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Abstract

Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray
Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray
technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of
microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different
microRNA microarray platforms (Agilent, Ambion, Exiqon, Invitrogen and Toray) using 309 microRNAs probes, and the
Taqman microRNA system using 142 microRNA probes. This study demonstrated that microRNA microarray has high intra-
platform repeatability and comparability to quantitative RT-PCR of microRNA. Among the five platforms, Agilent and Toray
array showed relatively better performances than the others. However, the current lineup of commercially available
microRNA microarray systems fails to show good inter-platform concordance, probably because of lack of an adequate
normalization method and severe divergence in stringency of detection call criteria between different platforms. This study
provided the basic information about the performance and the problems specific to the current microRNA microarray
systems.
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Introduction

Since the first DNA microarray paper demonstrated that

microarray technology can monitor multiple gene expression

profile in 1995 [1], DNA microarray technology has been

developed steadily. After the Human Genome Project was

finished, the ability of DNA microarray expanded to genome-

wide analysis of not only gene expression profiling, but also,

genome variation, epigenetics, DNA-protein interaction, and so

on. In the research field, these genome-wide analyses using

microarray technology have been providing deeper biological

insights for a decade. In the clinical field, the US Food and Drug

Administration (FDA) approved MammaPrintH as the first in vitro

diagnostic multivariate index assay (IVDMIA) in February, 2007.

Thus, microarray-based transcriptome devices started to be

utilized to stratify patients for personalized medicine. For the

quality control and standardization of microarray chips, the US

FDA initiated the MicroArray Quality Control project (MAQC) in

2005. A series of reports regarding the first phase of the MAQC

project was published in 2006 [2–7]. The MAQC report showed

intra platform consistency across test sites as well as a high level of

inter-platform concordance in terms of genes identified as

differentially expressed.

MicroRNAs are a class of small non-coding RNAs [19–23

nucleotides (nt)] that have been found in animal and plant cells. As

of today, 718 human microRNAs are registered in the miRBase

database (Release 13, March, 2009) [8–11]. MicroRNA genes are

transcribed as non-coding transcripts, and processed through a

series of sequential steps involving the RNase III enzymes, Drosha

and Dicer. The processed microRNAs are finally incorporated

into the RNA-induced silencing complex (RISC) to mediate target

mRNA repression of translation and/or degradation. It is reported

that microRNAs are involved in physiological and pathological

functions, such as the regulation of developmental timing and

pattern formation [12], restriction of differentiation potential [13],

chromatin rearrangements [14], and carcinogenesis [15]. Many of

the mechanistic details still remain unknown.

Recently, microarray technology has been utilized to analyze a

comprehensive microRNA expression profiling. Currently, several

platforms of microRNA microarray chips are commercially

available. As mentioned above, the MAQC Project is currently

underway for quality control and standardization of mRNA

expression microarray. However, no comparative and quality

control study of microRNA microarray platforms has been reported

yet. Therefore, we compared repeatability and comparability of

microRNA microarray using five different platforms (Agilent,

Ambion, Exiqon, Invitrogen and Toray). In addition, we compared

quantitivity of microarray data generated from five different

platforms with that of quantitative RT-PCR (Taqman) method,

which is the golden standard method of microRNA measurement.
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Results

Experimental design
This project repeatedly assayed two RNA sample types on a

variety of microRNA expression platforms at one laboratory. Our

preliminary experiments showed that the amount of microRNA

obtained from the same amount of total RNA depends on the

tissue types of the samples (data not shown). This finding suggested

that repeatability or comparability of microRNA microarray

analysis might depend on the amount of microRNA contained in

total RNA. To assess the reproducibility of microRNA microarray

data using the different tissue types, we chose both tissue samples,

which contain relatively small and large amounts of microRNA.

Our preliminary data shows that mouse liver tissue contains

relatively small amounts of microRNAs. Therefore, we used two

types of total RNA, FirstChoiceH Human Liver Total RNA

(Ambion, lot no. 040000129) and FirstChoiceH Human Prostate

Total RNA (Ambion, lot no. 050500710), in this study. In fact, the

amount of microRNAs in Human Liver Total RNA was smaller

than that of Human Prostate Total RNA (Figure 1).

Five commercially available microRNA microarray platforms

were tested: Agilent Technologies (AGL); Ambion Inc. (AMB);

Exiqon (EXQ); Invitrogen (IVG) and Toray Industries Inc. (TRY)

(Table 1). Four of the microarray providers used one-color

protocols where one labeled RNA sample was hybridized to each

microarray. The Invitrogen array was tested using a two-color and

dye-swapping protocol so that, at first, two RNA samples were

divided and differently labeled in red-green and green-red

combinations, and each combination of the RNA sample set was

simultaneously hybridized to a microarray.

Agilent and Toray used its own method or software to generate

a quantitative signal value and a qualitative detection call for each

probe on the microarray, whereas Ambion, Exiqon, and

Invitrogen did not specify the scanner or software to quantify

the signals of probes in the manufacturer’s protocol booklet. To

generate a qualitative call for probes, we asked the technical

support centers of Ambion, Exiqon, and Invitrogen about the

method of detection call. We followed the methods recommended

by their technical support center.

Probe mapping
The MAQC project had a probe mapping problem in that each

gene was detected by a differently designed probe between the

different microarray platforms [6]. In contrast to the MAQC

project, this cross-platform study of microRNA microarray has

much less variability of probe mapping, because of the short length

(18–23 nucleotides) of microRNAs. Instead of this probe mapping

problem, we faced a different kind of annotation problem, due to

the database version. The frequent update of the miRBase

microRNA database [16] causes the situation that different

microRNA platforms were designed based on A different version

of miRBase database. Between the versions, names of some

microRNAs were changed, and the sequence of some microRNAs

bearing the same names were slightly changed in length.

Therefore, we compared the sequences in the annotation list

provided by the manufacturers. The 309 microRNAs which had

the complete identical sequences probed in all different platforms

were included in this study to simplify the inter-platform

comparison and to avoid a bias based on miRBase version.

Figure 1. MicroRNA expression level in human liver and prostate tissues. For the microarray platforms, log2 transformed values of
representative signal intensity for detection call-positive microRNAs were plotted. For the Taqman analysis, Ct values of microRNAs were plotted. Red
and blue lines indicate Y = X line and regressed linear line, respectively. In all scatter plots. blue lines were shifted upward, which indicated that the
general microRNA expression level in human prostate was higher than in human liver.
doi:10.1371/journal.pone.0005540.g001
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Distribution profile of microRNA microarray data
It will be important to know whether all data follows a specific

distribution, e.g. Gaussian or not. Thus, we checked the

distribution profile of data used in this study (Figure S1 and

Table S1). MicroRNA microarray data have various distribution

profiles between different platforms, although microarray data

tend to have positive skewness (a right-side longer tail). It has been

reported that the number of genes that are expressed at a similar

level is approximately exponentially distributed in typical biolog-

ical samples [17]. However, the skewness and kurtosis of

microRNA microarray data were far smaller than those of the

exponential distribution (skewness = 4, and kurtosis = 9) (Table

S1). We also checked whether non-zero log2 data were normally

distributed, or not. However, non-zero log2 data did not fit to

normal distribution (Figure S1B). On the other hand, the log-ratio

data between two samples were approximately normally distrib-

uted (Figure S1C).

Intra-platform data repeatability
We examined microarray data for consistency within each

platform by reviewing the repeatability at two levels: the

quantitative signal values and the qualitative microRNA list

agreement. To assess the data consistency of quantitative signal

values, rank-correlation analysis and coefficient of variation (CV)

analysis were performed. In this analysis, only data of microRNAs

with positive detection call were used. Representative scatter plots

of microarray platforms and the Taqman system are displayed in

Figure 2A (scatter plots for all possible combinations between three

replicates were shown in Figure S4). The Spearman’s correlation

coefficients (Rs), and the coefficient of variation (CV) between the

three replicates was calculated using the 309 common micro-

RNAs. Different platforms had various ranges of Rs values (liver:

0.82-0.96, prostate: 0.89-0.99, respectively). Thus, the 2-sample t-

test and Mann-Whitney did not detect any significant difference

between liver and prostate using whole data sets. However, the Rs

values for prostate samples were constantly better than those for

liver samples (Paired t-test: p = 0.0013, and Wilcoxon’s signed-

rank test: p = 0.0005). It is reasonable that Rs values of liver were

lower than those of prostate, because higher signals in microarray

data tend to have smaller data variability in general.

The distribution of CV for each platform was displayed in

Figure 2B. Two platforms (AMB and EXQ) have low stringent

criteria for detection call, in that all microRNAs with positive

signal values after subtraction of background are considered as

detected. It is also reasonable that these two platforms have higher

CV values (both t-test and Mann-Whitney test: p,0.0001),

because these platforms include microRNAs with near-zero values.

In addition, the CV values of microRNA microarray platforms

ranged in equivalent level to those of the Taqman assay.

Next, we assessed the variation in log-ratio measurement. For

each platform, we performed triplicate experiments using human

liver and prostate samples. Thus, we can generate 9 ( = 363) log-

ratios (prostate/liver) for each microRNA. Then, we calculated the

Spearman’s correlation coefficients (Rs) between 9 sets of log-ratios

for the detected microRNAs, and visualized these Rs values inside

of green squares in a blue-white heat map (Figure 3). The means

and 95% confidence intervals (95%CI) of Rs values were listed in

Table S2. The Rs values were high and consistent in two platforms

(AGL, and TRY), in which protocol hybridization were performed

with agitation. Another reason for the inconsistency of log-ratio

values in AMB and EXQ might be the low stringent criteria of

detection call, which included microRNAs with near-zero values.

To assess variation in the qualitative measures, the percentage

of 309 microRNAs with concordant detection calls between
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Figure 2. Intra-platform repeatability of quantitative assessment of microRNA expression. MicroRNA measurement of the same sample
(L: human liver, P: human prostate) was replicated three times. Only data of microRNAs with positive detection call were used for analysis. 2A: Scatter
plots show the correlation between replicate 1 and 2 (scatter plots for all possible combinations between three replicates were shown in Figure S4).
Spearman’s correlation coefficients (Rs) for replicates 1 vs. 2, 1 vs. 3, and 2 vs. 3 were calculated and summarized in lower table. Rs for the prostate
sample were generally better than those for the liver sample (p = 0.0005, paired T-test). This finding suggests that repeatability of microRNA would
depend on the sample cell type, and that repeatability in the case of samples expressing A higher amount of microRNAs would be better. TAQ
(Taqman analysis) obtained the best Rs values despite a slightly wider spread of data. It might be a result from wider range of microRNA detection
(microarray: 216, Taqman: about 220). 2B: Box plot of coefficient of variation (CV) for microRNA detection platforms. The coefficient of variation for
each microRNA assessment was calculated by a formula, CV = (standard deviation/mean)6100, and the distribution of CV was plotted in the box plot
diagram. Bold line: median, bottom and top line of the box: first and third quantile, respectively.
doi:10.1371/journal.pone.0005540.g002
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replicates of the same sample type was calculated on each platform

(line graphs in Figure 4A). As expected, microarray signals from

liver samples were generally weaker than those of prostate samples

(Figure 1). Thus, the percent of detected microRNA subset in liver

samples was significantly smaller than that in prostate samples

(Figure 4A, paired T-test: p = 0.0003, and Wilcoxon’s signed rank

test: p = 0.0005). In the current study, we used criteria of detection

call of microRNAs that the manufacturers recommended.

However, the stringency of these detection call criteria was very

different. For AMB and EXQ array, all microRNAs with positive

signal were handled as detected microRNAs, whereas other

manufacturers provided their own formula as detection call

criteria. This difference in the detection call stringency may result

in the divergence of detected microRNA percentage. Thus,

detected microRNA percentage of AMB and EXQ array were

less stable in three replicates (t-test and Mann-Whitney test of

standard deviation, p = 0.0011 and 0.004, respectively) than the

others.

Intra-platform concordance in detected microRNA list was

shown inside of green squares in Figure 4B and 4C. It is

reasonable that AMB and EXQ with instable percentage of

detected microRNAs also had higher inconsistency in the detected

microRNA list than the others. Intra-platform concordance in a

list of differentially expressed microRNAs was illustrated inside of

green squares in Figure 5. The means and 95%CIs of agreement

percentages were listed in Table S3. AGL and TRY had more

than 90% concordance of differentially expressed microRNAs list

within intra-platform replicates.

Inter-platform data comparability
MicroRNA expression values generated on different platforms

cannot be directly compared because unique labeling methods and

probe sequences will result in variable signal distributions for

probes that hybridize to the same target microRNAs. (Figure S1)

Alternatively, the relative expression between a pair of sample

types should be maintained across platforms. For this reason, we

examined the microarray data for comparability between

platforms by reviewing liver sample to prostate sample expression

values with two different levels: rank correlation of the log-ratio as

qualitative assessment, and the microRNA list agreement

(detection call and identification of differentially expressed

microRNAs) as qualitative assessment.

To show the inter-platform concordance in the detected

microRNA list, the percentage of 309 microRNAs with concor-

dant detection calls between replicates on different platforms was

calculated and visualized outside of green squares in Figure 4B and

4C. The median percentages of inter-platform detection concor-

dance were 74.0% and 72.1% for liver and prostate sample,

respectively. There was no statistical difference in detection call

concordance between liver and prostate samples. For both

samples, these percentages were widely distributed, ranging

56.3–97.9% and 58.2–95.9%, respectively, because the difference

in detection call stringency lead to a divergence in detection call

rate across the platforms.

The comparability of results across the platforms was also

examined using a rank correlation metric. For rank correlation,

only detected microRNAs from the common 309 gene list were

included in the analysis. Log-ratios for the differential expression

observed between liver sample replicates and prostate sample

replicates were calculated for the generally detected common

microRNAs and then compared across the platforms. The rank

correlations of the log-ratios are displayed visually in Figure 5A.

Good agreement was not observed between the platforms,

compared to the original MAQC report. In fact, the best

correlation was obtained between AGL and TRY (Rs = 0.8717),

and the median rank correlation was 0.55 between the microarray

platforms.

For the list overlap of differentially expressed microRNAs, all

309 common genes were considered. A list of differentially

expressed microRNAs was generated for each platform and

compared to lists from the other platform. A percent score was

calculated to indicate the number of microRNAs in common

between each pair of platforms. The percentage of overlap for

each comparison is displayed in Figure 5. Note the graphic

comparisons are asymmetrical indicating the analysis is performed

in two directions. That is, the percentage of platform Y

microRNAs on the list from platform X can be different from

the percentage of platform X microRNAs on the platform Y list.

In contrast with one color platforms, IVG (two-color method)

identified A much lower number of differentially expressed

microRNAs, probably due to log-ratio compression (Figure 6).

Therefore, percentages of list overlap between IVG and one-color

platforms were generally low. AGL, EXQ and TRY had a good

concordance in terms of identifying differentially expressed

microRNAs.

Correlation to Taqman assay
In the MAQC project, the quantitative accuracy of several non-

microarray devices was checked, then quantitative RT-PCR

(Taqman system) was selected as a validation method of

microarray data. In the microRNA research field, several different

types of quantitative RT-PCR (qRT-PCR) methods are in use,

such as qRT-PCR using stem-loop shaped RT-primer, Taqman

system, Applied Biosystems) [18], qRT-PCR using locked nucleic

acid primers (Exiqon) [19], and qRT-PCR with poly-A tailing

(QIAGEN, Stratagene). In this study, we also used the Taqman

Figure 3. Rank correlation of log-ratios between intra- and
inter-platform replications. For each platform, microRNA expression
profiles in the liver and the prostate were measured three times by
independent microarray chips. Therefore, 9 ( = 363) combinations of
log-ratios (liver/prostate) for each microRNA was calculated. Then, 81
( = 969) Spearman’s correlation coefficients (Rs) values were calculated,
and visualized in blue-white heat map. White indicates high correlation,
whereas blue means low correlation. Heatmaps by Pearson’s and
Kendall’s correlation coefficients were available in Figure S4.
doi:10.1371/journal.pone.0005540.g003
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microRNA assay system as a validation method, which is a

method most widely used. Further comparisons between each

microarray platform relative to the TaqMan assays are presented

as scatter plots in Figure 6. One hundred forty two microRNAs

were randomly selected from 309 common microRNAs to the

microRNA platforms, then the expression levels of these 142

microRNA in the human liver and prostate were measured by

Taqman system. Good correlation coefficients (Rs = 0.85,0.86)

Figure 4. Repeatability and agreement of detection call. As a qualitative assessment of microRNA, A list of detected microRNAs should agree
between different platforms. Detection call of microRNA for each platform was performed according to different criteria recommended by the
manufacturer. 4A: The number of detected microRNAs. Closed circles: detected microRNAs, open circles: not detected microRNAs, white bar:
perfectly detected microRNAs, which were detected in all three replications, gray bar: perfectly not-detected microRNAs, which were not detected in
all three replications. For the Taqman analysis, amplified microRNAs within 40 cycles were considered as detected. 4B & C: Agreement rate of
detection call list between intra- (inside of green squares) and inter-platform (outside of green squares) replications using liver (4B) and prostate (4C)
samples. The percent agreement of detected microRNAs was calculated as the number of microRNAs detected by platform Y relative to the number
of microRNAs detected by platform X. Therefore, two blocks in A diagonally symmetric position are not always the same color, because the
denominators are different.
doi:10.1371/journal.pone.0005540.g004
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were obtained from AGL and TRY platforms, respectively. In all

platforms, especially IVG (two-color method), log-ratio compres-

sion (slope,1) was observed. In the original MAQC paper, a two

color method showed log-ratio compression in the comparison

with Taqman assays. Thus, our finding is a consistent result.

Figure 7 demonstrated microRNA list agreement of detected

microRNAs (Figure 7A and 7B) and differentially expressed

microRNAs (Figure 7C). For detection call of microRNAs, there

were few false positive and many false negative results. Thus, the

microarray method is a device with high specificity and less

sensitivity, compared to the Taqman assay. In identifying

differentially expressed microRNAs, high concordance ratios

(81.69%, 88.73%) to the Taqman assay were obtained in EXQ

and TRY platforms, respectively. In contrast, IVG has very low

true positive results, probably because two color method had a

severe log-ratio compression.

Discussion

The results of the current study provide information about the

potential advantages and problems of microRNA microarray

technologies as a tool providing microRNA expression data for

research and future clinical purposes.

In the original MAQC paper, the median values of CV for gene

expression microarray ranged from 5 to 20%, whereas those of

CV in this study ranged from 20 to 90%, approximately. We

wondered why the CV values in this study were much higher than

those in the MAQC paper, although the Rs values in this study

were similar to those in the MAQC papers. One possible

explanation was that the data distributions of the replicated data

sets were not well centered due to a lack of data normalization. For

the gene expression microarray analysis, data are generally

normalized under an assumption that the total amount of mRNA

is constant between different samples. However, microRNA

microarray data generated from the same amount of total RNA

were not normalized in general, because we know that the amount

of microRNA varies depending upon cell types, such as normal

tissue vs. cancer [15]. To assess whether this explanation is true or

not, we normalized the microRNA microarray data within

replicates of the same samples in the same platforms (Figure S2).

The CV values were drastically improved after the quantile

normalization within the same replicates. The median values of

CV in Figure S3 were significantly lower than those in Figure 3

(paired t-test, p = 0.03813). This finding suggests that normalizing

microRNA microarray data would be beneficial to improve data

repeatability and consistency in situations when the amounts of

microRNAs in the samples are assumed to be constant.

Furthermore, we should develop a universal method that can

perform a reasonable normalization between different cell types

containing different amounts of microRNAs.

This normalization problem is associated not only with

microRNA microarrays, but also with the Taqman assay. Because

we have not discovered reliable housekeeping microRNAs, the

Taqman assay measures just Ct values without normalization,

which are obtained using the same amount of total RNA. This fact

may result in the relatively high CV values that are ranging in the

equivalent level to microRNA microarray platforms. In other

words, a similar level of repeatability would be a relative

advantage of microarray platforms to the Taqman system.

Another problem with microRNA microarray platforms is a

divergence in the stringency of the detection call criteria. The

detection call criteria should be adjusted to each platform, in order

to obtain reliable and repeatable data. However, too much

divergence in the percentages of detected microRNAs would result

in the disagreement in the results of further analyses, which may

induce underestimated impressions and reputations of microRNA

microarray technology. Therefore, this report emphasizes the

necessity of a larger project that will solve specific microRNA

problems, such as normalization and detection call stringency, and

that builds a consensus in all aspects of the microRNA microarray

analysis.

In the MAQC project, seven different platforms (Applied

Biosystems, Affymetrix, Agilent, Eppendolf, GE Healthcare,

Illumina, and NCI array) were compared [6]. In the current

study, five platforms (Agilent, Ambion, Exiqon, Toray, and

Invitrogen) were studied. Thus, only one company (Agilent) was

overlapped. This fact indicates that the tips developed in gene

expression microarray field are not inherited well into microRNA

microarray. One example is the hybridization method. Currently,

many gene expression microarray platforms employ a dynamic

hybridization method to generate repeatable and reproducible

data. In the current study, microRNA microarray platforms with

dynamic hybridization systems (AGL and TRY) showed relatively

better results than those with static hybridization systems. It is

easily imaginable that the addition of agitation into the

hybridization procedures of AMB, EXQ, and IVG platforms

would improve data quality. In the microRNA research field,

Luminex Corp. (Austin, TX) provides a beads-hybridization-based

microRNA detection system (FlexmiR). The beads-hybridization is

one form of the dynamic hybridization methods, and has high

Figure 5. Agreement in the list of differentially expressed
microRNAs. This graph indicates the concordance of microRNAs
identified as differentially expressed for pairs of platforms, labeled as X
and Y. A list of differentially expressed microRNAs between human liver
vs. human prostate was generated for each platform (using the 309
common microRNAs with $two-fold change) and compared for
commonality to other platforms. No filtering related to the qualitative
detection call was performed. The color of the square in the matrix
reflects the percent overlap of microRNAs on the list for the platform X
(listed in column) that are also present on the list for the platform Y
(listed in row). A light-colored square indicates a high percent overlap
between the microRNA lists at both platforms. A dark-colored square
indicates a low percent overlap, suggesting that most microRNAs
identified in platform X were not identified in platform Y. Note: the
graph is asymmetric and not complementary, for the same reason as in
Figure 4B and C.
doi:10.1371/journal.pone.0005540.g005
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sequence specificity [15]. However, this system can detect

microRNAs only in the miRBase version 8 list, when we

performed the experiments. Therefore, we excluded this system

from the current study.

The updated version of the miRBase list will include newly

registered microRNAs. These newly added microRNAs are

expected to be expressed at relatively low levels. Therefore,

adding new microRNAs with low expression would cause poorer

performance in repeatability or reproducibility, even when using

the same platforms. It suggests that a standard set of microRNAs

would be needed to compare the performances between micro-

RNA microarray platforms designed according to different

miRBase versions.

In this study, we assessed the repeatability and comparability of

microRNA microarray among several commercially available

platforms. Different from mRNA expression microarray, micro-

RNA microarray requires another important characteristic in the

assay. For mRNA microarray, the probe(s) for each gene can be

Figure 7. Agreement of microRNA list between microarray platforms and the Taqman assay. MicroRNAs that were listed, or not listed in
both microarray and the Taqman assay, were considered as true positive (TP) or true negative (TN), respectively. MicroRNAs that were listed in either
microarray or Taqman assays, were handled as false positive (FP) or false negative (FN), respectively. 7A and B: These graphs indicated the
concordance of detection call between microarray platforms and the Taqman assay, using 142 microRNAs assayed by both microarray and the
Taqman system. 7C: This bar graph demonstrated the concordance of microRNAs identified as differentially expressed between microarray platforms
and the Taqman assay system.
doi:10.1371/journal.pone.0005540.g007

Figure 6. Correlation between microarray and Taqman data. The scatter plots compare the log-ratio differential expression values from each
microarray platform relative to values obtained by the Taqman assays. Each point represents a microRNA that was measured on both the microarray
and Taqman assays. Only microRNAs that were generally detected in both human liver and prostate were used in the comparisons. Among 142 total
microRNAs assayed by the Taqman system, the number of microRNAs analyzed for correlation to the Taqman assays are listed in the table. The red
and blue lines shown are the ideal Y = X line, and the regressed line from the scatter plots, respectively. Spearman’s correlation coefficients (Rs), slope
and Y intercept of regressed line were shown in the table.
doi:10.1371/journal.pone.0005540.g006
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designed at the unique DNA sequence site on the gene to avoid the

cross-hybridization. However, the short length of microRNAs (18–

23 nucleotides) restricts the flexibility of probe design. Moreover,

there are many same-family microRNAs which have high

sequence homology. Thus, microRNA microarray requires an

ability to distinguish these same-family microRNAs with high

specificity. In this study, we did not assess the sequence specificity

of the microRNA microarray. This issue should be addressed in

future studies.

Currently, the MAQC project is on-going in the second phase,

and the US FDA released the second version of draft guidelines for

IVDMIA in July, 2007 (http://www.fda.gov/cdrh/oivd/guidance/

1610.pdf). Actually, several microarray platforms for mRNA

expression have already been approved and utilized in the clinical

field as IVDMIAs, e.c., MammaPrintH for breast cancer, and

PathworkH Tissue of Origin Test for unknown origin tumor.

Regarding the microRNA microarray, this study demonstrated that

some platforms of microRNA microarray have intra-platform

repeatability as high as that of the mRNA expression microarray

demonstrated in the MAQC papers. Thus, our finding indicated

that the microRNA microarray may have high potential as a clinical

diagnostic tool when good diagnostic microRNA markers are

available. To date, at the research level, many papers have

described the physiological and pathological significance of

microRNAs, and reported potential biomarker microRNAs.

However, the reproducibility of the microRNA microarray has

not been assessed by a multi-center study, such as the MAQC

project. Furthermore, there are some microRNA-specific problems

to be solved, such as building consensus on normalization of the

microRNA expression data and the specificity of microRNA

detection to distinguish microRNAs with high sequence homology.

Thus, a large-scale multi-center quality control project specific to

the microRNA microarray is required before its clinical application.

In a review article, Shendure, described that the next-

generation high throughput sequencer would replace DNA

microarray technology in the transcriptome research field [20].

The next-generation sequencing technology has been applied to

microRNA detection [21]. Is this the beginning of the end of the

microRNA microarray? As far as we know, the current report is

the first paper to compare the several platforms of microRNA

microarrays regarding their performances. We have not fully

evaluated the advantages and disadvantages of microRNA

microarray yet. Therefore, it is too early to answer this question

and it should be addressed in a near future study.

In conclusion, this study demonstrated that the microRNA

microarray has high intra-platform repeatability and comparabil-

ity to quantitative RT-PCR of microRNA. However, the current

lineup of commercially available microRNA microarray systems

fails to show good inter-platform concordance, probably because

of severe divergence in stringency of detection call criteria between

different platforms. This study provided the basic information

about the performance and the problems specific to the current

microRNA microarray systems.

Materials and Methods

MicroRNA microarray platforms
Five commercially available microRNA microarray platforms;

Agilent Technologies (Santa Clara, CA), Ambion (Austin, TX),

Exiqon (Vedbaek, Denmark), Invitrogen (Carlsbad, CA), and

Toray (Tokyo, Japan) were tested in this study. In all assays, we

performed microRNA microarray assays according to the

manufacturer’s protocols available in April, 2008.

RNA samples
Our preliminary experiments showed that the amount of

microRNA obtained from the same amount of total RNA depends

on the tissue types of the samples (data not shown). This finding

suggested that reproducibility or detection call rate of microRNA

microarray analysis might vary depending on the amount of

microRNA contained in the total RNA. To assess the reproduc-

ibility of microRNA microarray data using the different tissue

types, we chose both tissue samples, which contain relatively small

and large amount of microRNA. Our preliminary data shows that

mouse liver tissue contains A relatively small amount of

microRNAs. Therefore, we used two types of total RNA,

FirstChoiceH Human Liver Total RNA (Ambion, lot

no. 040000129) and FirstChoiceH Human Prostate Total RNA

(Ambion, lot no. 050500710), in this study. As shown in Figure 1,

microRNA expression level in human liver was lower than in

human prostate. For Ambion’s microRNA microarray, small

RNA fractions purified from these total RNAs were used. For

other microarrays, total RNAs were directly processed. The

amounts of total RNA used for the assays were decided according

to the manufacturer’s protocols (Table 1). The platform-specific

external controls were added to the samples prior to labeling for all

platforms.

Labeling and hybridization
For the Invitrogen microarray, RNA samples were labeled using

a two-color and dye-swapping protocol. For other microarrays, a

one-color protocol was used. Three replicate assays for each

sample were independently processed. In the two-color protocol,

two RNA samples differently labeled by Alexa 532 and Alexa 645

were simultaneously hybridized on the same microarray chip. In

addition, to normalize the dye-specific bias, RNA samples were

labeled by switched dye combination. The microarray data from

these two sets of two color scanning image were integrated. On the

other hand, in a one-color protocol, each RNA sample was labeled

using a single dye, and two RNA samples were hybridized

separately on two microarray chips. All target labeling and

hybridizations were performed in triplicate, according to the

manufacturer’s protocols. (Notes: A recent Exiqon protocol

utilizing agitated hybridization was not provided in April 2008,

when our experiments were performed)

Microarray chip scanning
(1) Agilent microarray. Microarray slides were scanned

using an Agilent microarray scanner G2505B (Agilent technology)

and microarray images were automatically analyzed using Feature

extractionTM software, version 9.5.1.1 (Agilent technology). In this

study, the gTotalGeneSignal values were used as the feature

intensities, according to the procedures recommended by Agilent.

(2) Ambion microarray. Microarray slides were scanned

USING a ProScanArrayTM microarray scanner (PerkinElmer Inc.

Waltham, MA). For each scanning, a photomultiplier setting of the

red channel was manually adjusted to 55, and the obtained

microarray images were analyzed using the Genepix ProTM 4.0

software (Molecular Device, Sunnyvale, CA). Spots that might be

associated with artifacts were eliminated using software- and

visual-guided flags. In this study, the median values of the

foreground signal minus the local background were represented as

feature intensities.

(3) Exiqon microarray. Microarray slides were scanned

using Agilent microarray scanner G2505B and the obtained

microarray images were analyzed using the Genepix ProTM 4.0

software. Artifact-associated spots were eliminated both by

software- and visual-guided flags. In this study, the median
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values of the foreground signal minus the local background were

represented as feature intensities.

(4) Invitrogen microarray. Microarray slides were scanned

using Agilent microarray scanner G2505B and the microarray

image was analyzed using the Genepix ProTM 4.0 software. Spots

that might be associated with artifacts were eliminated using by

software- and visual-guided flags. In this study, the median values

of the foreground signal minus the local background were

represented as feature intensities.

(5) Toray microarray. Microarray slides were scanned using

ProScanArrayTM microarray scanner where the photomultiplier

settings of the red channel were manually adjusted according to

the procedures recommended by the manufacturer. Each

microarray was scanned three times, then merged into one data,

and the merged data were analyzed using the Genepix ProTM 4.0

software. Spots that might be associated with artifacts were

eliminated using software- and visual-guided flags. In this study,

the median values of the foreground signal minus the local

background were represented as feature intensities.

Microarray data processing
In ordinary mRNA expression microarray, it is a standard data

processing procedure to normalize the microarray data with an

assumption that the whole mRNA expression signal is constant

among the samples. However, in the microRNA analysis, the

amount of microRNA contained in the same amount of total RNA

varied depending on the tissue or cell types. All microarray data

were registered into NCBI’s Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/projects/geo/). The ac-

cession numbers ARE listed in Table S4 of Supporting information.

The detection call criteria
Detection call criteria for Agilent, Toray, and Invitrogen were

described in the manufacturers’ protocol handbook, whereas those

for Ambion and Exiqon were not available. Thus, we asked

customer support offices of Ambion and Exiqon about their

recommended detection call criteria (contacted in May–June,

2008). For the Agilent array, gIsGeneDetected values in output

data sheet were used for detection call. For Ambion and Exiqon

arrays, customer service offices of both manufacturers recom-

mended handling all spots with over 0 intensities as detected spots.

For the Invitrogen array, the lower limit of detection is eight times

the median local background of all array features. For the Toray

array, positive detection call was defined as spots in which signal

intensities showed greater than the upper limits of 95% confidence

interval of all blank spots’ signal intensities.

Real-time quantitative PCR for microRNA expression
To validate the microRNA expression in each sample, we

measured the expression of 171 microRNAs by using a qRT-PCR

platform: TaqMan microRNA Assays (Applied Biosystems Inc.)

and ABI 7300 Sequence DetectorTM. This qRT-PCR method

detects specifically mature microRNAs, but not precursor micro-

RNAs. To perform this TaqMan assay, we used the same amount

of total RNA, and Ct-values were recorded. Then, the value of

2(40-Ct) represents the expression level of the target microRNA.

Probe mapping
The probe annotations for all microarray platforms and qRT-

PCR were provided by the manufacturer. The official annotation of

microRNAs in the miRBase Database (http://microrna.sanger.ac.

uk/) is being updated frequently. The release version of the official

database was 11.0 when this study started. However, the microRNA

annotation version used for the microarray probe design was

different among the five different microarray platforms in April

2008. Agilent and Toray are based on the Sanger miRBase

Database, release 10.1 and 11.0, respectively. Exiqon and

Invitrogen are based on the release 10.0, and Ambion is based on

the release 9.2. To analyze the different formats of microarray data,

we extracted microRNA expression data exactly matched to release

10.1. To compare the microRNA profile between two different

microarray platforms, we used all overlapped microRNAs available

in both microarray platforms. The number of human microRNAs

common among all five microarrays was 310. To validate

microRNA microarray data, randomly selected 146 human

microRNAs were measured by the Taqman qRT-PCR system.

Signal repeatability and reproducibility
To assess signal repeatability and reproducibility of each

microarray platform, we utilized the methods that the MAQC

Project used [6], such as calculating the Spearman’s correlation

coefficient (Rs), and the coefficient of variation (CV) of the signal

or Cy3/Cy5 values for one or two color method, respectively. The

CV for each microRNA assessment was calculated by a formula,

CV = (standard deviation/mean)6100.

MicroRNA list agreement
A list of detected microRNAs in each sample and the

differentially expressed microRNAs between two samples were

identified for each assay. The criteria of differential expression

were that a difference of two microRNA is greater than two-fold.

The percent agreement of microRNAs was calculated as the

number of microRNAs detected by platform Y relative to the

number of microRNAs detected by platform X. For the percent

agreement of differentially expressed microRNAs, the 95%

confidence interval of percent agreement between platforms was

estimated from distribution of percentages calculated from 81

( = 969) possible combination of data sets (Figure 5 and Table S3).

Log ratio comparability
To compare the similarity of the log ratio for each microRNA

between each microarray platform, we determined the slope and

intercept of the orthogonal regression between pairs of the log

ratio in each microarray platform. The log ratio of each

microRNA was calculated as the average of log signals in the

liver sample minus the average of log signals in the prostate

sample. The slope and intercept are determined by the formula

y = ax+b, where ‘‘y’’ is the log ratio from platform Y, ‘‘x’’ is the log

ratio from platform X, and the ideal slope is 1. For the slope, the

difference from the ideal slope (a = 1) indicates the compression or

expansion of the log ratios in one platform relative to the other.

For the intercept, the distance of zero means the platform-specific

bias between two microarray platforms.

Comparability between a pair of each platform was also

examined using Spearman’s rank correlations of the log ratios.

This value compares the relative position of a microRNA in the

platform X rank order of the log ratio (fold change) values against

its position in the platform Y rank order.

Concordance with qRT-PCR
The percentage of overlapping microRNAs between each

microarray platform and qRT-PCR was a measure of the

reproducibility of lists of differentially expressed microRNAs. We

considered that the agreement of detected microRNAs in each

sample and differentially expressed microRNAs between two

samples for each microarray platform. For each platform,
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microRNA expression profiles in the liver and the prostate were

measured three times by independent microarray chips. There-

fore, 9 ( = 363) combinations of log-ratios (liver/prostate) for each

microRNA was calculated. The microRNAs that had consistently

greater than or equal to two-fold difference in these 9 ratios were

assigned as differentially expressed microRNAs for each platform.

Because we considered that qRT-PCR was true, true positive (TP)

was detected in both of microarray and qRT-PCR, true negative

(TN) was not-detected in both of microarray and qRT-PCR, false

positive (FP) was only detected in microarray, and false negative

(FN) was only detected in qRT-PCR. The formula for accuracy is

(TP+TN)/(TP+TN+FP+FN).

Supporting Information

Figure S1 Distribution profile of microRNA microarray data

Histograms of microRNA microarray data. All 309 microRNA

data of each microarray platform were plotted in a histogram. In

addition, 142 microRNA data of Taqman RT-PCR data were

displayed in the same format. Negative log2 values were handled

as 0 (0 = log21).

Found at: doi:10.1371/journal.pone.0005540.s001 (4.66 MB TIF)

Figure S2 Probability plots of microRNA microarray data

distribution. To show the normality of the distribution of non-zero

data, The probability plot of each data set was generated using non-

zero log2 values, excluding 2.5% of values in both sides. If

distribution of the data is normal, this probability plot would be a

line. In most of cases, kurtosis of the data distribution was around 2.

Found at: doi:10.1371/journal.pone.0005540.s002 (8.06 MB TIF)

Figure S3 Probability plots of the distribution of log-ratio values.

To demonstrate the normality of the distribution of log-ratio

values, probability plots of log-ratio data were generated using

95% of middle log-ratio data. Lilliefor’s test showed that the null

hypothesis was not rejected in EXQ and TRY, which means that

the distribution of log-ratio data in EXQ and TRY array were

quite similar to normal distribution. p: p-values of Lilliefor’s test.

Found at: doi:10.1371/journal.pone.0005540.s003 (3.62 MB TIF)

Figure S4 Scatter plots showing correlations between the same

replicates. Red and blue lines indicate the ideal Y = X line, and

linear regressed line of scattered dots. S1A,D: For one-color

platforms, representative signal values of microRNA were plotted.

S1E: For two-color platform (Invitrogen), log2-ratios (liver/

prostate) of microRNA were plotted.

Found at: doi:10.1371/journal.pone.0005540.s004 (9.50 MB TIF)

Figure S5 Effect of normalization on the rank-correlation of

microRNA microarray. At first, we performed quantile normal-

ization within the same replicates using one-color platform data.

Then, the Spearman’s correlation coefficients (Rs) were calculated.

Because the quantile normalization changes values of microRNAs

but not rank of microRNAs, Rs values in Figure 2 and Figure S3

were the same.

Found at: doi:10.1371/journal.pone.0005540.s005 (8.12 MB TIF)

Figure S6 Effect of normalization on the coefficient of variation

In contrast to Spearman’s correlation coefficients in Figure S3, the

coefficients of variation (CV) were drastically improved after the

quantile normalization within the same replicates. The median

values of CV in Figure S3 were significantly lower than those in

Figure 3 (paired t-test, p = 0.03813). The CV of AGL and TRY

were within the range of CV demonstrated in the original MAQC

project paper.

Found at: doi:10.1371/journal.pone.0005540.s006 (5.07 MB TIF)

Figure S7 Correlation of log-ratios between intra- and inter-

platform replications. Heatmaps of Pearson’s correlation coeffi-

cients and Kendall’s rank correlation coefficients. Both heatmaps

had a similar pattern to heatmaps using Spearman’s correlation

coefficients in Figure 3.

Found at: doi:10.1371/journal.pone.0005540.s007 (6.08 MB TIF)

Table S1 Skewness and Kurtosis of microRNA microarray data

distribution Skewness and kurtosis of each data set was calculated

using all expression data or non-zero log2 data of 309 microRNAs.

A symmetric distribution has 0 skewness. A distribution with

positive skew has a longer right tail, while a distribution with

negative skew has a longer left tail. The kurtosis of the normal

distribution is 3. A high kurtosis distribution has a sharper peak

and longer, fatter tails, while a low kurtosis distribution has a more

rounded peak and shorter thinner tails. This table demonstrated

that microRNA microarray data tend to have a positive skewness.

Found at: doi:10.1371/journal.pone.0005540.s008 (0.03 MB

DOC)

Table S2 Rank correlation coefficients of log-ratios between

intra- and inter-platforms of microRNA microarray. For rank

correlation calculation, we used data of detected microRNAs that

meet the detection criteria of each manufacturer. Both prostate

and liver samples have triplicated data sets. Thus, 9 ( = 363) sets of

log-ratios (prostate/liver) of microRNAs were generated. For

intra-platform correlation, rank correlation coefficients of 36

( = 96842) combinations were calculated, whereas, 81 ( = 969)

coefficients were calculated for inter-platform correlation. Upper

values: Spearman’s correlation coefficients, Lower values: 95%

confidence intervals.

Found at: doi:10.1371/journal.pone.0005540.s009 (0.03 MB

DOC)

Table S3 List agreement of differentially expressed microRNA

This table showed percentage of concordance in detecting

differentially expressed microRNAs. The values in the upper

portion of cells reflects the mean percent overlap of microRNAs

on the list for the platform X (listed in column) that are also

present of the list for the platform Y (listed in row), whereas the

values in the lower portion were 95% confidence intervals of the

mean percentage. A higher value indicates a high percent overlap

between the microRNA lists at both platforms. A lower value

indicates a low percent overlap, suggesting that most microRNAs

identified in platform X were not identified in platform Y.

Therefore, the table is asymmetric and not complementary.

Found at: doi:10.1371/journal.pone.0005540.s010 (0.03 MB

DOC)

Table S4 Accession numbers of microarray data All microarray

data were registered into NCBI’s Gene Expression Omunibus

(GEO) database (http://www.ncbi.nlm.nih.gov/projects/geo/).

All data were available to public on March 30, 2009.

Found at: doi:10.1371/journal.pone.0005540.s011 (0.04 MB

DOC)
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