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Abstract

Background: Norepinephrine (NE) modulates the responsiveness of macrophages to proinflammatory stimuli through the
activation of adrenergic receptors (ARs). Being part of the stress response, early increases of NE in sepsis sustain adverse
systemic inflammatory responses. The intestine is an important source of NE release in the early stage of cecal ligation and
puncture (CLP)-induced sepsis in rats, which then stimulates TNF-a production in Kupffer cells (KCs) through the activation
of the a2-AR. It is important to know which of the three a2-AR subtypes (i.e., a2A, a2B or a2C) is responsible for the
upregulation of TNF-a production. The aim of this study was to determine the contribution of a2A-AR in this process.

Methodology/Principal Findings: Adult male rats underwent CLP and KCs were isolated 2 h later. Gene expression of a2A-AR
was determined. In additional experiments, cultured KCs were incubated with NE with or without BRL-44408 maleate, a
specific a2A-AR antagonist, and intraportal infusion of NE for 2 h with or without BRL-44408 maleate was carried out in normal
animals. Finally, the impact of a2A-AR activation by NE was investigated under inflammatory conditions (i.e., endotoxemia and
CLP). Gene expression of the a2A-AR subtype was significantly upregulated after CLP. NE increased the release of TNF-a in
cultured KCs, which was specifically inhibited by the a2A-AR antagonist BRL-44408. Equally, intraportal NE infusion increased
TNF-a gene expression in KCs and plasma TNF-a which was also abrogated by co-administration of BRL-44408. NE also
potentiated LPS-induced TNF-a release via the a2A-AR in vitro and in vivo. This potentiation of TNF-a release by NE was
mediated through the a2A-AR coupled Gai protein and the activation of the p38 MAP kinase. Treatment of septic animals with
BRL-44408 suppressed TNF-a, prevented multiple organ injury and significantly improved survival from 45% to 75%.

Conclusions/Significance: Our novel finding is that hyperresponsiveness to a2-AR stimulation observed in sepsis is primarily
due to an increase in a2A-AR expression in KCs. This appears to be in part responsible for the increased proinflammatory
response and ensuing organ injury in sepsis. These findings provide important feasibility information for further developing
the a2A-AR antagonist as a new therapy for sepsis.
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Introduction

Sepsis and septic shock are complications and considered to be

major causes of morbidity and mortality in patients with severe

trauma, burns, or blood loss [1]. Tissue-fixed macrophages such as

the hepatic Kupffer cells (KCs) are involved in inflammatory and

metabolic responses to sepsis [2,3]. The impairment of hepatocel-

lular function observed in early sepsis appears to be due to

upregulation of proinflammatory cytokines such as TNF-a [4,5].

We [6] and Kovarik et al. [7] reported that systemic levels of

norepinephrine (NE) increased significantly after the onset of

sepsis, induced by cecal ligation and puncture (CLP). Enterectomy

prior to the onset of sepsis markedly reduced circulating levels of

NE, showing that the gut is a major source of NE in sepsis [8]. The

catecholamines NE and epinephrine mediate their physiological

responses through a group of adrenergic receptor (AR) subtypes

[9]. Studies have suggested that NE at concentrations similar to

that found in septic animals (,20 nM) mainly stimulate a2-

adrenergic receptors (ARs). In our previous studies, we reported

that gut-derived NE upregulates TNF-a production in KCs

through the a2-adrenergic pathway [9]. This is a novel finding,

since the immunological effect of the sympathetic nerve activity

and the adrenal epinephrine was previously considered to be anti-

inflammatory through the activation of b-ARs on leukocytes [10].

a2-ARs are G-protein coupled receptors that mediate the central

and peripheral actions of the primary sympathetic neurotransmit-

ter, NE and the adrenal hormone epinephrine through the

intracellular suppression of cAMP [11]. However, it remains
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unknown which of the three a2-AR subtypes (i.e., a2A, a2B or a2C)

is responsible for the upregulation of TNF-a production. The aim

of this study was therefore to determine the contribution of a2A-

AR in NE-mediated proinflammatory effects in sepsis.

Materials and Methods

Experimental model of sepsis
Polymicrobial sepsis was induced in adult male rats by cecal

ligation and puncture (CLP). Briefly, rats were fasted overnight

prior to the induction of sepsis, but allowed water ad libitum. The

animals were anesthetized with isoflurane inhalation and a 2-cm

ventral midline abdominal incision was made. The cecum was

then exposed, ligated just distal to the ileocecal valve to avoid

intestinal obstruction, punctured twice with an 18-gauge needle,

and returned to the abdominal cavity. The incision was closed in

layers and the animals were resuscitated with 3 ml/100 g BW

normal saline subcutaneously immediately after CLP [12]. This

model of sepsis is associated with an early, hyperdynamic phase

(i.e., 2–10 h after CLP; characterized by an increased cardiac

output and tissue perfusion, decreased vascular resistance, and

hyperglycemia), which is followed by a late, hypodynamic phase

(16 h after CLP and later; characterized by reduced cardiac

output and tissue perfusion, increased vascular resistance, and

hypoglycemia) [5,13,14]. Sham-operated animals underwent the

same surgical procedure except that the cecum was neither ligated

nor punctured. Studies were then conducted at 2 h (early sepsis)

and 20 h (late sepsis) after the induction of sepsis. This project was

approved by the Animal Care and Use Committee of the Feinstein

Institute for Medical Research and following national guidelines

for the use of animals in research.

Isolation of Kupffer cells
Kupffer cells were isolated from normal and septic rats as

previously described elsewhere with some modifications [12].

Briefly, under isoflurane anesthesia, following a midline incision

the inferior vena cava was cannulated and the portal vein was

severed. The liver was immediately perfused in situ with ,60 ml

of Hanks balanced salt solution without Ca2+ and Mg2+ (Cellgro,

VA) at 37uC at a rate of 15 ml/min. This was followed by

perfusion with 120 ml of HBSS containing 0.02% collagenase

(Worthington, Lakewood, NJ; Type IV, 180 U/mg) and 100 mM

CaCl2 solution at the same perfusion rate. The liver was then

removed en bloc, rinsed with ,25 ml of HBSS, minced in a

petridish containing HBSS with collagenase, and incubated for

20 min at 37uC to further dissociate the cells. The cell suspension

was then passed through a 150-mesh, stainless steel screen into

cold Dulbecco modified Eagel medium (DMEM; GIBCO Life

Technologies, Carlsbad, CA), containing 10% heat-inactivated

fetal bovine serum and centrifuged (50 g for 2 min at 4uC) to

sediment hepatocytes. The remaining cells in the supernatant were

collected by centrifugation (450 g for 10 min at 4uC). The cell

pellets resuspended in DMEM. After washing twice, cells were

centrifuged on a density cushion of Percoll at 1,000 g for 15 min at

4uC. The buffy coat containing the KCs fraction was collected.

The cells were further washed twice. Cell viability as determined

by trypan blue exclusion was more than 95%. The yield was at 8–

126106 KCs/liver with a purity of at least 90%. The isolated KCs

were then cultured in DMEM, containing 10% heat-inactivated

fetal bovine serum, 10 mM HEPES, 100 U/ml penicillin and

100 g/ml streptomycin at the concentration of 106 cells/ml

overnight with 5% CO2 at 37uC. KCs were allowed to adhere to

the bottom of a 24-well plate (Costar) overnight and unattached

cells were removed by gentle washing.

Assessment of a2A-AR mRNA
Gene expression of a2A-AR was assessed by real-time

quantitative PCR (Q-PCR). Total RNA was extracted from KCs

of CLP and Sham-operated animals as well as from cultured KCs

using Tri-reagent (Molecular Research Center, Cincinnati, OH).

Q-PCR was carried out on cDNA samples reverse transcribed

from 2 mg RNA using murine leukemia virus reverse transcriptase

(Applied Biosystems). Using the QuantiTect SYBR Green PCR kit

(Qiagen, Valencia, CA), reactions were carried out in 24 ml final

volume containing 2 pmol of forward and reverse primers, 12 ml

QuantiTect Master Mix, and 1 ml cDNA. Amplification was

performed according to Qiagen’s recommendations with an

Applied Biosystems 7300 real-time PCR. Expression amount of

rat GAPDH mRNA was used for normalization of each sample,

and analysis of each specific mRNA was conducted in duplicate.

Relative expression of mRNA was calculated by the DDCt-

method, and results expressed as fold change with respect to the

corresponding experimental control. The following rat primers

were used: GAPDH (AF 106860): 59-ATG ACT CTA CCC ACG

GCA AG-39 (forward), 59-CTG GAA GAT GGT GAT GGG

TT-39 (reverse); rat a2A-AR (NM_012739), 59-CGT GTT CGT

GGT GTG TTG GT-39 (forward), 59-GCA GCC GAC CGC

TAT GAG-39 (reverse).

Binding capacity and affinity of KC a2-adrenoceptors
Freshly isolated KCs (106) from sham and septic animals at 2 h

after CLP were incubated with [3H]-yohimbine (a radioactively

labeled a2-AR antagonist; specific activity 79.2 Ci/mmol;

Dupont/NEN; final concentration, 2 to 64 nM in a volume of

200 ml) with or without 10 mM of unlabeled yohimbine for 30 min

at 37uC in an assay buffer (40 mM Tris-HCl, 10 mM MgCl2,

pH 7.5) [15]. The value of Bmax and Kd were determined by

Scatchard analysis after logarithmic transformation.

Stimulation of isolated Kupffer cells with the a2A-AR
subtype inhibitor BRL-44408

KCs isolated from normal animals were cultured overnight in

DMEM medium with 10% heat inactive fetal calf serum, 100 U/

ml penicillin/streptomycin, 100 mM HEPES and 100 U/ml L-

glutamine at the concentration of 106 cells/ml. KCs were then

stimulated with NE (20 nM) with or without a2A-AR specific

antagonist BRL-44408 maleate (1 mM, Tocris, UK) for 4 h. The

supernatant was then collected and TNF-a levels were measured

by enzyme-linked immunosorbent assay (ELISA) kit specific for rat

TNF-a (Pharmingen, San Diego, CA). The assay was carried out

according to the instructions provided by the manufacturer. For

additional p38 MAP kinase pathway studies, KCs were cultured in

DMEM for an 1 h (p38 phosphorylation) or 24 h (TNF-a release)

with the following treatments: NE (20 nM), LPS (100 ng/ml, E.

coli 055:B5; Sigma, St. Louis, MO), and the inhibitors BRL-44408

(1 mM), pertussis toxin (PTX, 100 ng/ml), or SB203580 (10 mM).

Intraportal administration of NE
Following anesthesia with isoflurane, a 3-cm midline incision

was performed. The small intestine was exposed and a branch of

the superior mesenteric vein was cannulated with a PE-10

catheter. It should be noted that this procedure did not cause

any apparent gut ischemia. NE (20 mM in normal saline

containing 0.1% ascorbic acid to prevent NE oxidation) or vehicle

was infused into the portal vein at a rate of 13 ml/min for 2 h

using a Harvard pump. Since portal blood flow is ,13 ml/min/

liver [16], the above rate of NE infusion would be expected to

increase the portal NE level to 20 nM, which is similar to that

a2A-Adrenoceptor & TNF
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observed during sepsis[6]. A third group also received BRL-44408

maleate (1 mM solution at 13 ml/min), which was first infused into

the portal vein for 15 min and then followed by infusion of 20 mM

NE in combination with 1 mM BRL-44408 for 2 h at an infusion

rate of 13 ml/min. After 2 h blood samples were collected by

cardiac puncture and KCs were isolated as described above. In

additional groups of NE, NE plus BRL-44408, or vehicle-infused

animals, LPS (7.5 mg/kg) was administered through intra-

peritoneal injection at 30 min after the onset of 2-h infusion. At

the end of the infusion (i.e., 1.5 h after LPS challenge), blood

samples were collected for plasma TNF-a measurement.

Determination of TNF-a production
Plasma, supernatant from KC culture, and cellular (56106 KCs)

TNF-a levels were determined using an ELISA assay kit specific

for rat TNF-a (Pharmingen, San Diego, CA). Isolated KCs were

also used to determine the TNF-a gene expression by RT-PCR as

described previously [17].

Determination of p38 MAP kinase phosphorylation
KCs were lysed (10 mM Tris saline, pH 7.5 with 1% Triton-

1006, 1 mM EDTA, 1 mM EGTA, 2 mM Na-orthovanadate,

0.2 mM PMSF, 2 mg/ml leupeptin, 2 mg/ml aprotinin), centri-

fuged at 16,000 g for 10 min, the supernatant was collected, and

the protein concentration determined. A total of 10 mg of protein

was loaded on a 4–12% Bis-Tris gel (Invitrogen, Carlsbad, CA)

and electrophoretically fractionated in a MES SDS running buffer

(Invitrogen). The protein was then transferred to a 0.45-mm

nitrocellulose membrane, and blocked with 5% bovine serum

albumin in 10 mM Tris saline with 0.1% Tween 20, pH 7.6

(TBST). The membrane was incubated with rabbit anti-phos-

phorylated p38 MAP kinases polyclonal antibodies (1:1000)

overnight at 4uC, followed by incubation in 1:20,000 HRP-linked

anti-rabbit IgG for 1 h at room temperature. To reveal the

reaction bands, the membrane was reacted with ECL Western blot

detection system and exposed on X-ray film. The same

membranes were stripped and re-blotted with rabbit anti-total-

p38 MAP kinases (1:500; please note that stripping and re-blotting

may have reduced the signals) to determine the ratio of phospho-

p38 and total p38. A digital image system was used to determine

the density of the bands (Bio-Rad, Hercules, CA).

Treatment of septic rats with BRL-44408
Rats underwent CLP as described before, the femoral vein was

canulated and connected to a Harvard pump. BRL-44408 (2.5 mg/

kg BW) or vehicle was infused for 30 minutes using a Harvard

pump. The catheter was tunneled out, and the femoral vein was

ligated to stop the bleeding. The animals were allowed to wake up

and returned to their cages. 20 h later animals sacrificed and blood

collected for the measurement of liver transaminases, creatinine,

lactate and TNF-a using commercial assay kits (Pointe Scientific).

KC TNF-a mRNA expression was also assessed using the methods

described above. The liver enzymes AST and ALT as well as

creatinine and lactate levels were measured in blood serum by using

commercial assay kits (Pointe Scientific, Canton, MI). In addition

we conducted a 10-day survival study was conducted. 20 animals in

each group underwent CLP and received either BRL-44408

(2.5 mg/kg BW bolus iv) or the same volume normal saline

(Vehicle). 20 h after CLP, the cecum was removed, which based on

our experience normally yields a 10-day survival rate of approx-

imately 50%. In additional groups of normal rats, both the left

femoral vein and artery were cannulated with a PE-50 tubing. The

femoral vein catheter was connected to a Harvard pump for BRL-

44408 (2.5 mg/kg BW) or vehicle infusion as described above. The

femoral artery catheter was connected to a blood pressure analyzer

(BPA; Digi-Med, Louisville, KY) and mean arterial pressure (MAP)

and heart rate were recorded continuously.

Statistical analysis
All data that passed the normality test are expressed as

mean6SE and compared by Student’s t-test or analysis of

variance (ANOVA) using Student-Newman-Keul’s post-hoc

analysis. Data that are of percentile based nature or failed the

normality test are expressed as mean695% confidence, and

compared with ANOVA on Ranks. The binding capacity and

affinity was estimated using the Scatchard analysis and curves

compared by two-way ANOVA. The survival study was analyzed

using the Kaplan-Meyer log-rank test. Differences in values were

considered significant if P,0.05. All statistical analysis was

performed using either the SigmaStatH or PRISMH software.

Results

Upregulation of KC a2A-AR expression in CLP-induced
sepsis

Rats were subjected to sepsis by CLP and KCs were isolated 2 h

thereafter. As shown in Figure 1, the gene expression of a2A-AR

was significantly upregulated by 179% at 2 h post-CLP compared

to respective sham-operated animals. In contrast, a2B and a2C-AR

expression did not show any changes after CLP (Data not shown).

Increased KC a2-AR binding capacity and affinity in sepsis
To investigate whether increased a2-AR expression in sepsis

leads to enhanced receptor binding, we incubated KCs isolated

from sham-operated or CLP animals with [3H]-yohimbine, a

radio-labeled a2-specific AR antagonist. As shown in Figure 2A,

the binding of KC a2-AR was saturated at approximately 30 nM

[3H] yohimbine in both sham-operated and CLP animals.

However, maximal binding of the a2-specific ligand was much

Figure 1. Upregulation of KC a2A-AR expression in CLP-induced
sepsis. Gene expression of a2A-adrenergic receptor (AR) in Kupffer cells
isolated from animals at 2 h after cecal ligation and puncture (CLP) or
sham-operation. Relative expression of mRNA was calculated by the
DDCt-method, and results expressed as fold change with respect to the
housekeeping gene GAPDH. Values (n = 6/group) are presented as
mean6SE and compared by Student’s t-test. *P,0.05 vs. Sham.
doi:10.1371/journal.pone.0005504.g001
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higher in KCs from CLP animals (Fig. 2A). Data transformation

to a Scatchard plot yielded linear regression lines consistent with a

single class of antagonist binding capacity (Fig. 2B). Scatchard

analysis revealed a 28% increase in maximal binding capacity with

an average 24.3 fmol/106 cells 2 h after CLP compared to a Bmax

of 19.0 fmol/106 cells in sham animals (Fig. 2B). Similarly, the

average Kd decreased by 64% from 47.6 nM in sham animals to

17.2 nM 2 h after CLP (Fig. 2B), indicating increased affinity in

septic animals. In addition, we discovered a 50% reduction in

cAMP levels in KCs that decreased from 7.3160.14 pmol/56106

cells in sham-operated animals to 3.8261.70 pmol/56106 cells at

2 h after CLP (decreased by 48%, n = 4–5; P,0.05).

Stimulation with NE increases TNF-a release from KCs via
a2A-ARs

Isolated KCs were stimulated with NE (20 nM) with or without

BRL-44408 maleate (1 mM) for 4 h. While TNF-a release

increased by 440% after NE-stimulation, its increase was

completely suppressed after a2A-AR blockade by BRL-44408

maleate (Fig. 3). BRL-44408 alone did not have any measurable

effects on TNF-a release in the absence of NE-stimulation (Fig. 3).

Portal infusion of NE induces a2A-AR-dependent TNF-a
production in KCs

To elucidate whether the a2A-AR is also responsible for TNF-a
upregulation in vivo, we administered NE through the portal vein

in normal animals for 2 h and isolated KCs for analysis. TNF-a
gene expression was upregulated by 4-fold in KCs from animals

that were subjected to intraportal infusion of NE as compared to

vehicle-treated animals (Fig. 4A). BRL-44408 pretreatment

prevented the upregulation of TNF-a gene expression. Similarly,

TNF-a protein levels increased after intraportal infusion of NE by

10-fold and co-administration of NE with BRL-44408 maleate

reduced cellular TNF-a levels by 47% (Fig. 4B). Serum levels of

TNF-a also increased after intraportal infusion of NE from

40.260.8 pg/ml to 55.765.2 pg/ml (Fig. 4C). BRL-44408

significantly suppressed plasma TNF-a levels by 25% to blood

TNF-a concentrations found in sham operated animals (Fig 4C).

These results underline the crucial role of the a2A-AR in the

proinflammatory response of Kupffer cells after NE-stimulation

under in vivo conditions.

NE-mediated potentiation of LPS-mediated TNF-a release
through the a2A-AR

To investigate the role of the a2A-AR in NE-mediated

potentiation of a proinflammatory response to endotoxin, we

studied the response of KCs to NE and LPS in the presence or

absence of the a2A-specific inhibitor BRL-44408 in vitro (Fig. 5A)

and in vivo (Fig. 5B). Cultured KCs were responsive to endotoxin

and TNF-a levels increased by over 16-fold after stimulation with

100 ng/ml LPS (P,0.05, Fig. 5A). The simultaneous treatment

with NE+LPS caused TNF-a levels increased by an additional

63% (P,0.05 vs. LPS alone, Fig. 5A), indicating a potentiation of

LPS-induced TNF-a release from cultured KC. Concurrent

inhibition of the a2A-AR using BRL-44408 (1 mM) significantly

attenuated TNF-a release by over 60% (Fig. 5A). To verify the

crucial role of the a2A-AR in the proinflammatory response to NE

in endotoxemia, we measured plasma levels of TNF-a after

intraperitoneal injection of LPS (7.5 mg/kg) and systemic

intravenous administration of NE. LPS alone resulted in a 10-

fold increase of TNF-a plasma levels after 4 h (Fig. 5B) and the co-

administration of NE resulted a marked enhancement in plasma

Figure 2. Increased KC a2-AR binding capacity and affinity in
sepsis. Changes in a2-receptor binding of the radiolabeled specific
ligand [3H]-yohimbine in rat Kupffer cells obtained from sham-operated
and cecal ligation and puncture (CLP) animals (A). Bmax and Kd were
estimated using the the Scatchard analysis (B). The data points
represent the average of three different experiments. Best fit analysis
and two-way ANOVA showed that curves are different for Sham and
CLP (P = 0.0036).
doi:10.1371/journal.pone.0005504.g002

Figure 3. Stimulation with NE increases TNF-a release from KCs
via a2A-ARs. Alterations of TNF-a after stimulation of isolated KCs with
NE (20 nM) with or without BRL-44408 maleate (1 mM), a specific a2A-AR
antagonist, for 4 h. Percentage values (n = 6/group) are presented as
mean695% confidence and compared by ANOVA on Ranks and
Student-Newman-Keul’s method. *P,0.05 vs. Medium; #P,0.05 vs. NE.
doi:10.1371/journal.pone.0005504.g003
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TNF-a release by 155-fold (P,0.05; Fig. 5B). Administration of

the a2A-AR antagonist BRL-44408 completely blocked the LPS/

NE-induced TNF-a release (Fig. 5B). Thus, NE-mediated

potentiation of LPS-induced TNF-a release is a2A-AR-dependent

even after systemic application of NE.

a2A-AR-dependent activation of p38 MAP kinase
LPS induces the activation of intracellular pathways, including

the p38 MAP kinase by its phosphoryation, which plays a crucial

role in the proinflammatory response of macrophages [18]. To

determine, whether a2A-AR activation affects the p38 pathway, we

stimulated cultured KCs with NE (20 nM) and blocked either the

a2A-AR with BRL-44408 or its coupled Gai-protein with pertussis

toxin (PTX). Both BRL-44408 (1 mM) and pertussis toxin (PTX,

100 ng/ml) prevented the NE-induced phosphorylation of the p38

MAP kinase (Fig. 6A). This indicates that NE acts through the

a2A-AR and Gai protein to activate the p38 MAP kinase. To verify

this effect under inflammatory conditions, we assessed NE-

mediated phosphorylation of the p38 MAP kinase in cultured

KC at 1 h after stimulation with LPS (100 ng/ml). Either agent by

itself induced the phosphorylation of p38 compared to control,

however, the combination of NE and LPS showed the strongest

activation (over 7-fold induction) of p38 in cultured KCs (Fig. 6B).

This indicates that LPS-induced p38-activation can be potentiated

by simultaneous NE stimulation. To determine the role of this

pathway in the a2A-AR-mediated proinflammatory effect of NE,

additional experiments were performed to measure TNF-a release

after NE+LPS stimulation with or without inhibition of the Gai or

the p38 MAP kinase. Both PTX (100 ng/ml) and SB203580

Figure 4. Portal infusion of NE induces a2A-AR-dependent TNF-
a production in KCs. In vivo Alterations in Kupffer cell gene
expression (A) and protein levels of TNF-a (B) as well as serum TNF-a
levels (C) after administration of NE, NE combined with BRL-44408
maleate for 2 h through the portal vein. A representative gene and ratio
of TNF-a and housekeeping gene G3PDH are presented in panel (A).
Values (n = 5/group) are presented as mean6SE and compared by one-
way ANOVA and Student-Newman-Keul’s method. *P,0.05 vs. Control;
#P,0.05 vs. NE.
doi:10.1371/journal.pone.0005504.g004

Figure 5. NE-mediated potentiation of LPS-mediated TNF-a
release through the a2A-AR. BRL-44408 maleate blocks TNF-a
production in LPS-stimulated KCs after co-incubation with NE in vitro
and in vivo. (A) Alterations in TNF-a release from cultured KCs 24 h after
stimulation with NE (20 nM) and LPS (100 ng/ml), with or without BRL-
44408 (BRL, 1 mM). Data are presented as mean6SE (n = 8) and
compared by one-way ANOVA and Student-Newman-Keuls test.
*P,0.05 vs. Control; #P,0.05 vs. LPS alone; {P,0.05 vs. NE+LPS. (B)
Alterations in plasma levels of TNF-a after administration of LPS
(7.5 mg/kg, intra-peritoneal) and NE (20 mM NE for 2 h at 13 ml/min),
with or without BRL-44408 (2.5 mg/kg BW, intra-portal). Data are
presented as mean6SE (n = 4–6) and compared by one-way ANOVA
and Student-Newman-Keul’s method. *P,0.05 vs. Control; #P,0.05 vs.
LPS alone; {P,0.05 vs. NE+LPS.
doi:10.1371/journal.pone.0005504.g005

a2A-Adrenoceptor & TNF
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(10 mM; a p38 MAP kinase inhibitor) attenuated the NE-mediated

increase in TNF-a release by 46% and 55% respectively (Fig. 6C).

This study further confirms that NE potentiates LPS-induced

TNF-a through the a2A-AR coupled Gai protein and the

activation of the p38 MAP kinase.

BRL-44408 is beneficial in experimental sepsis
Using the above in vitro and in vivo systems, we were able to show

that BRL-44408 can attenuate the proinflammatory effect of NE

either alone or in conjunction with LPS. To investigate the

beneficial effect of BRL-44408 in sepsis, we used an experimental

sepsis model of CLP in rats receiving BRL-44408. 20 h later we

measured cytokine levels in KCs, plasma and injury paramers for

liver (AST & ALT), kidney (creatinine) and general oxigenation

(lactate). As expected, TNF-a mRNA levels in KCs as well as

plasma levels were increased 20 h after CLP by 6.6-fold and 2.4-

fold, respectively (Figs. 7A–B). BRL-44408 treatment completely

inhibited TNF-a production and release (Figs. 7A–B). Similarly,

CLP-induced increases in surrogate markers for liver and kidney

injury (AST, ALT and creatinine by 4.8-, 4.1-, and 2.9-fold,

respectively) were completely blocked after treatment with BRL-

44408 (Figs. 7C–E). Lactate, a marker for tissue perfusion and

oxygenation, that was increased by 3-fold after CLP and was

significantly suppressed by 37% after BRL-44408 infusion

(Fig. 7F). These above results indicate that BRL-44408 confers

an anti-inflammatory effect and protects from organ injury and

tissue malperfusion in CLP-induced sepsis in rats. To show that

these beneficial effects translate into an improved outcome, we

conducted a survival study. As shown in Figure 8, CLP and

vehicle treatment resulted in a 55% mortality rate over a 10-day

period. Treatment with BRL-44408, however, protected over 55%

of animals at risk, resulting in an overall survival rate of 75%. To

Figure 6. NE-mediated potentiation of p38 MAP kinase phosphorylation via a2A-ARs. (A) Alterations in p38 MAP kinase after 1 h culture
with NE alone (20 nM), NE+BRL-44408 (BRL, 1 mM), or NE+pertussis toxin (PTX, 100 ng/ml). The relative percentage of phosphorylated p38/total p38
MAP kinase is presented as mean695% confidence (n = 4–6) and compared by ANOVA on Ranks and Student-Newman-Keul’s method. The Medium
group is considered as 100%. *P,0.05 vs. Medium; #P,0.05 vs. NE alone. Representative gels are presented. (B) Enhanced activation of p38 MAP
kinase after 1 h culture with a combination of NE (20 nM) and LPS (100 ng/ml). The relative percentage of phosphorylated p38/total p38 MAP kinase
ratio is presented as mean695% confidence (n = 4–6) and compared by ANOVA on Ranks and Student-Newman-Keul’s method. Medium group is
considered as 100%. *P,0.05 vs. Medium; #P,0.05 vs. LPS alone. Representative gels are also presented. (C) Suppression of TNF-a release from
cultured KCs after stimulation with NE (20 nM)+LPS (100 ng/ml) with or without pertussistoxin (PTX, 100 ng/ml), a Gai-protein inhibitor, or SB203580
(10 mM), a p38 MAP kinase inhibitor. Data are presented as mean6SE (n = 4–6) and compared by one-way ANOVA and Student-Newman-Keul’s
method. *P,0.05 vs. Medium; #P,0.05 vs. LPS+NE.
doi:10.1371/journal.pone.0005504.g006
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determine the effect of the a2A-AR blockade on other organ

system, we monitored MAP and heart rates during BRL-44408

administration in normal rats. As shown in Figure 9, intrave-

nously infusion of BRL-44408 at the dose of 2.5 mg/kg BW had

no measurable effects on MAP and heart rates.

Discussion

Gut-derived NE has been shown to play a critical role in

inducing hepatocellular dysfunction in early sepsis, exerting its

effect through the non-synaptic, high-affinity a2-AR [19].

Kotanidou et al. have shown that urethane, a general anesthetic

with a2-AR blocking properties, protects against LPS partly by

reducing TNF-a release [20]. We have previously reported that

TNF-a secretion from NE stimulated Kupffer cells can be

inhibited by the general a2-AR inhibitor yohimbine, suggesting

that a2-ARs on Kupffer cells are particularly responsible for the

upregulation of TNF-a release [21]. The presence of a2-ARs on

macrophages has been previously confirmed by receptor binding

assays and in situ hybridization [22,23]. Studies by other groups

have shown that TNF-a upregulation can be mediated by the

stimulation of a2-ARs [11,24]. Here we show that it is the a2A-AR

that is upregulated in KCs leading to enhanced receptor binding

and proinflammatory cytokine release in sepsis.

We have previously shown that TNF-a is significantly increased

by incubation with NE (20 nM) for 4 h [21]. Since KCs are a

major source of proinflammatory cytokines [25], intraportal

infusion of NE appears to have a direct measurable effect on

TNF-a release in vivo. Infusion of NE through the femoral vein

may reduce active NE levels reaching the liver compared to direct

intraportal injection. Hence, one may expect a diminished

proinflammatory response of NE after systemic administration.

We have shown however, that even after peripheral intravenous

administration of NE, the LPS-induced TNF-a increase becomes

dramatically potentiated through an a2A-AR-dependent pathway,

possibly through the involvement of other tissue macrophages.

Adrenergic receptors are subdivided in to three major subtypes

a1, a2, and b, which are then subdivided into a1A, a1B, and a1C,

a2A, a2B, and a2C and b1, b2, and b3. Upon binding of b2-ARs for

example, epinephrine and high doses of NE through increasing

intracellular cAMP levels [26]. a2-adrenoceptors are Gi- and G0-

protein coupled receptors that decrease intracellular cAMP, open

K+ channels, and inhibit voltage gated Ca2+ channels, all of which

lead to hyperpolarization of neurons and activation of immune

Figure 7. Beneficial effects of a2A-AR inhibition in sepsis. (A–B) BRL-44408 mediated suppression of TNF-a gene expression in Kupffer cells (A)
and plasma concentrations (B) 20 h after CLP. (C–F) BRL-44408 mediated improvement of organ damage parameters. Rats underwent CLP and 20 h
later ALT (C), AST (D), creatinine (E) and lactate (F) levels were measured as described in the methods. Values (n = 5/group) are presented as
means6SE and compared by one-way ANOVA and Student-Newman-Keul’s method. *P,0.05 vs. Sham; #P,0.05 vs. CLP+Vehicle.
doi:10.1371/journal.pone.0005504.g007
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cells [26]. In the CNS, a2-adrenoceptors are predominantly

presynaptic. They regulate the release of neurotransmitters

through a negative feedback. Functional studies of the genetic

receptor subtypes have linked the a2B-adrenoceptor to peripheral

vasoconstriction and analgesic effects of N2O (nitrous oxide) and

other anesthetic agents. The a2A-AR, either alone or with a2C-AR

co-activation, is involved in the central inhibition of sympathetic

activities, modulation of neurotransmitter release, sedation, and

anti-epileptic effects. As we have shown here, the pro-inflamma-

tory action of NE, mediated by the a2A-receptor subtype expressed

on hepatic macrophages (i.e., KCs) can now be added to this list.

So far, however, we could find only one report regarding the a2-

AR subtypes responsible for TNF-a upregulation in pulmonary

inflammation and none in sepsis itself. In their work by Flierl et al.,

the authors focused on the phagocyte-derived cathecholamines

that boost inflammatory responses via the a2-AR [27]. Although

this report indicated similar increases in the a2A-AR subtype in

alveolar macrophages and neutrophils after LPS-stimulation, the

role of individual subtypes in the proinflammatory response was

not addressed [27]. In our study we have assessed the influence of

these subtypes in hepatic macrophages, i.e., KCs. We have shown

that the gene expression of a2A-AR has significantly increased 2 h

after CLP, while no significant changes in a2B and a2C-AR could

be observed. Kupffer cells stimulated with NE in combination with

the a2A-AR inhibitor BRL-44408 maleate reduced TNF-a release,

while the a2B-AR inhibitor imiloxan hydrochloride increased

TNF-a levels (data not shown). The difference between those two

receptor subtypes may lie in the intracellular signaling pathways.

While all a2-ARs suppress intracellular cAMP levels through its

Gai coupled protein, they also change intracellular calcium and

potassium levels to a different degree, which may influence

intricate signaling pathways and eventually cellular response. As

opposed to in vivo findings that showed no differences, our in vitro

results show that a2B-AR inhibition is able to inhibit TNF-a
release from cultured KCs, which is further complicating the role

of a2B-ARs in the inflammatory response. In vivo, intraportal

administration of NE significantly increased serum and Kupffer

cell levels of TNF-a, and only the a2A-AR specific antagonist,

BRL-44408 could significantly reduce TNF-a plasma levels and

Kupffer cell TNF-a release. Recent reports show that not only

sympathetic mediators, but also the cholinergic pathways

modulate the systemic inflammatory response. Thus TNF-a
release can be reduced by increasing efferent vagus nerve activity

and acetylcholine release [28]. In this regard, the nicotinic

acetylcholine receptor a7 subunit appears to be responsible for

the inhibition of macrophage TNF-a release by acetylcholine [29].

The role of the a2A-AR in the regulation of vagus nerve activity is

a possibility in vivo, but our in vitro results indicate that the TNF-a
suppressive effect of BRL-44408 is independent of a parasympa-

thetic influence. Our present work and others’ studies also show

that this tremendous activation of the sympathetic and parasym-

pathetic nervous system during sepsis is not only a result of these

devastating conditions but also influences of inflammatory

responses itself by regulating proinflammatory cytokines via

adrenergic and cholinergic receptors.

a2A-ARs also have effects on the cardiovascular and nervous

systems [30–32]. Since changes in MAP and heart rates reflect the

activity of both the cardiovascular and nervous systems, we

monitored MAP and heart rates during BRL-44408 administra-

tion in normal rats. Our results indicate that intravenously infusion

of BRL-44408 at the dose of 2.5 mg/kg BW had no measurable

effects on the MAP and heart rate. In this regard, the beneficial

effect of a2A-AR blockade in sepsis is unlikely due to its direct

effects on the cardiovascular and nervous systems.

Figure 8. The a2A-AR inhibitor BRL-44408 improves survival in
septic rats. Rats underwent CLP (n = 20/group) and received either
Vehicle treatment or BRL-44408 maleate iv 2.5 mg/kg BW. Cecums were
removed 20 h later and animals observed for up to 10 days. *P,0.05 vs.
Vehicle, Kaplan-Meyer logrank test.
doi:10.1371/journal.pone.0005504.g008

Figure 9. BRL-44408 has no effects on MAP and heart rates in
normal rats. Effects of a2A-AR inhibitor BRL-44408 on mean arterial
pressure (MAP, A) and heart rates (B) in normal rats. Normal rats
received either Vehicle treatment or BRL-44408 maleate iv 2.5 mg/kg
BW over a period of 30 min. Data are presented as mean6SE (n = 5/
group), and compared by Student’s t-test. No statistical difference was
found.
doi:10.1371/journal.pone.0005504.g009

a2A-Adrenoceptor & TNF

PLoS ONE | www.plosone.org 8 May 2009 | Volume 4 | Issue 5 | e5504



In summary, our results suggest that hyperresponsiveness to a2-

AR stimulation observed in sepsis is primarily due to an increase in

a2A-AR expression in KCs. This appears to be in-part responsible

for the increased proinflammatory response and ensuing organ

injury in sepsis. These findings provide important feasibility

information for further developing the a2A-AR antagonist as a new

therapy for sepsis.
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