural cell crosstalk [6,13,14,18,22–28]. We adapted EC-

mural cell co-culture to a microtiter plate format to facilitate high

throughput interrogation of mural cell-dependent regulation of

endothelial cell behaviors by combined chemical genetic manip-

ulation and quantitative high content imaging techniques. Using

this approach we reveal that this high throughput screening

(HTS)-compatible EC-mural cell co-culture system recapitulates a

remarkable assortment of angiogenic endothelial cell behaviors.

Mural cells define a context in co-culture that enables an

endothelial cellular program resulting in formation of a capil-

lary-like network, via a predictable sequence of phenotypic

changes reflective of several facets of angiogenesis and vessel

maturation: i) loss of EC proliferation; ii) pathfinding cell

migration; iii) adherens junction formation; iv) branching

morphogenesis and network formation; v) vascular basement

membrane-like formation, collagen IV/XVIII ensheathment; vi)

patent lumen formation; vi) anastamosis and vii) network

stabilization. Our findings emphasize a key role for mural cell

presentation of VEGF to drive vessel formation and maturation.

Results

ECs co-cultured with vSMCs or mesenchymal stem cells
form capillary-like networks

To study how mural cells affect endothelial cell behavior we

used a genetically and pharmacologically tractable in vitro model

system comprising co-cultured primary human endothelial and

vascular smooth muscle (EC-vSMC) cells [29]. During a one-week

period primary human ECs co-seeded with vSMCs in microtiter

plates undergo a predictable series of phenotypic changes that

result in a stable, interconnected network (Figure 1A-B). Elongated

ECs interdigitate to form capillary-like tubular structures of

uniform diameter (Figure 1C). Co-cultured EC and vSMC cells

rapidly self-organize into two distinct layers, vSMCs forming a

confluent layer on the culture dish surface and ECs above

(Figure 1D). Impeding this cellular self-organization by pre-

Figure 1. Endothelial cells in co-culture with vascular smooth muscle cells generate capillary-like networks. (A) Live cell fluorescence
microscopy of GFP-expressing HUVEC cell capillary-like network (green) after 5 days in co-culture with PA-vSMC (unlabeled). (B) Mixed RFP- and GFP-
expressing HUVEC (1:1) in co-culture with PA-vSMC (unlabeled) at Day 9 demonstrate extensive interaction between ECs within network. (C) Two-
color HUVEC networks (9 days) comprise uniform elongated, inter-digitating ECs. (D) Confocal fluorescence microscopy analysis (z-stack) of RFP-
expressing HUVEC and GFP-expressing PA-vSMC co-cultures show cells self-organize into distinct layers with ECs residing atop a confluent vSMC
layer. (E) Cells grown in co-culture allowing cell-cell contact results in a capillary-like network. (F) Co-cultures in separated by a porous membrane in
transwell chambers do not form a network. (G) Temporal image analysis during 6 days of EC network formation shows a decrease in the number of
non-networked cells as EC connectivity is established and stabilizes. (H) Lumens form at branch points (inset: z-stacks) and throughout the EC
network. (I) TRITC-dextran (10 000 MW) concentrates into patent lumens in Day 9 endothelial networks (inset: z-stacks).
doi:10.1371/journal.pone.0005798.g001
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attaching ECs to the culture vessel surface followed by vSMC

plating, blocked EC network formation (data not shown).

Heterotypic cell contact was required as neither vSMC-condi-

tioned medium alone nor co-culture in transwell chambers

resulted in EC network formation (Figure 1E-F; data not shown).

vSMC monolayers fixed by a variety of methods (e.g cross-linking

agents, freeze-thaw) also do not induce EC network formation

(data not shown). Time-lapse video fluorescence microscopy

analysis revealed that the formation of EC networks progresses

through distinct phases (Figure 1G and Video S1). ECs

immediately stop dividing and during the first 48 hours become

elongated and highly migratory. Migrating ECs form ‘‘cell trains’’

and branched junctions eventually enlisting nearly every cell into

the final network (Figure 1G). Once formed, these networks

stabilize, ceasing migration (Video S2) and form a patent lumen

structure that concentrates exogenous dextran (Figure 1H-I).

There is no observable EC apoptosis during this process (Video

S1) and stabilized EC networks can been maintained in culture for

several weeks (data not shown). Both primary human microvas-

cular endothelial cells (HuMVEC) and primary human umbilical

cord vein endothelial cells (HUVEC) formed indistinguishable

networks in co-culture with vSMC (Figure 2A-B). Endothelial

Figure 2. Endothelial- mesenchymal stem cell co-culture generates capillary-like networks. (A) Live cell fluorescence microscopy whole
well image 9611 montage of RFP-expressing HUVEC - GFP-expressing human dermal microvascular endothelial cell (HuMVEC) – PA-vSMC (unlabeled)
tri-culture network at Day 6 (10X objective) (B) Live cell fluorescence microscopy image 9611montage of interdigitating HUVEC (RFP, red) and
HuMVEC (GFP, green) Day 6 tri-culture with vSMC (406objective). (C) Hoechst nuclear staining of a Day 5 co-culture showing the GFP-expressing
endothelial network (green) amid a confluent PA-SMC layer (blue). (D) Confocal microscopy analysis of anti-a-SMA-stained PA-SMC (green) extending
filopodia that co-localize with multiple RFP-expressing HUVEC (red) in the vessel-like network. (E) Live cell fluorescence microscopy of GFP-expressing
HuMVEC capillary-like network after 5 days in co-culture with PA-vSMC. (F) Live cell fluorescence microscopy of GFP-expressing HUVEC capillary-like
network after 5 days in co-culture with primary human bone marrow-derived mesenchymal stem cells (MSC). Comparison of GFP-expressing HUVEC
co-cultured with PA-SMC (G) and GFP-expressing HUVEC co-cultured with primary human foreskin fibroblast cells (H). Image analysis shows that HFF
are unable to support endothelial network formation (I).
doi:10.1371/journal.pone.0005798.g002
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vessel-like structures assemble amid a confluent monolayer of

vSMC (Figure 2C). Confocal microscopy analysis shows that

vSMC extend filopodia that co-localize with multiple endothelial

cells at various points both above and below the focal plane

(Figure 2D). Endothelial networks could also be induced by co-

culture with human bone marrow-derived mesenchymal stem cells

(Figure 2E-F). In contrast, normal human dermal fibroblasts did

not support network formation in co-culture with EC (Figure 2G-

I). This indicates that the mural cell-defined context provides a

specific set of signals to drive the formation of a stable mature

capillary-like network.

ECs co-cultured with vSMCs quiesce, undergo Rac1-
dependent morphogenesis and form adherens junctions
during network formation

Time-lapse fluorescence microscopy analysis of GFP-expressing

EC in co-culture revealed no apparent cell division (Video S1).

Analysis of BrdU-incorporation in EC-vSMC co-culture demon-

strated that while vSMCs divide in co-culture until confluent, ECs

show low BrdU-levels (Figure 3A-C). Indeed, over-expression of

the cell cycle inhibitor p21 in ECs did not affect network formation

(Figure 3D-E). Co-cultured ECs display a polarized, migratory

phenotype during network formation (Figure 3F). Expression of

dominant negative Rac1 (Rac1N17) strongly inhibited morpho-

genesis and network formation emphasizing the importance of

Rac1-dependent cytoskeletal rearrangements (Figure 3G).

Adherens junctions represent the major class of homotypic

endothelial cell-cell interactions [30]. VE-cadherin is a specific

marker for vascular endothelial cells adherens junctions, and

immunofluorescence analysis demonstrated extensive VE-cad-

herin-catenin complex formation in co-culture induced EC

networks (Figure 4A-B). Notably, VE-cadherin complex structures

displayed a distinct ‘‘lacelike’’ appearance in co-cultured EC,

perhaps due to increased interdigitation and junctional tightening

(Figure 4C) [31]. The functional significance of adherence junction

formation in network formation was ascertained by RNAi

Figure 3. Vascular smooth muscle cells inhibit endothelial cell proliferation and drive Rac1-dependent morphogenesis. (A) GFP-
expressing HUVEC grown in mono-culture exhibit extensive BrdU-incorporation (red). (B) In constrast, co-cultured GFP-expressing HUVEC do not
incorporate BrdU, while PA-vSMC SMC divides until confluency. (C) Flow-cytometry analysis showed that HUVEC cells in co-culture have a 4.4-fold
decreased proliferation activity compared to a HUVEC mono-culture. Data shown is representative of three individual experiments. (D) Over-expression
of the cell cycle inhibitor p21 (GFP-p21) in co-cultured HUVEC did not affect EC network formation relative to GFP-expressing HUVEC control (E). (f) A
representative GFP-expressing HUVEC in co-culture at 24 hours post-seeding showing a cell migratory morphology (scalebar = 50 mm). (G) Over-
expression of dominant negative Rac1 (GFP-Rac1N17) in co-cultured HUVEC potently inhibited cell morphogenesis and EC network formation.
doi:10.1371/journal.pone.0005798.g003
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Figure 4. Endothelial cell networks form adherens junctions. (A) Adherens junctions visualized by VE-cadherin immunofluorescence (red)
delineate the border of interdigititated HUVEC cells (green) in 6 day capillary-like networks. (B) Confocal imaging (collapsed z-stack) of a network
branch point where VE-cadherin immunofluorescence defines borders of layered, intersecting endothelial cells. (C) VE-cadherin immunofluorescence
showed a lace-like structure. (D) Retroviral vector shRNA-mediated knockdown of a-catenin in co-cultured HUVEC results in inhibition of network
formation. Data shown is representative of three independent shRNAs targeting a-catenin. (E) Control shRNA expressing co-cultured HUVECs
generate a capillary-like network. (F) Image analysis of fluorescence microscopy images showed a 2-fold increase in distinct HUVEC (segments)
detected at 72 hours post co-culture seeding.
doi:10.1371/journal.pone.0005798.g004
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knockdown of a-catenin (Figure 4D-F; Figure S1). EC expressing

an shRNA targeting a-catenin failed to generate an interconnected

capillary-like network in co-culture, instead forming single,

elongated, unconnected ECs that were stable (Figure 4D). a-

catenin knockdown in HUVEC did not alter quiescence or

enhance cell death in co-culture (data not shown). Thus homotypic

EC connectivity via adherens junction formation is separable from

vSMC-induced endothelial quiescence and morphogenesis.

Together these results indicate that while formation of a single

interconnected network relies on the formation of EC-EC

adherens junctions, these junctions are not required for the

endothelial cells to undergo extensive and stable changes in cell

morphology.

ECs co-cultured with vSMCs form vascular basement
membrane-like structures

Formation of the vascular basement membrane is a hallmark of

vessel maturation [3]. We therefore interrogated EC-vSMC co-

cultures for the presence of basement membrane matrix protein

deposition. Confocal immunofluorescence analysis demonstrated

the presence of extensive collagen IV protein structures that

completely ensheathed EC networks at 72 hours (Figure 5A-B).

Collagen IV was not expressed by SMCs or ECs in monoculture

(data not shown), suggesting an induced synthesis and local

collagen IV deposition in co-culture. Collagen XVIII, a specific

constituent of vascular basement membranes showed a similar

peri-endothelial enriched localization pattern in co-culture

(Figure 5C). Other ECM proteins, laminin (Figure 5D) and

fibronectin (data not shown) localized at the vSMC layer. Laminin

expression increased over time in the EC-vSMC co-culture

(Figure 5E).

To determine whether the formation of a collagen-rich vascular

basement membrane-like structure was necessary to stabilize EC

capillary-like networks, co-cultures were treated with a proline

hydroxylase inhibitor (EDBH) or starved for ascorbic acid to

inhibit collagen assembly and synthesis respectively (Figure 5F-J).

These treatments strongly reduced EC-associated collagen depo-

sition, disrupting EC connectivity, reducing tube length and

abrogating EC networks (Figure 5J). Hence formation of a vSMC-

induced vascular basement-like structure contributes to the overall

EC network stability.

ECs require VEGF-R2 and vSMC-associated VEGF to form
a capillary-like network

Previous studies demonstrated the requirement for VEGF to

drive endothelial network formation in different systems including

EC-vSMC co-cultures [22,32]. Indeed, network formation in EC-

vSMC co-cultures is strongly inhibited by treatment during the

initial 48 hours with different VEGF-signaling inhibitors

(Figure 6A-C). Further, shRNA-mediated knockdown of VEGF-

R2 in ECs blocked network formation (Figure 6D; Figure S1).

Timelapse video fluorescence microscopy of PTK787/ZK-treated

co-cultures demonstrated that ECs continue to migrate but do not

elongate nor form EC-EC junctions (Video S3). This is congruent

with the notion that ECM proteins alone are sufficient to induce

cell migration but vSMC-VEGF induced signaling via endothelial

VEGF-R2 is required for network formation [23].

As co-cultures conducted in growth factor-rich or poor (i.e. 2%

serum only) conditions both displayed network formation (data not

shown), we reasoned that VEGF was provided by vSMCs. Indeed,

RT-PCR (Figure S2) and ELISA (Figure 6J) on cultured vSMCs

demonstrated that VEGF165 is a predominant isoform, expressed

at 135 pg/ml per 700 000 cells/day. shRNA-mediated knock-

down of vSMC VEGF-expression (3.5 pg/ml per 700 000 cells/

day) completely blocked EC capillary-like network formation

(Figure 6F). Similarly, vSMC isolates that do not secrete

VEGF165 (,3 pg/ml per 700 000 cells/day) also do not support

EC network formation (Figure 6E). Importantly, the inhibitory

effects of vSMC-VEGF knockdown on network formation

phenotype could not be rescued by co-culture in optimal

endothelial growth medium that contains VEGF, bFGF and

EGF (EGM-2 medium) nor by addition of conditioned native

vSMC medium (Figure 6E-F; data not shown), conditions that

readily support migration and proliferation of EC cultures.

Conversely, we over-expressed VEGF165 in vSMC (3238 pg/ml

per 700 000 cells/day) by retroviral transduction and evaluated

the effects on EC in co-culture. As shown in Figure 6G these EC-

vSMCVEGF-High co-cultures displayed normal network formation.

Interestingly, retroviral vector expression of VEGF165 in

fibroblasts was insufficient to drive the EC capillary-like network

formation observed for vSMC-EC co-cultures, instead inducing

EC morphology changes characterized by extended filopodia

(Figure 6H-I). These results demonstrate that vSMC-associated

VEGF is required to drive EC capillary-like network formation

and that enhancing this expression does not lead to the formation

of an excessive or less mature EC network. This indicates that

mural cells can define a context that limits the extent of VEGF-

induced angiogenesis and promotes the formation normal vessels.

Discussion

Mural cells exert a dominant effect on endothelial cell behavior

that is necessary for vessel maturation and function, and that

determines responses to anti-angiogenic therapeutics [2,3]. We

report here that primary human mesenchymal cell types, vascular

smooth muscle and mesenchymal stem cells, induce functional and

morphological changes in primary endothelial cells (HUVEC,

HuMVEC) that lead to a uniform, stabilized capillary-like

structure, enveloped by vascular basement membrane matrix

proteins and maintaining a patent lumen, hence recapitulating

major structural components of blood vessels in a high

throughput-high content imaging compatible format.

Mural cell interactions attenuate endothelial proliferation, a

prerequisite for maturation and stability. Reduced mural cell

recruitment to sprouting endothelial cells is associated with vessel

hypertrophy in vivo [8]. Studies employing in vitro co-culture

systems demonstrated that mesenchymal cells induce endothelial

quiescence by direct cell-cell contact, mediated in part by

activation of TGFb [18,24]. Congruent with these reports we

demonstrate that EC proliferation is inhibited in co-culture with

vSMC and that enforced cell cycle arrest by p21 cyclin-dependent

kinase inhibitor expression has no effect on endothelial network

formation. Instead endothelial cells become highly migratory and

morphogenic in the presence of mesenchymal cells. Time-lapse

fluorescence confocal microscopy analysis shows that endothelial

cells engage in extensive pathfinding-activity during the first

72 hours, forming motile cell trains that integrate into fully

interconnected anastamosed endothelial networks.

Several studies using various in vitro angiogenesis systems (e.g.

co-culture, 3-D collagen, Matrigel) have shown that VEGF is

required for endothelial cell network formation [22,32]. Consistent

with this, treatment with a VEGFR tyrosine kinase inhibitor

(PTK787/ZK), RNAi knockdown of endothelial VEGF-R2 or

vSMC-VEGF expression completely abrogates co-culture-induced

endothelial network formation. Time-lapse fluorescence videomi-

croscopy analysis of PTK787/ZK-treated co-cultures demonstrat-

ed that EC remain viable and actively migrate, likely due to vSMC

Mural Cell VEGF
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matrix protein expression (fibronectin, collagen I), but do not

elongate or form stable cell-cell contacts. VEGF activates Rho-

family small GTPases that induce endothelial cytoskeletal

rearrangements that are required for cell elongation and vessel

formation [25,33]. Indeed, we show that expression of dominant

negative Rac1 potently inhibits EC morphology changes in co-

culture with vSMC. In contrast, targeted disruption of adherens

junction formation via shRNA knockdown of endothelial a-

Figure 5. Endothelial cell networks are stabilized by basement membrane protein deposition. (A) Collagen type IV (red) is deposited at
GFP-expressing HUVEC cells in co-cultures, completely enveloping the endothelial cells (confocal Z-stack, inset). (B) Collagen type IV and (C) collagen
type XVIII have similar EC-associated deposition patterns. (D) SMC-associated laminin expression, 1006objective. (E) Western blot analysis shows that
laminin deposition increases during co-culture. (F) Immunofluorescence analysis of collagen IV (red) expression in 72 hour vehicle-treated co-cultures
with GFP-expressing HUVEC cells and PA-vSMC (unlabelled). (G) Inhibition of collagen type IV synthesis/maturation by EDBH treatment reduces
collagen IV deposition and tube formation. (H) Quantification shows that EDBH-treatment reduces EC network tube average length. (J) Co-cultures
incubated in ascorbic acid-deficient medium inhibited EC network formation compared to control (I).
doi:10.1371/journal.pone.0005798.g005
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catenin blocked the formation of an interconnected endothelial

cell network, however without influencing EC elongation.

Assembly of the laminin and collagen IV-rich vascular basement

membrane is a critical event in stabilizing newly formed blood vessel

[23]. This peri-endothelial matrix requires proteins from both EC

and mural cells to form and is hence a key result of mural-EC

interactions. We show that important aspects of the basement

membrane assembly are uniquely recapitulated in vSMC-EC co-

culture: In particular, the induction and local deposition of collagen

IV and vascular-specific collagen XVIII that completely ensheaths

Figure 6. Vascular smooth muscle cell-derived VEGF is required for endothelial capillary-like network formation. (A) Fluorescence
microscopy image of GFP-expressing HUVEC and PA-vSMC co-cultures at day 3 post-seeding. Treatment of EC-vSMC co-cultures with VEGF blocking
antibody (Avastin, B) or small molecule VEGFR inhibitor (PTK787/ZK, C) block EC network formation. (D) Transduction of HUVEC with a shRNA
targeting VEGFR-2 retroviral vector also strongly inhibited network formation. (E) A human PA-vSMC isolate (NNW) that has very low VEGF production
and secretion does not support EC network formation. (F) shRNA-mediated knockdown of VEGF levels in human PA-vSMC inhibits network formation.
(G) Overexpression of VEGF165 in PA-vSMC did not affect EC network formation. (H) SV40-immortilized mouse embryonic fibroblasts (SV40-MEF) were
unable to drive EC network. (I) HUVEC cells co-cultured with SV40-MEF cells that overexpress VEGF165 form incomplete networks. (J) ELISA
quantification of VEGF levels from different vSMC cells.
doi:10.1371/journal.pone.0005798.g006
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endothelial cells is not previously reported. Reciprocally there is a

marked increase in vSMC laminin expression, which may also

contribute to the quiescence of EC [23]. Basement membrane

assembly entails collagen IV incorporation into laminin polymers via

nidogens [34]. Importantly we demonstrate that this matrix protein

structure is functionally significant as inhibitors of collagen synthesis

block network formation. Hence the vSMC-EC co-culture system

represents a novel in vitro model to study vascular basement

membrane assembly.

We demonstrate a singular requirement for mural cell-derived

VEGF in generating a stable capillary-like network formation.

RNAi knockdown of smooth muscle cell VEGF expression

phenocopied the effect of VEGF signaling inhibitors. Surprisingly,

neither the presence of VEGF, bFGF, EGF (EGM-2 medium) nor

conditioned vSMC medium rescued the loss of SMC VEGF

expression. This indicates that VEGF must be associated with the

smooth muscle cells in a specific context in order to trigger EC

morphogenesis. VEGF165, the major isoform expressed by

vSMC, is retained at the cell surface by binding heparin sulfate

proteoglycans (HSPG) [26]. HSPG-bound VEGF165 activates

VEGF-R2 and the co-receptor Nrp1, generating a unique VEGF-

R2 signaling cascade [35], a plausible mechanism for this vSMC-

association dependent signaling. We show that overexpression of

VEGF165 in vSMCs did not affect EC network formation

suggesting that the mural-VEGF presentation context is saturable

and unaffected by pathological VEGF levels that can lead to

abnormal blood vessels and hemangiomas [36].

Mural cells have been shown to express VEGF in vivo [26,37].

VEGF and other growth factors are found at interdigitations

between endothelial cells and mural cells, a unique context for

mural cell-associated VEGF presentation [12]. Growth factor

receptor crosstalk is an important mechanism regulating EC-

pericyte interactions [10]. D’Amore and colleagues suggested that

pericyte-expressed VEGF may serve to transiently stabilize nascent

vessels during basement membrane assembly and lumen forma-

tion via juxtacrine VEGF signaling and heterotypic cell-cell

contact that replaces tissue-derived VEGF (e.g. from astrocytes in

the developing retina) [26]. This switch from tissue-derived to

mural cell-derived VEGF could promote vessel maturation and

ultimately lead to VEGF-independence. Indeed, mural cell

maturation factors, in particular Ang1, have been shown to

abolish endothelial VEGF responsiveness to tissue-derived VEGF

[16,18]. Modulating Ang-Tie2 signaling (by either gain- and loss

of function) did not affect network formation in EC-vSMC co-

culture (data not shown). Together with our observation that

soluble VEGF cannot substitute for mural cell-expressed VEGF

this supports the notion that these VEGF presentation forms are

functionally distinct [35]. Our recent results indicate that the

vSMC co-culture-context leads to altered endothelial cell VEGF-

receptor signaling and that this is necessary to achieve a stable

capillary-like network (Evensen et al., in preparation).

In conclusion, our findings emphasize a unique role for mural

cell-derived VEGF in driving blood vessel maturation and define

an informative high throughput-high content imaging-compatible

experimental system for studying blood vessel formation.

Materials and Methods

Cell culture
Human umbilical vein endothelial cells (HUVEC), pulmonary

artery smooth muscle cells (Pa-vSMC), human adult dermal

microvascular endothelial cells (HUMVEC) and human mesen-

chymal stem cells (hMSC) were purchased from Lonza (C2517A,

CC2581, CC2543, PT2501). To simplify imaging, early passage

HUVEC cells were infected with retrovirus carrying a GFP or

RFP-expressing construct. Cells were maintained in culture in the

supplier’s recommended complete medium (EGM-2, SmGM-2,

EGM-2MV and MSCGM respectively) at 37uC, 5% CO2. The

growth medium was changed every third day and cells were

passaged prior to reaching confluence. The maximum passage

number used for experiments was 8 (HUVEC), 12 (PaSMC), 8

(HUMVEC), 6 (hMSC). Primary human foreskin fibroblasts were

provided by Dr. Ola Hammarsten, Sahlgrenska University

Hospital, Gothenburg, Sweden. SV-40 immortalized mouse

embryonic fibroblasts were provided by Prof. Donald Gullberg,

University of Bergen, Norway.

EC-mural cell co-culture assay
PaSMC and HUVEC were seeded together, centrifuged briefly

at 200 g to achieve an even distribution of cells and cultured in

EGM-2 for at least 72 hrs to allow network formation. For longer

periods, culture medium was changed every third day. Cell

numbers and culture volume were as follows (per well): 96-well

plates: 56104 PaSMC, 106103 HUVEC, 200 ml EGM-2; 6-well

plates: 86105 PaSMC, 1.56105 HUVEC, 2 ml EGM-2; trans-

wells: 1.756105 PaSMC, 66103 HUVEC, 1 ml EGM-2; 8-well

chamber slides: 1.46105 PaSMC, 36104 HUVEC, 250 ml EGM-

2. HUMVEC and hMSC experiments were conducted similarly

using EGM-2MV as the culture medium.

Microscopy and High content imaging
Confocal images were acquired on a Zeiss LSM 510 Meta. A

Zeiss Axiovert S100 fluorescence microscope with a Roper

Quantix digital camera was used for conventional fluorescence

and brightfield microscopy. For quantitative analysis of the co-

cultures a BD Pathway 855 bioimaging system (BD Biosciences,

San Jose, Ca) was used for automated high throughput imaging.

Statistical analysis of acquired images was done with BD Image

Data Explorer software. Images were acquired as 363 montages

using a 106lens. Background subtraction, noise reduction (rolling

ball) and image thresholding were performed using the AttoVision

v1.6.1 software supplied by BD Biosciences. Statistics on tube

branch lengths, and number of branch points per region of interest

were obtained using the ‘‘Tube Formation’’ image analysis module

of AttoVision v1.6.1. Tube total length is the total number of pixels

comprising the network in the image field. Tube average length is the

total number of pixels comprising the network in the image field

divided by number of unconnected tube segments. Number of

segments is the number of unconnected segments in the image field.

Immunohistochemistry
BrdU staining. BrdU (10 mM) was added 4 hrs after seeding

cells and incubated overnight. Cultures were trypsinated, fixed

(1.6% PFA, 25 mins, room temperature) and permeabilized

(100% methanol, 2 hrs, 4uC). BrdU was visualized by staining

with monoclonal anti-BrdU (Sigma, B8434, 1:500 dilution in

PBS/2% FBS) followed by an allophycocyanin conjugated goat

anti-mouse IgG secondary (Molecular Probes, A865, 1:3000

dilution). BrdU staining was quantified by flow cytometry (10

000 events) on a FACSCalibur (BD Biosciences) and performed as

three independent experiments.
VE-cadherin staining. Cells in 8-well chamber slides were

washed (PBS), fixed (4% PFA, 25 minutes, room temperature) and

permeabilized and blocked (PBS/0.3% Triton X100/5% normal

goat serum, 1 hr, room temperature). VE-cadherin was visualized

with rabbit anti-VE-cadherin antibody (Santa Cruz

Biotechnology, SC9989, 1:200 in PBS/0.3% Triton X100/2%

FBS, overnight, 4uC). Cells were washed (PBS, 365 mins), treated

Mural Cell VEGF

PLoS ONE | www.plosone.org 9 June 2009 | Volume 4 | Issue 6 | e5798



with secondary antibody (Molecular Probes, A21244, Alexa647-

conjugated goat-anti-rabbit IgG, 1:3000, 2 hrs, room temperature

in the dark) and washed again (PBS, 365 mins).

Extracellular matrix staining. As for VE-cadherin staining

using primary antibodies diluted 1:200 in PBS/2% FBS and

secondary antibodies diluted 1:3000 in PBS/2% FBS (Molecular

Probes, A21123, Alexa546-conjugated goat anti-mouse IgG).

Primary antibodies were: Monoclonal mouse anti-Collagen type

IV antibody (Chemicon; MAB3326), rabbit anti-Laminin

(Chemicon; AB19012), and monoclonal mouse anti-collagen

type XVIII (a kind gift from Ritva Heljasvaara and Taina

Pihlajaniemi, University of Oulu, Finland).

Lectin staining. Cells were fixed with 4% PFA as above.

HUVEC in co-culture were selectively stained with FITC/

TRITC-UAE 1 lectin (Sigma; L9006/L4889, 1:1000 dilution in

PBS, 45 minutes, room temperate in the dark) and washed (PBS,

365 mins).

Dextran staining. Mature day 8 co-cultures were incubated

with Texas Red-conjugated 10,000 MW dextran (Molecular

Probes, D1828, 0.5 mg/ml, overnight).

RNA interference
RNA interference was achieved using retrovirally expressed

shRNAs. Complementary shRNA oligos (PAGE purified, TAGC

Copenhagen) were annealed and ligated into the MMLV-derived

retroviral shRNA expression vector L071 RRI-Green or L087 RRI-

Red (Entrez:EU424172, EU424173). These vectors also express a

puromycin resistance marker and GFP or RFP respectively.

Transduced cells were isolated by FACS utilizing fluorescent

protein reporter expression. Final hairpin sequences were:

a -catenin shRNA
GCAGATGTCTACAAATTACTTGTTCAGCTctggtcAGC-

TGAACAAGTAATTTGTAGACATCTGC

VEGFR-2 shRNA oligo
GAACATTTGGGAAATCTCTTGCAAGCTAgaagcttgTAG-

CTTGCAAGAGATTTCCCAAATGTTC

VEGF shRNA
GTGGTGAAGTTCATGGATGTCTATCAGCGctggtcCG-

CTGATAGACATCCATGAACTTCACCAC

GFP, RFP, VEGF, RacN17 and p21 overexpression
Overexpression of proteins in cells was performed by transfec-

tion of a 293T packaging cell line with a retroviral expression

vector containing the DNA of interest. Virus was harvested 24–

48 hrs after transfection in medium suited for the target cells.

Infection was performed by filtering the virus containing medium,

addition of proteamine sulphate, and transferring of the virus

containing medium to the target cells which were incubated

further for 24 hrs. Infection was ended by changing the medium.

Protocol will be given out by request. GFP was expressed from

pCGFP [38]. RFP was expressed from pCtdTomato, a derivative

of pCGFP with the GFP replaced by tdTomato [39]. RacN17 and

p21 were expressed from IRES-GFP retroviral vector [38]. VEGF

was co-expressed with GFP and a puromycin resistance marker

using a 2A-mediated expression system[40].

Quantification of VEGF
VEGF in cells and culture medium was quantified using an

ELISA kit (R&D systems, Human VEGF QuantiGlo Elisa,

QVE00B) and a HIDEX Plate Chameleon luminometer. Samples

were prepared as follows: Culture medium from 24 hrs was

collected, cell debris removed by centrifugation and samples were

stored at 280uC after addition of protease inhibitors (Roche,

Complete Protease Inhibitor Cocktail tablets, 11697498). Cells

were treated with lysis buffer containing 20 mM Tris (pH 8.0),

150 mM NaCl, 1 mM dithiothreitol, 1% deoxycholic acid, 0.5%

sodium dodecylsulfate, 1% Nonidet P-40, and protease inhibitors.

Prior to freezing of samples small aliquots were taken out to

determine protein concentration.

Drug treatment of co-cultures
300 mM ethyl-3–4-dihydroxybenzoate (EDBH, Sigma, E24859-

5G) was added to the cell suspension before plating and treatment

was continued for 72 hrs. Avastin [41] was added identically to a

final concentration of 1 mg/ml. PTK787/ZK222584 [42] (On-

cology Research, Novartis Institutes for BioMedical Research), a

potent inhibitor of vascular endothelial growth factor (VEGF)

receptor tyrosine kinases and class III kinases (platelet-derived

growth factor (PDGF) receptor beta tyrosine kinase, c-Kit, and c-

Fms), was dissolved in dimethyl sulfoxide (DMSO) at a stock

concentration of 10 mM and added to co-cultures at a

concentration of 100 nM.

Supporting Information

Figure S1 Retroviral shRNA knockdown in primary endothelial

cells. (a) Cell lysates from HUVEC mono-cultures transduced with

luciferase shRNA or a-catenin shRNA were analysed by 10%

SDS-PAGE and show knock-down of the 102 kDa protein a-

catenin. Actin, 42 kDa, was used as a loading control. Results are

representative of 3 different shRNA sequences that silence human

a-catenin expression. Each of these different a-catenin shRNA

sequences engendered the non-branching phenotype shown in

Figure 4d. (b) HUVEC transduced with luciferase shRNA or

VEGFR-2 shRNA grown in mono-culture were recovered and

surface stained for VEGFR-2 levels. HUVEC transduced with

VEGFR-2 shRNA (red) show greatly decreased surface levels of

VEGFR-2 compared with luciferase shRNA transduced HUVEC

(green).

Found at: doi:10.1371/journal.pone.0005798.s001 (0.09 MB

PDF)

Figure S2 Dominant VEGF isoforms in PA-vSMC. RT-PCR

analysis of mRNA isolated from monocultured PA-vSMC. Primers

used for nested PCR, VEGF outer: 59-GGGCAGAATCAT-

CACGA-39 (156–172) and 59-CCGCCTCGGCTTGTCACA-39

(629–612) VEGF inner: 5-9ATCGAGACCCTGGTGGACA-39

(219–238) and 59-CCGCCTCGGCTTGTCACA-39 (629–612).

The brackets indicate the positions of primers (Entrez: M32977).

Expected sizes of cDNA fragments for the various vascular growth

factor (VEGF) transcript alternative splice variants when amplified

with outer/or the inner primer pairs: VEGF206 (597 bp/534bp);

VEGF189 (546 bp/483 bp); VEGF165 (474bp/411bp);

VEGF145 (414 bp/351bp); and VEGF121 (342 bp/279 bp).

Found at: doi:10.1371/journal.pone.0005798.s002 (0.09 MB

PDF)

Video S1 Time-lapse microscopy analysis of endothelial-mural

cell co-culture. Co-cultures (GFP-expressing HUVEC and PA-

vSMC) were seeded in 96-well plates and images were acquired

every 15th minute on a Zeiss LSM 510 Meta (37uC, 5% CO2).

Several time-lapse movies from different timepoints were merged

and together span a time range from day 0 to day 9.

Found at: doi:10.1371/journal.pone.0005798.s003 (4.33 MB

MOV)
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Video S2 Time-lapse microscopy analysis of a mature endothe-

lial-mural cell co-culture Co-cultures (GFP-expressing HUVEC

and PA-vSMC) were seeded in 96-well plates and images were

acquired every 15th minute on a Zeiss LSM 510 Meta (37uC, 5%

CO2). Time-lapse is recorded from 216–240 hrs post-seeding of

culture and shows a mature quiescent network.

Found at: doi:10.1371/journal.pone.0005798.s004 (0.33 MB

MOV)

Video S3 Time-lapse microscopy analysis of PTK787/ZK-

treated endothelial-mural cell co-culture Co-cultures (GFP ex-

pressing HUVEC) were seeded in a 96-well plate and treated with

100 nM PTK787/ZK. A time-lapse was recorded overnight

(37uC, 5% CO2) by imaging the cells every 15th minute using a

Zeiss LSM 510 Meta.

Found at: doi:10.1371/journal.pone.0005798.s005 (0.29 MB

MOV)
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