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Abstract

The identification of genes for monogenic disorders has proven to be highly effective for understanding disease
mechanisms, pathways and gene function in humans. Nevertheless, while thousands of Mendelian disorders have not yet
been mapped there has been a trend away from studying single-gene disorders. In part, this is due to the fact that many of
the remaining single-gene families are not large enough to map the disease locus to a single site in the genome. New tools
and approaches are needed to allow researchers to effectively tap into this genetic gold-mine. Towards this goal, we have
used haploid cell lines to experimentally validate the use of high-density single nucleotide polymorphism (SNP) arrays to
define genome-wide haplotypes and candidate regions, using a small amyotrophic lateral sclerosis (ALS) family as a
prototype. Specifically, we used haploid-cell lines to determine if high-density SNP arrays accurately predict haplotypes
across entire chromosomes and show that haplotype information significantly enhances the genetic information in small
families. Panels of haploid-cell lines were generated and a 5 centimorgan (cM) short tandem repeat polymorphism (STRP)
genome scan was performed. Experimentally derived haplotypes for entire chromosomes were used to directly identify
regions of the genome identical-by-descent in 5 affected individuals. Comparisons between experimentally determined and
in silico haplotypes predicted from SNP arrays demonstrate that SNP analysis of diploid DNA accurately predicted
chromosomal haplotypes. These methods precisely identified 12 candidate intervals, which are shared by all 5 affected
individuals. Our study illustrates how genetic information can be maximized using readily available tools as a first step in
mapping single-gene disorders in small families.
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Introduction

The identification of genes for Mendelian disorders has been a

highly effective approach for understanding disease mechanisms

and normal gene function [1,2]. One of many examples is the

identification of dystrophin gene as the cause of Duchenne

muscular dystrophy. This initial discovery led investigators to

uncover additional disease genes that cause various forms of

muscular dystrophy by affecting the structure and function of

distinct proteins within the dystrophin-dystroglycan complex [3].

Additionally, single-gene discoveries have also been instrumental

in shedding light on multigenic and sporadic disorders. For

example, adenomatous polyposis coli (APC) mutations in hereditary

colon cancer directly led to the identification of other genes

involved in the more common sporadic and polygenic forms of

colon cancer [4]. It is currently estimated that genes for

approximately 3,705 Mendelian and suspected Mendelian disor-

ders have not yet been mapped [5] and because many familial

disorders have not yet been formally described in the literature, the

number of unidentified single-gene disorders is likely to be grossly

underestimated [2]. Although the identification of the causes of

these disorders will almost certainly have broad and significant

impact on our understanding of the pathophysiology underlying

major disease classes (e.g. neurodegenerative, cancer and heart

disease), there has been a trend away from studying single gene

disorders, in favor of the more common complex diseases. This is

in part due to the fact that many of the remaining single-gene

families are difficult to study because they have rare mutations

and/or are not large enough to map the disease locus to a single

site in the genome. New tools and approaches are needed to

allow researchers to effectively utilize these important families.

Towards this goal, we have used haploid cell lines to

experimentally validate the use of high-density SNP arrays to

define genome wide haplotypes and candidate regions, using a

small ALS family.

Clinically, typical ALS is a neurodegenerative disease selectively

involving upper and lower motor neurons that progresses from

initial symptoms to death in three to five years. The etiology of

most cases of ALS remains obscure, with proposed mechanisms

including viral, autoimmune, excitotoxic, metabolic/mitochondri-

al, toxic or apoptotic processes, protein misfolding or altered

axonal transport [6–9]. There is, however, no conclusive evidence

that any of these pathways are responsible for even a small fraction

of ALS cases.

PLoS ONE | www.plosone.org 1 May 2009 | Volume 4 | Issue 5 | e5687



Although ALS usually occurs sporadically, without family

history (sALS), ,10% of cases are familial (fALS), generally with

an autosomal-dominant pattern of inheritance [9,10]. While fALS

is uncommon, investigation of families with this disease have

provided significant insight into the causes of ALS. The first

example was the discovery that mutations in the Cu/Zn superoxide

dismutase (SOD1) gene cause ALS1 [11], which is thought to

account for 20–25% of fALS and 1–3% of sALS cases [9,12–14].

Additional genes that cause dominantly inherited forms of

clinically typical ALS include the vesicle associated membrane protein

(VAMP)-associated protein B (VAPB) (ALS8) [15,16], the TAR DNA

binding protein (TARDBP) [17] and the fused in sarcoma/translated in

liposarcoma (FUS/TLS) [18,19].

While these discoveries have been important for increasing

our understanding of the causes of ALS and for developing and

testing various treatment strategies, our understanding of the

molecular underpinnings of ALS is still in its infancy and

identifying additional mutations with forms of ALS that are

clinically similar to sALS is likely to clarify the molecular

pathways involved in these diseases. However, large families with

dominantly inherited ALS are difficult to study because the

lethality of the disease limits the ability to obtain DNA from

affected individuals. Furthermore, family members can be

reluctant to participate in research studies because they do not

want to consider the possibility that they or their children might

be at risk. For these reasons, the novel ALS family (ALS-A) we

have been studying for the past 19 years is of significant scientific

importance (Figure 1). We have collected blood from 14

members of this family, including 5 affected individuals, and as

a first step in positional cloning have used haploid and high-

density SNPs analysis to precisely define all of the regions of the

genome that are shared among affected individuals. Because the

disorder in the ALS-A family is indistinguishable from sALS, the

identification of the genetic cause of this disorder is likely to

provide insight into the pathogenic mechanisms of the more

common sporadic disease which may ultimately lead to more

effective treatments.

Results

The ALS-A Family
A pedigree of the ALS-A family is shown in Figure 1. The

disease in this family is phenotypically indistinguishable from

sALS, and characterized by progressive upper and lower motor

neuron degeneration without the involvement of sensory nerves or

other complex neurological features, such as frontotemporal

dementia (FTD) or Parkinson’s features. Age of onset varies,

ranging from 35 to 73 years. Lifespan after initial diagnosis ranged

from 6 months to 5 years; the individual who lived for five years

had a tracheotomy and mechanical ventilation for approximately

one year. Simulated two point linkage analysis predicts a

maximum logarithm of the odds (LOD) score for the family of

3.17 at H= 0.00. The dominant inheritance pattern and number

of meioses predict that ,3% of the diploid genome plus the

mutation is likely to be shared among affected family members

(0.5‘5). Conversely, if completely informative, unambiguously

defined haplotypes should allow ,97% of the genome which is not

shared by the affected individuals to be excluded. A limitation of

Figure 1. ALS-A Pedigree. Affected individuals are indicated with solid symbols and symbols with a line show the individual is deceased. The
asterisk indicates individuals from whom DNA was collected and the H denotes individuals from whom haploid cell lines were generated. For
confidentiality purposes gender is not indicated.
doi:10.1371/journal.pone.0005687.g001
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traditional linkage analysis, which is illustrated by the results of an

777 STRP marker screen and conventional multipoint analysis on

the ALS-A family, is that there is a significant disparity between

the theoretical portion of the genome that should be excluded

from containing the ALS-A locus (.97%), and the portion of the

genome actually excluded (67%). This disparity results because the

markers are not fully informative and haplotypes can not be

distinguished.

Haplotype Analysis: STRP Markers and Haploid DNA
Although haplotype analysis is often used to precisely follow the

segregation of small chromosomal regions, recombination and

uninformative markers have historically made establishing un-

equivocal haplotypes for large chromosomal regions impossible.

To test if obtaining accurate chromosomal haplotypes can be

achieved using high-density SNP arrays and if this would provide

more complete segregation information, we directly compared

high-density SNP genotype analysis with experimentally deter-

mined haplotypes ascertained using a panel of haploid mouse-

human hybrid cell lines generated from ALS-A family members

[20].

Experimental haplotypes were established by generating panels

of 18–37 haploid cell lines for eight family members including five

affecteds. A 777 STRP marker genome scan was performed on

DNA from the haploid cell lines, as well as diploid lymphocyte

DNA. Genotyping results from chromosome separated cell lines

were used to directly define haplotypes for entire chromosomes.

Figure 2 illustrates how haplotype comparisons were used to

identify shared, excluded and ambiguous regions using chromo-

some 17 as an example. Because DNA was not available for

individuals I:1 or I:2, transmitted haplotypes were arbitrarily

assigned to the parental generation by genotyping chromosome

separated cell lines from a single affected individual in generation

II. Specifically, one of the parental chromosomal haplotypes from

generation I was designated by a RED bar and the haplotype

transmitted from the other parent was assigned a YELLOW bar.

Recombinant haplotypes defined by the haploid cell lines of other

members of generation II were used to predict the other two

founder haplotypes (BLUE and GREEN). Haplotypes from

spouses who married into the family and do not contain the

ALS-A mutation are indicated by grey bars. STRP markers were

spaced at ,5 cM intervals and double recombinations were

expected to be infrequent. Genomic intervals that are found

among all five affected individuals are indicated by a shared

chromosomal region of the same color (RED or YELLOW).

Because any of the regions of the genome that are shared (i.e.

identical by descent) among the affected individuals could contain

the mutation, all shared regions are considered candidates. Areas

not shared among all five affected individuals are excluded, while

regions are considered ambiguous if the probability of the double

recombination was greater than 1/100 (the threshold for exclusion

by LOD score analysis) (Figure 2). Diploid genotypes from 777

STRP markers were also analyzed using the parametric multipoint

linkage program VITESSE [21].

Comparison of STRP Haplotype and LOD Score Analyses
Figures 3 and 4 show a comparison of the effectiveness of

multipoint linkage using STRP markers and haploid mapping to

define shared or excluded regions for chromosome 1 and across

the entire genome, respectively. Specifically, three positive LOD

scores were generated for chromosome 1, which correspond to a

shared region (LOD = 0.785) and two regions known to be

excluded by haplotype analysis (LOD = 0.557 & 0.76) (Figure 3).

This comparison illustrates the problems investigators face when

using small families for linkage analysis —shared and excluded

regions are not accurately defined and candidate regions are not

always easily distinguished. Genome-wide, haploid mapping

identified 10 regions (7.4% of the genome) identical by descent

or shared among the 5 affected individuals and definitively

excluded 83.1% of the genome as unshared (Figure 4). In contrast,

traditional multipoint LOD score analysis using STRP markers on

diploid DNA excluded only 67.1% (LOD,22), failed to identify

any shared regions (LOD.3), and generated suggestive scores

(most between 0.5–1.2) for regions that were both shared and

definitively excluded by haploid analysis. In addition to the shared

regions, haploid mapping identified 24 ambiguous regions

(indicated in grey), which most likely result from an uninformative

marker. The use of haploid cell lines increased the amount of the

genome that could be excluded (83%) in comparison to the

traditional multipoint linkage analysis (67%) and more closely

approximated defining the theoretical portion of the genome that

should be shared or identical by descent among the affected

individuals (7.4% by haploid analysis vs. 3.0% theoretical).

SNP Markers
As a second and parallel approach to maximize the genetic

information from this small ALS family, we investigated the utility

of high density SNP arrays to predict shared haplotypes. While

SNP arrays have typically been used to examine heterogeneous

DNA samples in association studies, we sought to determine

whether this technology would be successful in large scale

haplotype reconstruction in a small family with ethnically similar

individuals. By comparing the haplotypes that were experimentally

derived using haploid cells lines, we were able to test the accuracy

of in silico SNP haplotypes predicted by Allegro [22]. Additionally,

the SNP haplotypes were subsequently used to validate the power

of nonparametric linkage analysis (NPL) of the SNP data to

identify shared regions in small kindreds.

Haplotype Analysis Using SNP Genotypes
Comparison of Experimental and In Silico Defined

Recombinations. Diploid DNA samples from fourteen

members of the ALS-A family were analyzed using the

GeneChipTM Human Mapping 100 K Set (Affymetrix) and the

resultant data were analyzed using the linkage program Allegro

[22]. Specifically, haplotypes were determined in silico and were

compared with the experimentally defined haplotypes from the

haploid cell lines. Evaluation and comparison of recombination

points revealed that the SNP arrays were able to precisely and

accurately reconstruct haplotypes over large chromosomal regions.

Figure 5 shows the comparison of the experimentally and

predicted recombinations over the entire length of chromosome

22. While the recombination points are essentially the same,

arrows point to deviations between the haploid and SNP methods.

Arrows (1) and (5) specify sites where STRP markers were not

informative but SNPs accurately defined the haplotype and

excluded the regions. Arrows (2) and (4) show regions where a

block of SNPs were not informative and the haplotypes could not

be unambiguously defined. Arrow (3) represents a region where a

double recombination over a small area occurred and was not

detected by the STRPs due to marker spacing.

Comparison of Experimental and In Silico Haplotypes:

Defining Shared Regions. Haplotypes determined from the

SNP analysis were examined and regions shared between all five

affected individuals were then defined across the entire genome.

The SNP method identified a total of 10 shared regions (red), eight

of which were detected using the haploid mapping approach and

an additional 2 regions that were not previously identified

Haplotype Mapping of ALS Gene
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(Figure 6, Table 1). The haploid method was unable to detect the

shared region on chromosome 15 because this small interval is

located between two STRP markers and on chromosome 16

because two corresponding STRP markers were not informative.

Conversely, the SNP method did not detect the shared region on

chromosome 13 or the telomeric shared region on chromosome 16

that were identified by the haploid STRP method. A significant

advantage of the SNP approach was that each of the shared

Figure 3. Chromosome 1 Comparison of Excluded, Shared or Ambiguous Regions for Haploid Mapping vs. Multipoint Linkage
Analysis. Comparison of information obtained from haploid mapping (A) and multipoint linkage analysis of diploid DNA (B) for chromosome 1.
Summaries of the LOD scores are presented in B1 and graphs of the actual LOD scores are illustrated in B2. Regions excluded by haploid mapping or
multipoint linkage analysis (LOD,22.0) are white and ambiguous regions are grey (LOD scores between 22 and +3). Shared regions defined as
identical by descent through haploid mapping or with a LOD score .3.0 are shown in red.
doi:10.1371/journal.pone.0005687.g003

Figure 2. Examples of the Haplotype Analysis. Haplotypes from the founder generation (I) were reconstructed using haplotypes defined by
haploid analysis of generation II (colored either red or blue and yellow or green). In subsequent generations the chromosomal regions inherited from
unrelated members were identified and eliminated from the analysis (variations of grey). Regions that are shared among the affecteds, excluded, or
ambiguous were then directly determined. Where a marker was not fully informative, the founder haplotype was not designated and the region was
subsequently denoted by a question mark. Data presented is from chromosome 17.
doi:10.1371/journal.pone.0005687.g002
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regions identified were significantly refined and the maximal

regions were much smaller than those defined by the haploid

STRP approach. Furthermore, the SNP method eliminated nearly

all of the ambiguous regions detected by the STRP markers and

only detected an additional four new ambiguous regions; the high

density of SNP markers significantly cleaned up the data and

removed nearly all ambiguity. Nearing the theoretical value of 3%,

these methods show that approximately 4.7% (142 megabase pairs

(Mb)) of the genome is shared among the five affected individuals.

Table 1 lists the shared regions identified by the two methods and

the ambiguous regions detected by the SNPs, along with the

markers and physical positions of the boundaries for each region.

Parametric and Non-parametric Linkage Analysis
In addition to examining the utility and accuracy of predicted

SNP haplotypes, we also investigated the power of nonparametric

or model free linkage analysis to detect shared chromosomal

regions. The non-parametric linkage analyses (NPL and allele

sharing LOD scores), which perform statistical analysis of an

increase in the number of alleles shared among the affected

individuals with respect to identity by descent (IBD), weigh the

genotypes of affected individuals rather than those of unaffected

individuals; therefore all shared regions have equally high allele

sharing LOD and NPL scores and can be easily identified. Using

the linkage program Allegro [22] we generated both NPL and

allele sharing LODs for all of the autosomal chromosomes, which

are depicted in Figure 7. This method clearly distinguished all ten

regions identified by the SNP haplotypes, confirming the power of

model free analysis in the identification of candidate regions within

small families. Parametric analysis was also performed; because the

genotypes from unaffected, but at-risk individuals were factored

into the calculations not all of the shared candidate regions were

clearly identifiable (Figure S1).

Prioritization of the Shared Regions
As a final step, additional pedigree analysis was done to

prioritize the candidate gene regions to those shared among

affected individuals but absent from older unaffected family

members. Although the range in disease onset is broad in the ALS-

A family (35–73 years), two unaffected elderly individuals, II:3 and

II:9, had no evidence of the disease; neither had signs or symptoms

of ALS when examined (ages 68 and 82, respectively). Addition-

ally, individual II:3 had no signs of ALS when interviewed at age

76, and prior to dying from Alzheimer’s disease at age 90 y,

individual II:9 did not demonstrate ALS symptoms according to

relatives or medical records. There was no evidence of

frontotemporal dementia in the family, including II:9, who had

onset of dementia in the late 80 s, no unusual behavior while

dementing, and responded to anticholinesterase medication.

Although neither II:3 and II:9 showed signs of ALS, the possibility

that they carry/carried the disease gene can not be excluded.

However, the age of these individuals make the risk that they carry

the ALS-A gene quite low, and hence make the regions of the

Figure 4. Genome Comparison of Excluded, Shared or
Ambiguous Regions for Haploid Mapping vs. Multipoint
Linkage Analysis. Comparison of the information obtained from
haploid mapping (A) and multipoint linkage analysis (B) for the entire
genome. Summaries of the LOD scores are presented in B1 and graphs
of the actual LOD scores are illustrated in B2. Regions excluded by
haploid mapping or multipoint linkage analysis (LOD,22.0) are white
and ambiguous regions are grey (LOD scores between 22 and +3).
Shared regions defined as identical by descent through haploid
mapping or with a LOD score .3.0 are shown in red.
doi:10.1371/journal.pone.0005687.g004
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genome that they do not share with the affected individuals more

likely to contain the gene. Similarly, regions shared by all five

affected individuals and II:3 or II:9 have a lower probability of

containing the ALS-A gene. Using this approach we have

prioritized the candidate regions into three categories (RI-1-3),

with RI-1 being the most likely (Table 2). Three of these regions/

subregions, which span ,23 Mb, are higher priority regions for

future studies because they are not shared in older unaffected

members of the ALS-A family: the 6p25.3-23 region, ,50% of the

4p15.2-p14 region and ,7% of the 4q32.2-34.3 (Table 2). We

Figure 5. Comparison of Recombination Points Identified by Haploid Mapping and SNPs. Recombinations are depicted for the four
founder chromosomes for chromosome 22. The four founder haplotypes are shown in blue, red, green and yellow and the unaffected chromosomes
are shown in grey. Arrows point to deviations between the haploid (STRPs) (A) and SNP (B) methods. Regions that are designated by a hatched
mixture of two colors result from markers that were not fully informative. The (1) and (5) arrows specify regions where the STRPs were not informative
but the SNPs were able to accurately determine the correct haplotype. The (2) and (4) arrows show regions where a block of SNPs were not
informative and the haplotypes could not be accurately designated. The (3) arrow represents a region where a double recombination over a small
area occurred and was not detected by the STRPs due to marker spacing.
doi:10.1371/journal.pone.0005687.g005
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Figure 6. Physical Location of the Shared Regions. The regions that are shared between the five affected individuals are depicted in red. All
regions that were identified as ambiguous by the SNP method are shown in grey, along with the any corresponding ambiguous regions identified by
the STRP markers. The physical locations of the regions’ boundaries were determined by UCSC Genome Browser and approximate positions are
shown by each region in Mb. The * indicates the chromosome 13 STRP marker gata73A05, which defines the haploid shared region, is at 62.5 Mb and
is not shared by the SNPs at this location. The { symbol denotes an inconsistency between the two methods for the shared region on chromosome
15. While the SNP method identified a shared region, the haploid method identified an ambiguous region with a probability of 1/1000 and was
therefore ruled out.
doi:10.1371/journal.pone.0005687.g006
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would predict that ,23 Mb should be shared by the five affected

individuals and not shared by the two unaffected individuals,

which matches our experimental results almost exactly. The

remaining unaffected individuals within the ALS-A family were

not useful in the prioritization because they are still within the

disease onset range.

Discussion

In linkage studies of large families with Mendelian disorders LOD

score analysis is an effective method to define the disease locus i.e. the

single region of the genome that is shared among affected

individuals. However, in small families with limited numbers of

meioses, traditional LOD score analysis using STRP markers is less

informative, often showing suggestive LOD scores for regions of the

genome that should be excluded and missing other regions that may

contain the gene. We have explored methods to maximize the

amount of genetic information that can be derived from a small

family with an autosomal dominant form of ALS and show that

analysis of high density SNP haplotypes are able to precisely define

nearly all regions of the genome that are shared among the affected

individuals. Specifically, we used haploid cell lines to experimentally

demonstrate that high density SNP arrays can be used to accurately

define chromosomal haplotypes, precisely identify shared candidate

regions among affecteds and exclude the remaining regions of

genome that are not shared. Additionally, we show that SNP

genotypes can be accurately analyzed by nonparametric linkage

programs and validate the power of model free analysis to detect

shared regions in small families.

Over the past 20 years, genetic investigations using families with

monogenic disorders have provided unparalleled information into

gene function, normal and pathogenic pathways and disease

mechanisms [1]. Because most of the remaining single-gene

families have rare mutations and/or few affected members, new

strategies are needed to effectively use this valuable resource for

genetic studies. Shifting our expectations from the idea that

mapping single-gene disorders necessarily requires sufficient

meioses to localize the gene to a single site in the genome, to

the idea that small families can also be included in genetic studies if

as a first step all shared regions of the genome can be accurately

defined. Because novel disease genes in small families are likely to

hold key lessons for understanding the molecular pathophysiology

Table 1. Data for the Haploid and SNP Shared Regions and the SNP Ambiguous Regions.

Shared
Method
Identified

Chromosomal
Region

Beginning Boundary
Marker

Physical
Location

Ending Boundary
Marker Physical Location

Haploid 1q24.1-25.3 ATA38A05 164,115,369 AAT200 179,292,171

SNP 1q24.2-25.2 rs952963 165,669,836 rs10489882 176,171,118

Haploid 2p25.1-22.1 D2S423 9,858,029 GATA194B06 41,077,763

SNP 2p25.1-23.3 rs1405948 10,500,611 rs1822300 24,578,289

Haploid 3p26.2-25.3 GATA131D09 4,288,250 ATCT053 10,338,466

SNP 3p26.1-25.3 rs2196302 5,780,096 rs3868891 9,674,059

Haploid 4p15.31-14 GATA70E01 20,722,813 ATCT018 39,814,243

SNP 4p15.2-p14 rs4697055 23,876,434 rs7695130 35,959,708

Haploid 4q32.1-35.1 D4S1629 158,556,255 AATA045 183,213,532

SNP 4q32.2-34.3 rs6811083 162,010,831 rs4234867 178,742,190

Haploid 6p25.3-p22.3 NA 1 D6S1959 20,020,074

SNP 6p25.3-23 NA 1 rs2327869 15,096,746

Haploid 9p24.1-q21.13 D9S2156 7,918,932 AGAT140 78,454,471

SNP 9p23-21.1 rs10491744 12,710,106 rs621277 32,506,864

Haploid 13q21.1-22.1 D13S784 54,003,967 D13S800 72,772,650

SNP 15q12 rs1553890 23,688,680 rs4073083 24,737,820

SNP 16p11.2-q12.1 rs10492807 31,687,619 rs7500906 48,354,332

Haploid 16q24.1-24.3 D16S539 84,943,535 NA 88,827,254

Haploid 17q21.32-24.3 D17S2180 44,028,054 D17S2059 66,012,504

SNP 17q22-24.1 rs716392 50,944,412 rs10514869 60,531,720

Ambiguous Haploid 1p36.22-p36.13 AAT238 10,910,244 TTTA063 16,412,894

SNP 1p36.21 rs848578 12,760,221 rs10492987 15,865,925

SNP 10p13 rs963336 12,964,446 rs552437 13,087,512

SNP 13q21.1 rs7335975 53,714,107 rs9316943 57,196,412

SNP 15q25.2-25.3 rs10520582 82,143,780 rs10520601 84,159,205

SNP 15q25.3 rs2120650 84,419,700 rs4887244 85,147,853

Haploid 16p12.1-q12.1 CATA002Z 23,656,985 GATA143D05 49,152,042

Physical locations were determined using the UCSC Genome Browser (www.genome.ucsc.edu) and the NCBI SNP database (http://www.ncbi.nlm.nih.gov/sites/
entrez?db = snp) was used to convert the SNP ID into the RS nomenclature recognized by the UCSC Browser (March 2006). The STRPs were taken from the Marshfield
screening sets 13 and 52.
doi:10.1371/journal.pone.0005687.t001
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Figure 7. Non-parametric LOD Score Analysis of the SNP Genotypes. The SNP genotype data were analyzed by Allegro and non-parametric
LOD scores were generated for each autosomal chromosome. The NPL scores are shown by a black line and the red line represents the allele-sharing
LOD. Chromosomal location is shown along the X-axis.
doi:10.1371/journal.pone.0005687.g007
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of devastating disorders, it is imperative that these families are

investigated and that candidate loci are reported—informed

collaborative efforts will lead to the eventual identification of

these genes.

Towards this effort, we have mapped a rare familial form of

ALS that is clinically similar to sALS. Candidate regions for the

ALS-A gene span 142 Mb of DNA located in twelve intervals.

Three of these regions/subregions, which span ,23 Mb, are

higher priority regions for future studies because they are not

shared in older unaffected members of the ALS-A family. While

the following paragraphs describe the next steps in identifying the

ALS-A gene, similar strategies would be generally applicable to

mapping efforts of any single gene disorder in any similarly small

family. First, newly identified candidate regions can be refined and

prioritized, additional families with similar diseases can be

screened for linkage to separate candidate loci and genes of

interest can be sequenced.

Comparisons of known ALS loci with our newly defined

candidate region show several regions of overlap or possible

overlap. For example, an ambiguous region defined by the haploid

cell lines at 1p36.21 contains the recently identified TARDBP gene.

Mutations in this gene cause a phenocopy of sALS [17], however,

this gene has been ruled out by the SNP haplotype analysis and

sequencing of an affected member of the ALS-A family.

Additionally, our initial mapping showed potential overlap with

the ALS6 gene, which was recently shown to be caused by

mutations in FUS/TLS on 16p11.2 [18,19]. Although ALLE-

GRO predicted a recombination that would rule out FUS/TLS, a

detailed inspection of the 100 K SNP data and genotyping analysis

of additional SNPs in the region showed that FUS/TLS lies within

a region between rs7193224 and rs2141349 where a key affected

recombinant has the unaffected haplotype at rs7193224 and the

affected haplotype at rs2141349, a marker lying very close to

FUS/TLS. Therefore, the FUS/TLS locus cannot be conclusively

excluded from the SNP analysis. Subsequent sequence analyses of

the exons and intron/exon boundaries from an affected individual

found no causative mutations. Additionally, one of the 12

candidate regions overlaps with the ALS-FTD locus on 9p21.3-

13.2 [23–25].

The disease spectrum for both ALS and FTD are still evolving,

and families linked to the ALS-FTD locus on chromosome 9 have

members that present with pure ALS, pure FTD or both [23–25].

Therefore, while members of the ALS-A family have not displayed

symptoms of FTD, this shared region remains a viable candidate.

However, because this region is shared by one of the two

unaffected individuals in generation II (Table 2), the likelihood

that this region contains the mutation is low.

To further refine the ALS-A locus we propose additional

independent linkage studies using other small ALS families with

clinically similar forms of ALS. While many of these additional

families will be even smaller than the ALS-A family, our mapping

study will enable other groups to determine if ALS families they

have collected share any of the candidate ALS-A regions we

describe here. Multiple families with linkage to one of these

regions would provide additional support for prioritizing specific

regions for detailed gene cloning efforts. Additionally, haplotype

conservation could indicate the presence of an ancestral mutation

and potentially pinpoint regions of special interest for sequencing.

As a complementary approach, we have begun examining

candidate genes within shared regions, initially focusing on genes

encoding proteins expressed within the CNS or that act in

pathways implicated in ALS. For example, we sequenced superoxide

dismutase 3 (SOD3) located within the 4p15.2-p14 region, due to the

similarity with SOD1, although no mutations were detected in the

Table 2. Genetic Status of Unaffected Individuals II:3 & II:9 for the Seventeen Shared and Ambiguous Regions.

Shared
Region of
Interest Rank Region

Maximum
Size (Mb)

Unaffected
Individual

Unaffected
Individual

RI-1 6p25.3-23 15.1 Mb

RI-1/2 4p15.2-p14 12.1 Mb P (49.2%) P (6.3%)

RI-1/2 4q32.2-34.3 16.7 Mb P (92.4%)

RI-2 2p25.1-23.3 14.1 Mb X

RI-2 3p26.1-25.3 3.9 Mb X

RI-2 13q21.1-22.1 18.8 Mb X

RI-2 15q12 1.0 Mb X

RI-2 16q24.1-24.3 3.9 Mb X

RI-2 17q22-24.1 9.6 Mb X

RI-2/3 9p23-21.1 19.8 Mb A (12.4%) X

RI-2/3 16p11.2-q12.1 16.7 Mb X P (94.2%)

RI-3 1q24.2-25.2 10.5 Mb X X

Ambiguous RI-3 1p36.21 3.1 Mb X X

RI-3 10p13 0.1 Mb X X

RI-3 13q21.1 3.5 Mb X X

RI-3 15q25.2-25.3 2.0 Mb X X

RI-3 15q25.3 0.7 Mb X X

The letter ‘‘X’’ specifies the region is also shared by the unaffected individual, the letter ‘‘P’’ indicates the region is partially shared and the letter ‘‘A’’ designates the
region is ambiguous. The maximum physical size is shown for each region. The shared regions of interest are classified into three categories based on the genomic
content of the two unaffected individuals (II:3 and II:9). The RI-1 category contains regions that are the most likely to contain the ALS-A gene while the RI-3 category
includes regions that are the least likely to hold the gene.
doi:10.1371/journal.pone.0005687.t002

Haplotype Mapping of ALS Gene

PLoS ONE | www.plosone.org 11 May 2009 | Volume 4 | Issue 5 | e5687



exons, exon/intron boundaries or upstream sequence. While

careful examination of known genes will not be as complicated in

small gene poor areas (chr.4p), this process will be more difficult in

large gene rich regions, such as the shared interval on

chromosome 6p. Therefore, in addition to targeted gene

sequencing, brute force sequencing of entire shared regions may

be appropriate.

In summary, we have demonstrated through experimentally

derived haplotypes using haploid DNA that dense genomic SNP

arrays can accurately define chromosomal haplotypes in small

families. Additionally, we experimentally validate the power and

effectiveness of model free linkage analysis of SNP genotypes in the

detection of the shared candidate regions. Application of this

rapidly improving technology will enable genetic investigations of

a whole class of families with Mendelian disorders that have

typically been ignored by the scientific community due to their

size. By changing the mapping paradigm from the idea that

families with Mendelian disorders need to be large enough to map

the gene to a single site in the genome, to include the concept that

small families can be useful if all regions that could contain the

gene are identified, we can begin to use a valuable and virtually

untapped resource. Improving the power of mapping single-gene

disorders will uncover new disease pathways and mechanisms and

clarify the pathogenesis of devastating disorders like ALS.

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. All subjects participating in this

study signed an informed consent form approved by the Human

Subjects Committee at the University of Minnesota. DNA was

extracted from peripheral venous blood using the Gentra Pure-

gene blood kit (Qiagen, Valencia, CA).

Generation of haploid cells lines
Panels of haploid mouse/human hybrid cell lines were

generated at GMP Genetics for eight ALS-A family members

(Figure 1) by electrofusing lymphoblast cells from each individual

with embryonic day 2 (E2) mouse cells, using HAT and geneticin

to select against unfused E2 and lymphoblast cells, respectively

[20,26]. Eighteen to thirty seven cell lines were selected for each

individual. In general, each hybrid cell line should contain 8–14

random human chromosomes, some of which are in the haploid

state while others are diploid. On average, an entire single set of

monosomic chromosomes is represented in ,23 independent cell

lines [26,27].

800 Marker Genome Screen
A 777 STRP marker high-density genome screen was

performed on both diploid and haploid DNA from members of

the ALS-A family using fluorescent technology (Figure 1). The

work was performed by the Center of Medical Genetics,

Marshfield, WI as part of the NHLBI Mammalian Genotyping

Service (Contract Number NO1-HV-48141). Markers were taken

from Marshfield screening sets 13 and 52 and all of the cell lines

generated by GMP Genetics were included in the genome screen.

Amplified DNA from parents of CEPH family 1331 (133101 and

133102) were used as standards for all test samples.

Haplotype Ascertainment
Haplotypes for each individual were directly determined along

entire chromosomes by analyzing the genotypes of cell lines

haploid for each chromosome, including the 22 autosomes and the

X chromosome. The diploid DNA was used as an internal control

for each patient and cell lines monosomic for each chromosome

were selected for further analysis so that each homologue was

represented. For the eight patients in which haploid cell lines were

established, phase was determined for each chromosome using the

two independently represented homologues. However, rarely both

homologues were not present in the monosomic state, in which

case haplotypes were defined by comparing genotypes of the

available haploid cell line with the diploid DNA.

Multipoint LOD Score Analysis
Linkage analysis of the 22 autosomes and the X chromosome

were performed using the computer program VITESSE version 2.0

[21]. Five age-dependent penetrance classes were established for at-

risk unaffected individuals based on the age-at-onset profile for the

family (,20 years, 5%; 20–30 years, 10%; 31–60 years, 50%; 61–70

years, 80%; 71+ years, 90%). Affected individuals and unaffected

spouses were classified separately. The lifetime risk of developing a

phenotypically similar disease, sALS, was estimated to be 1/1000.

Allele frequencies and the order of the microsatellite markers used in

the genome screen were established by Marshfield Genetics.

100 K SNP Screen and analysis
High-density SNP based linkage analysis was conducted using the

GeneChipTM Human Mapping 100 K Set (Affymetrix, Santa Clara,

CA). SNP genotype data were extracted with the following ‘‘cut-off

values’’: call rate of control samples .0.95, p value of HWE (Hardy-

Weinberg equilibrium test) in control samples .0.05, MAF (minor

allele frequencies) of control samples .0, and confidence scores of all

family members ,0.1. Control samples were collected from 24

healthy Japanese individuals. SNPs were selected to keep the inter-

marker distance at approximately 100 kb. Parametric and non-

parametric multipoint linkage analyses were performed using the

Allegro version 2.0 program [22]. Penetrance classes were set as

described above, and disease gene frequencies were set at 0.001. In

the non-parametric analysis the following allele sharing model was

used: multipoint, linear model, robdom and power = 0.5. Because

the size of inheritance vectors of this family exceeded the limitation

of 21, we calculated LOD scores in which two unaffected individuals

(III:1 and III:2) were removed. Haplotype prediction was performed

using the ‘haplotype’ option in the multipoint linkage analysis of the

Allegro version 2.0 package.

Supporting Information

Figure S1 Parametric LOD Score Analysis of the SNP

Genotypes. Parametric LOD Score Analysis of the SNP

Genotypes. The SNP genotype data were analyzed by Allegro

and parametric LOD scores were generated for each autosomal

chromosome. Chromosomal location is shown along the X-axis.

Found at: doi:10.1371/journal.pone.0005687.s001 (2.38 MB EPS)
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