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Abstract

As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties
are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist
alternative pathways that can perform some required function if a gene essential to the main mechanism is defective,
absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced
by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important
limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes
that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways
using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation.
We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs
which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM
set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since
our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-
protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO
annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant
pathways in such areas as vesicle-mediated transport and DNA repair.
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Introduction

It is estimated that only 18% of the yeast genome consists of

essential genes, meaning that if the gene is deleted, the resulting

strain is not viable on rich media [1]. Sometimes, the reason a

given gene is not found to be essential is that the gene is not

required for growth in rich media under laboratory conditions

[2,3]; for example, a gene which produces an enzyme used to

metabolize one particular nutrient if other nutrients are available

[4]. In other cases, however, genes are not essential because there

exist other genes that can compensate for the missing gene. Three

main mechanisms of compensation have been observed [2,3,5].

First, there can exist one or more paralogs of a nonessential gene

which can substitute directly for it. The second mechanism

involves the existence of redundant metabolic pathways or

regulatory networks; this is called ‘‘robustness’’ by Wagner [6].

A third mechanism involving a more global and diffuse relation

among multiple genes across many pathways has also been

reported to occur [7]. There is only preliminary data on the

relative importance of the three mechanisms – one study estimates

that at least 25% of the gene deletions in yeast that have no

phenotype involve the first mechanism of duplicate genes [8].

Recent years have seen a huge increase in the amount of genetic

interaction data available from yeast double-mutants, where

interactions between pairs of nonessential genes are characterized

by the phenotypic effect of their simultaneous suppression or

deletion. One of the simplest of such effects is a ‘‘synthetic-

lethality’’ interaction: both genes are nonessential, but their

simultaneous deletion destroys the viability of the yeast. A

synthetic-lethality genetic interaction (GI) network is defined by

representing genes/proteins as nodes, with an edge between two

nodes if a synthetic-lethality interaction has been observed

between the corresponding genes. An increasingly comprehensive

protein-protein physical interaction (PI) network (defined as was

the GI network, with nodes as genes/proteins and edges as

pairwise interactions) is available for yeast, where physical

interactions include direct binding between two genes’ protein

products, regulatory protein-DNA binding mechanisms, and the

existence of enzymatic reactions between pairs of proteins linked

by a common metabolite (excluding common metabolic cofactors

like water and ATP [7]).

In a seminal paper, Kelley and Ideker [7] showed how the

superimposition of the PI and GI networks could be used to search

the yeast interactome for a simple network sub-architecture that

they called a between-pathway model (BPM). The search for BPMs

within the yeast interactome was studied further by Ulitsky and

Shamir [9], and by Ma, Tarone, and Li [10] using different

models. The BPM model treats GI and PI edges as fundamentally

different. This is in contrast to the model used by Nabieva et al.

[11] in their groundbreaking work using maximum flow methods
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to predict gene function: their method depends on GI edges being

treated as simply one-type of high-confidence PI edges. In the

search for fault-tolerance, in contrast, it is crucial that these two

types of edges be treated separately: the fundamental insight of this

paper comes from recognizing that we can view the PI edges as

ordinary edges, and the GI edges as 2-vertex cuts of the functional

network. Thus algorithmic work related to the theory of maximum

(and in our case maximal) cuts becomes highly relevant.

Specifically, a BPM is a graph-theoretic indicator that genetic

fault tolerance may be present. Consider a model consisting of a

pair of protein pathways where each pathway serves as a

redundant backup for the other. Within each pathway, there will

be many physical interactions between nodes (protein-protein

binding, direct transcriptional regulation, etc.), reflecting each

pathway’s existence as a coherent functional unit. Synthetic-

lethality interactions, on the other hand, will be few or nonexistent

within each pathway, since the other pathway provides a failsafe

mechanism for its partner. Between the two pathways, there will be

more observed synthetic-lethality interactions: if corresponding

components are deleted or suppressed in both pathways at once,

the fault-tolerance of the system is defeated and the strain dies. A

network motif corresponding to this situation, in which two groups

of genes – each group found to be edge-dense within the PI

network – are connected by many synthetic-lethality edges in the

GI network, defines the BPM (see Figure 1).

Kelley and Ideker, and later Ulitsky and Shamir, identified

possible examples of the BPM architecture for yeast. They found

that many of their candidate BPMs were enriched over certain

Gene Ontology (GO) categories of protein function [12], and

correlated well with some biologically-known examples of pathway

buffering. However, in both cases, a heuristic approach was used

to extend small connected components of the PI network,

searching for patterns in a combined network which superimposed

both physical and genetic interactions.

In contrast, our new method initially takes into account only the

graph-theoretic structure of the synthetic-lethality GI network to

search for candidate BPMs; this allows the location and density of

physical interactions in the PI network to be used afterward to

validate the results. (We note that a recent paper, Ma et al. [10],

also takes an approach based on GI edges only; but their strategy is

to produce a very large set of possible candidate BPMs, many of

which will be meaningless, which must then be filtered using GO

annotation to discover a much smaller subset of meaningful

pathways; we discuss this more below).

The subgraphs of the synthetic-lethality network which our

method returns as putative examples of the BPM architecture we

call stable bipartite subgraphs. They are defined as follows. Given any

bipartition of all nodes of a network into sets A and B, we call such

a partition maximal if the act of moving a single node from A to B or

from B to A does not increase the number of edges crossing between A

and B. These partitions are locally maximal; there can be many

different maximal bipartitions of the same network. There exists

an efficient, randomized, greedy algorithm [13] for sampling

maximal bipartitions in any network, described below. (In

contrast, finding the bipartition with the globally maximum

number of edges crossing between A and B is NP-hard. [14,15])

Given the results of M repeated runs of the randomized

maximal bipartition detection algorithm on a network, we define

the stable bipartite subgraph of any node v to be the bipartite

subnetwork (with bipartition vA,vBð Þ) consisting of all nodes in the

network (set vA) that appear in the same partition as v in at least

70% of sampled maximal bipartitions, and all nodes (set vB) that

appear in the opposite partition from v at least 70% of the time. The

putative BPMs returned by our method consist of the stable

Figure 1. Redundant pathway example. A solid arrow denotes a physical interaction; a dashed line denotes a synthetic-lethality interaction. In
the graph on the left, deleting either gene s or gene t will still allow for the successful traversal of the pathway. In the graph on the right, there are
two alternate redundant pathways A and B. Note synthetic-lethality edges do not form a complete bipartite subgraph, because gene s and gene t
supply lower-level redundancy. The st double mutant is synthetically lethal in the graph on the left, but not on the right, where it does not block
alternate pathway A.
doi:10.1371/journal.pone.0005364.g001
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bipartite subgraphs generated for each node v. Note that we obtain

fewer stable bipartite subgraphs than genes, because some genes

generate the same stable bipartite subgraph.

We show that BPMs obtained from stable bipartite subgraphs

show significant functional enrichment over GO categories (using

FuncAssociate [16], using an FDR multiple testing correction).

Using a network containing the same set of GI and PI edges as that

explored by Kelley and Ideker (i.e. the edges known in 2005), we

find 602 BPMs covering 1,526 SL edges with 53.4% of the

60262 = 1204 putative functional pathways exhibiting GO

enrichment (for some functional category of depth $3); Kelley

and Ideker reported 360 BPMs covering 687 SL edges with 34.9%

of their 36062 = 720 putative pathways exhibiting GO enrich-

ment. Using a more recent network of GI and PI edges from the

BioGRID [17] (as of October 2007), we find 50.6% of 3020

pathways exhibiting GO enrichment, as compared to Ulitsky and

Shamir, who find less than 36% of their smaller number of

pathways enriched, on a similar but slightly older network (see

Table 1). Furthermore, coverage of known complexes by our

BPMs is substantially increased over those of Ulitsky and Shamir

(79.8% of the complexes annotated in SGD GO-slim [18] for our

BPMs, versus 46.3% for theirs).

Since the PI edges are not considered by our BPM construction

method, we can go on to measure the propensity of physical

protein-protein interactions to occur within rather than between

putative pathways. Using this measure, we obtain high-confidence

pathways that are not currently represented in known functional

annotation; thus we can make new biological functional and fault-

tolerant predictions. As further statistical validation, we find that

the BPM motifs which we predict from the smaller Kelley and

Ideker interaction network are consistently carried forward on the

larger BioGRID network. That is, newly-discovered synthetic-

lethality relationships and protein-protein interactions (which

appear in the BioGRID data after 2005) tend to appear where

we would expect from the structure of the BPMs generated from

the older network.

All of our candidate BPMs, along with enrichment results and

individual constituent gene annotations, are publically available at

http://bcb.cs.tufts.edu/yeast.bpm/. When we refer to a

BPM by number in this paper, the number refers to the ID

associated with that BPM on this website.

Results

Two datasets describing the yeast interactome were studied: the

first contained the interaction data used by Kelley and Ideker (KI)

in [7], whose synthetic-lethality (SL) network we denote by G. The

second includes the first as well as an updated collection of all

additional SL and protein-protein interactions published in the

October 1, 2007 release of the BioGRID database [17], which we

denote by G9. Both datasets were filtered to exclude essential

genes, as well as all genes not found to participate in any synthetic-

lethality relationships. Thus filtered, G contained 682 gene/

protein-product nodes with 1,858 synthetic-lethality interactions,

and G9 contained 1,678 genes with 6,818 SL edges. This data

represents only a fraction of the total estimated number of SL

interactions in the yeast interactome, because most gene pairs have

not yet been tested (we address complications arising from the

incompleteness of the known interactome below).

We computed the stable bipartite subgraph of each gene in G

and G9; note that for some genes participating in the same BPM,

their stable bipartite subgraphs will be identical, so fewer unique

BPMs were generated than the number of genes in each network.

Biological validation (GO enrichment results)
The number of different BPM subgraphs we found using this

method, the total count of distinct SL edges involved in these

BPMs, and the number of pathways found to be enriched for at

least one GO category of depth 3 or more, is reported in Table 1,

for the network G (identical to Kelley and Ideker’s network) and

for the more up-to-date network G9. Additionally, Ulitsky and

Shamir report 46.3% coverage of the complexes annotated in

SGD GO-slim [18]; our coverage of the same database was

79.8%. In both cases, we find many more BPMs on the

comparable networks than do the previous studies. This is not

surprising, because Kelley and Ideker, as well as Ulitsky and

Shamir, include physical protein-protein interaction data in their

search for BPMs, so one might expect they would find a smaller set

of BPMs. It might be expected that a larger proportion of their

BPMs would be enriched, since their BPMs are supported by both

genetic and physical interaction data, whereas ours are based

solely on genetic interaction data. In fact, Ma et al. [10], using

another method that employed only SL edges to construct BPMs

(as we do), found exactly this: that they generated more BPMs, but

a smaller fraction were GO-enriched. Surprisingly, a larger

proportion of the BPMs put forth by our method are enriched

as compared with previous work: over 53% of our BPM pathways

were enriched in G, and over 50% in G9, whereas the previous

methods which used both networks to generate BPMs never

exceeded 36%. We attribute this improvement to the power of the

stable bipartite subgraph algorithm to automatically prune

unrelated genes which are more often included by localized

greedy heuristics.

We did not place the results of Ma et al. [10] in the comparison

table; because some of their BPM generation rules bias the

pathway samples, and not enough of their pathway data is

available for us to generate valid comparison statistics. In

particular, using a local greedy approach similar to Kelley and

Ideker, but limited to the GI network, Ma et al. report 2,590

generated BPMs, but those BPMs were not made available;

instead a subset of 89 BPMs from this set was published that

satisfied the following criteria: 1) each pathway contains at least 4

genes, 2) both pathways are enriched for the same GO annotation,

Table 1. Coverage of the interactome by BPMs.

Network BPMs found
SL edges
covered

Fraction
Enriched
Pathways

Kelley/Ideker G 360 687 251/720 (34.9%)

Our results G 602 1,526 643/1204
(53.4%)

Ulitsky/Shamir A G� 140 ,3,765 100/280 (35.7%)

Ulitsky/Shamir B G� 270 ,3,765 177/540 (32.8%)

Our results G9 1,510 4,949 1528/3020
(50.6%)

G is the exact same set of interactions that was known to Kelley and Ideker in
2005; G9 is the more recent BioGRID network; G* is the slightly older network
used by Ulitsky and Shamir. Ulitsky and Shamir’s results A and B come from their
supplementary Table S1, where A was generated using their ‘‘dense pathways’’
method and B using their ‘‘connected pathways’’ method. Ulitsky and Shamir
treat synthetic-lethality and synthetic-sick interactions as equivalent; they cover
3,765 interactions in the combined set. Each BPM contributes two pathways to
the enrichment calculations; we consider a pathway GO-enriched if the GO term
has a depth of at least three in the hierarchy and p#0.01 using FuncAssociate
with an FDR multiple-testing correction. Both Kelley and Ideker as well as
Ulitsky and Shamir use p#0.05 with a hypergeometric test.
doi:10.1371/journal.pone.0005364.t001
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and 3) at least 30% of the genes in each pathway have GO

annotations that match the annotation that is enriched for both

pathways. Presumably, if these enrichment heuristics were relaxed,

the number of enriched BPMs would increase from the 89 they

report, but since the initial set of 2,590 BPMs was not published, it

was not possible to determine by how much. Ma et al. do report

that a smaller fraction of their pathways are enriched than those of

Kelley and Ideker and Ulitsky and Shamir; in their discussion,

they attribute this to their use of GI edges only. Our method used

only GI edges and produced a higher percentage of enriched BPMs

than the methods that use PI edges as well, so we suggest a

different conclusion than Ma et al. concerning the amount of

information present in the GI network by itself.

610 of the BPMs we found in G9 had both pathways enriched; of

these, all but 71 had at least one functional-enrichment term

common to both pathways. A partial list appears in Table 2. We

found 71 BPMs in G9 for which both pathways were enriched for

at least one GO term, but where no enriched GO terms were

found which were common to both partitions. These might

represent interdependent but not redundant pathways, or else might

represent genuinely redundant pathways which have not yet been

sufficiently annotated. A partial list of these appears in Table 3. In

both tables, ‘‘Coverage’’ columns indicate how many genes – out

of all genes in the background set matching the listed GO term –

were found in each pathway. BPM number refers to the IDs given

in the list of BPMs on our website (see above). We also found 308

BPMs where only one of two partitions exhibited GO enrichment

of sufficient specificity.

Mathematical validation (probabilistic results)
The first mathematical validation involves examining the physical

protein-protein interaction (PI) network; if our BPMs represent real

redundancy in function, PI edges should be biased to occur within

each partition as opposed to between partitions. We measure, for each

BPM, how much more biased the observed PI edges (between all

pairs of gene/protein nodes in the BPM) are to remain within a

single partition than would be expected by chance (see the Methods

section for computational details). Of the BPMs we found (which

were all generated using only synthetic-lethality interaction edges),

the top 10 most strongly validated by the location of known PI edges

(and their associated p-values) appear in Table 4.

The second statistical validation we applied to our approach

was to check the consistency of the BPMs we generated using the

Kelley and Ideker network G in the context of those generated

from the more recent BioGRID dataset G9. Synthetic-lethality

interactions in the newer BioGRID dataset are (except for a small

number of false positives weeded out since 2005) a superset of the

older data. If our BPMs are biologically meaningful, then, SL

interactions reported since the Kelley and Ideker network was

constructed should tend to appear between genes in different

partitions of the BPMs generated from the older network. We

therefore estimated the bias of the distribution of all such newly-

reported SL interactions in favor of appearing between rather than

within pathways (see the Methods section for computational

details). Across the set of 175 BPMs from G which contained at

least 20 new SL edges, the average probability that the observed

between-pathway bias would occur by chance was 0.017. Since

these new edges were not used to construct candidate BPMs in G,

their distribution bias provides parallel independent support to the

hypothesis that stable bipartite subgraphs do indeed correspond to

biologically meaningful motifs.

Example BPMs
Figure 2 shows one example BPM from Table 2 in more detail.

The first partition was enriched for both GO:0005743 (mitochon-

drial inner membrane) [p,0.001 (4/49)] and GO:0005740

(mitochondrial envelope) [p = 0.002 (4/89)], with all four genes

in that partition annotated with both terms. The second partition

was enriched for GO:0005740 (mitochondrial envelope) [p,0.001

(7/89)] (with all seven genes annotated with this GO term), as well

as for GO:0005741 (mitochondrial outer membrane) [p = 0.001

(4/29)] (with four of the seven genes in this partition thus

annotated).

Dimmer et al. [19] showed that deletion of MDM31 or MDM32

resulted in a very similar phenotype as deletion of MDM10/

MDM12/MMM1, namely large, rounded mitochondria with

profoundly reduced motility. On the other hand, deletion of

PHB1 or PHB2 (the tumor suppression protein prohibitin and its

homolog) displayed no detectable phenotype, but was found to be

synthetically lethal when any of the genes MDM12, MDM10 or

MMM1 on the right side of the partition were mutated [20]. The

remaining two genes, ATP23 and ATP10, both associated with

the mitochondrial envelope, are believed to possess overlapping

functions with respect to ATPase biogenesis [21].

Figure 3 shows an example BPM from Table 3 in more detail;

three genes on the left (TOP3, SGS1, RMI1) are known to make up

Table 2. We considered the set of BPMs in G9 for which both partitions were enriched for the same GO term.

BPM Common GO term Coverage

18: UPC2 ECM22 MOT3 ERG24 sterol metabolic process (3/12)

ERG28 HAP1 ERG6 ERG2 (3/12)

19: PHB1 PHB2 MDM31 MDM32 mitochondrial envelope (4/89)

MDM10 MDM34 MMM1 ATP10 PSD1 ATP23 MDM12 (7/89)

144: DRS2 SNC1 APM3 LAA1 SLA2 SNC2 vesicle-mediated transport (6/164)

VPS3 VPS45 CHC1 YAP1802 YAP1801 PEP12 (5/164)

407: MSTL1 STO1 CBC2 spliceosome (3/18)

MUD1 NPL3 NAM8 MUD2 SRV2 RTT106 (3/18)

838: DIE2 OST6 ALG6 ALG8 ALG5 transferase act. - glycosyl grps (5/36)

PMT2 PMT1 TPS2 RP041 OST5 OST3 (4/36)

This table presents 5 of the top (nonredundant) matches, each with enrichment p-value,.0001 for the best-scoring GO term common to both partitions. Bolded genes
are those annotated with the listed term.
doi:10.1371/journal.pone.0005364.t002
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the RecQ helicase-Topo III complex (G0: 0031422), while on the

right, overlapping sets of genes are annotated as being involved in

GO:0006974 (response to DNA damage stimulus) and

GO:0006310 (DNA recombination). SGS1 is the yeast homolog

of BLM, responsible for the cancer-prone Bloom’s syndrome in

humans [22,23], whose signature is cells with unregulated

crossing-over. It is known to prevent aberrant crossing-over

during meiosis by suppressing formation of joint molecules

comprising three and four interconnected duplexes [24]. Hollings-

worth and Brill [25] studied the endonuclease MUS81-MMS4, and

showed that this two-protein complex also has a role in generating

crossovers. In fact, they postulate that there are two independent

mechanisms for resolving recombination intermediates, including

holiday junctions, during meiosis: one involving MUS81-MMS4,

and one involving the RecQ helicase-Topo III complex. They

note that budding yeast appears to have the extra pathway as a

failover, but that some other organisms appear to have evolved to

exclusively use only one mechanism or the other. Our BPM

Table 3. Top-scoring BPMs from among those which had both pathways enriched for some GO function, but whose GO matches
were different across the two partitions.

BPM ID Partition Best-scoring GO term p-value Coverage

213 1 double-strand break repair via homologous recomb. ,0.001 (7/16)

2 carboxy-terminal domain protein kinase complex ,0.001 (3/3)

324 1 actin filament depolymerization 0.002 (3/3)

2 dynactin complex ,0.001 (3/3)

465 1 response to DNA damage stimulus ,0.001 (17/120)

2 Ctf18 RFC-like complex ,0.001 (3/3)

567 1 microtubule cytoskeleton ,0.001 (14/36)

2 nuclear microtubule ,0.001 (3/3)

720 1 response to DNA damage stimulus ,0.001 (8/120)

2 RecQ helicase-Topo III complex ,0.001 (3/3)

778 1 nuclear lumen ,0.001 (8/171)

2 carboxy-terminal domain protein kinase complex ,0.001 (3/3)

1076 1 DNA metabolic process 0.005 (15/384)

2 mitotic sister chromatid cohesion ,0.001 (5/12)

1270 1 protein depolymerization 0.002 (4/9)

2 microtubule-based process ,0.001 (13/46)

1338 1 nucleoplasm part ,0.001 (14/127)

2 proteasome complex (sensu Eukaryota) 0.002 (4/12)

1357 1 peroxisome organization and biogenesis ,0.001 (6/18)

2 fungal-type cell wall 0.003 (3/31)

An example GO term for which each pathway was enriched is provided, along with that term’s associated p-value and coverage fraction.
doi:10.1371/journal.pone.0005364.t003

Table 4. Ten of the top (non-redundant) dually-enriched BPMs, ranked according to the improbability of observed protein-protein
interaction distributions appearing by chance.

BPM ID Enrichment results p

331 COMPASS,Rpd3L,SWR1 complexes; histone modific./chromatin remodel. ,1610220

465 Mre11 complex; DNA damage response 8.061027

785 cytoskeleton; dynein complex; microtubule 7.361026

944 Golgi apparatus part 1.761023

201 CORVET, GARP, HOPS complexes; Golgi to vacuole transport 2.761023

1043 ER to Golgi vesicle-mediated transport; regulation of pH 7.061023

160 GET complex; intra-Golgi vesicle-mediated transport; secretion 0.010

1004 Mdm10/Mdm12/Mmm1 complex; mitochondrial envelope 0.012

1083 RecQ helicase-Topo III complex; recombination 0.012

778 DNA packaging; chromatin assembly complex 0.015

‘‘Enrichment results’’ contains a brief summary of enriched GO terms for each BPM. ‘‘p’’ is the probability of seeing, by chance, the observed bias of PI edges to remain
within one pathway rather than cross between the two pathways of the BPM.
doi:10.1371/journal.pone.0005364.t004
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appears to support this theory, while segregating additional genes,

some already known to be involved in DNA repair, into

association with one mechanism or the other. A literature search

finds additional support: Wagner et al. [26] show that PIF1 has a

direct role in the prevention or repair of SGS1-induced DNA

damage that accumulates in top3 mutants. Mullen et al. [27]

propose that the MMS4/SLX3, SLX5/8, and SLX1/4 gene pairs

encode heterodimeric complexes and speculate that they are

required to resolve recombination intermediates arising in

response to DNA damage, during meiosis, in the absence of

SGS1=TOP3.

Ascertainment bias
While not addressed in the work of Kelley and Ideker or Ulitsky

and Shamir, Fritz Roth [28] alerted us to an issue of possible

ascertainment bias, based on in the available synthetic-lethality data,

which needs to be addressed. In particular, many smaller-scale

synthetic-lethality experiments result in data with an artificially

bipartite structure. That is, they test a set of query genes against a

set of genes on an array, and query genes were only tested against

array genes and not against each other. A complete graph could

therefore artificially appear in the data as bipartite, based on

which subset of all possible gene pairs was tested. We note that the

strong enrichment results obtained both in this study and in

previous work go some way toward implying that we are not just

rediscovering bipartite structure in the network left by ascertain-

ment structure; support for the relevance of our BPMs is also

deepened by our validation results concerning the observed

within-versus-between distribution bias of protein-protein interac-

tions, as well as validation based on the biased distribution of

newly-tested synthetic-lethality interactions, appearing where we

would predict them to appear as more experimental data is

generated. Even so, we wished to quantify the extent to which

ascertainment bias could be affecting our results.

We ordered the various experiments that produced synthetic-

lethality data in the BioGRID dataset by volume, according to the

number of synthetic-lethality interactions each contributed. Thus

ordered, the top 25 experiments taken together contributed 72%

of all synthetic-lethality interactions in the database. For these

experiments, we went through each of the associated papers and

uncovered exactly which pairs of genes were tested for synthetic-

lethality relationships. In this way, instead of having two labels for

SL interactions (‘‘known to be synthetic-lethal’’ vs. ‘‘known not to

be synthetic-lethal or never tested’’), we now had three possible

labels (‘‘known to be synthetic-lethal’’, ‘‘known not to be synthetic-

lethal’’ and ‘‘never tested’’). Intuitively, a BPM could be an artifact

of ascertainment bias if it turned out that all or nearly all pairs of

genes tested for synthetic lethality turned out to lie between the two

pathways, with few or no tests having been performed between

pairs of genes that lie within the same pathway.

As an example, consider the ‘‘worst’’ BPM we are able to find in

our set, BPM 622. There are four genes in one pathway (call it

pathway 1) that were tested by hand across several very small-scale

experiments (not in the top 25 by volume): ECM1, PHB1, PHB2,

and YPK2. In pathway 1 is also HSP92, which was a query gene

in a very high-throughput experiment. In pathway 2, we find 5

Figure 2. BPM 19 in G9. Synthetic-lethality interactions appear as dashed lines. Known protein-protein interactions appear as solid lines.
doi:10.1371/journal.pone.0005364.g002
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genes that were also tested in the small-scale experiments

(MDM10, RPL2A, YPK1, ATP10, and MDM12), but there are

an additional 128 genes which were array genes in the same high-

throughput experiment in which HSP92 was a query gene. Further

examination shows that none of the pairs of these 128 array genes were

ever tested against each other; thus, most of the genes in this 133-gene

partition are likely to be present simply as an artifact of

ascertainment bias.

At the other extreme, we are more confident of those BPMs

where, for example, many pairs of genes within each pathway were

tested for synthetic lethality. Considering only the top 25

experiments (so this is an underestimate), we find that at least

391 out of 610 dually-enriched BPMs had at least 10 pairs of genes

tested in pathway 1, together with at least 10 pairs of genes tested

in pathway 2.

Denote the numbers of pairs of genes known to have been tested for

synthetic lethality within pathway 1, between pathways, and within

pathway 2 by A, B and C, respectively. Suppose there were M total

synthetic-lethality edges observed within the BPM as a whole, and

suppose KƒM of these appeared between the two pathways. We

compute the probability of observing, by chance, K or more edges

between the two pathways, when M edges are randomly assigned

to the slots created by known tested pairs, given by

XM
i~K

AzC

M{i

� �
|

B

i

� �

AzBzC

M

� �

Table 5 lists the top 25 of our dually-enriched BPMs, ordered

by this statistic. (We stress here that this statistic is not equal to the

probability of observing one of our BPMs independent of

ascertainment bias, because our BPM generation process will bias

for edges going across; i.e. regardless of underlying structure, the

placement of SL edges is not uniform, but biased by our algorithm

to produce partitions where edges appear between pathways.

Nonetheless, pathways which have a low value according to this p

will have the desired quality that many edges within each pathway

were, in fact, tested for synthetic lethality, thus we can still rank

our confidence in the BPMs based on this p).

As an increasing fraction of all possible yeast double mutants are

grown and tested for genetic interactions, the problem of

ascertainment bias in the data with resolve on its own. In the

meantime, in order to help the yeast genome researcher weed out

Figure 3. BPM 720 in G9. Synthetic-lethality interactions appear as dashed lines. Known protein-protein interactions appear as solid lines.
doi:10.1371/journal.pone.0005364.g003
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those BPMs (like BPM 622, discussed above) which are likely to be

artifacts of ascertainment bias, on our website at http://bcb.cs.
tufts.edu/yeast.bpm/ we have annotated every gene in every

BPM pathway with the names of the experiments from which it

came, and whether it was a query or an array gene (the latter label

provided only for the top 25 experiments by volume). Using this

annotation, one can quickly flag BPMs in which query genes

appear opposite array genes from a particular large-scale

experiment. One can likewise easily identify cases where many

pairs of non-edges were in fact tested for synthetic-lethality

interactions, in which cases the likelihood of ascertainment bias is

greatly reduced.

Discussion

We have introduced the stable bipartite subgraph as a new

means to generate redundant-pathway hypotheses in genetic and

protein-protein interaction networks, and we have shown that this

approach can generate subnetwork motifs (BPMs) that provide

substantially more coverage than earlier approaches, with

confident functional-enrichment results.

For the majority of our BPMs, we have evidence (in the form of

either high-confidence enrichment results or well-characterized

protein-protein interactions) that we are describing genuine

redundant pathways. As for the rest, we examine two possible

ways in which our method might produce less relevant or

meaningless BPMs and discuss how to correct for each.

First, there is the possibility of ‘‘fused pathways.’’ Our method

only searches for bipartite structures, if there is a tripartite or

multipartite redundancy arrangement, we may erroneously

aggregate multiple pathways together into a single partition. We

believe we have found at least one instance where this is happening

(Figure 4).

A second potential issue is that when there are hub nodes (nodes

of very high degree in the SL network), the structure of our

algorithm will tend to give a high score to partitions that place the

hub node in one partition and all of its neighbors in the other. In

order to screen out these high-degree effects, on our website, we

report results for alternative networks G75, G35, G975 and G935,

where for example G75 stands for the subnetwork of G which

remains after all genes of SL degree $75 have been deleted. Some

interesting BPMs that are missed in the full network are uncovered

in this way; we believe that more analysis of this effect is warranted

in later studies.

Future work
The present work makes use of only one class of genetic

interaction, namely synthetic-lethality. There are other known

classes of genetic interactions such as synthetic-sick and synthetic-

rescue (when deletion of gene A has a particular phenotype distinct

from wildtype, such as slow growth, but deletion of both A and B

together results in a strain indistinguishable from wildtype).

Supplementary results (reported on our website) imply that

treating synthetic-sick interactions as equivalent to synthetic-

lethality interactions (as Ulitsky and Shamir do) produces weaker

results when using our method than limiting analysis only to the

latter. We observed here that edges representing synthetic-lethality

interactions behave as 2-vertex-cuts; it is not clear how best to

incorporate other types of epistatic genetic interactions into our

model. To extend this work to aid in the reconstruction of

complete functional pathways – and not just fault-tolerant sub-

mechanisms – we will also have to find ways to use evidence from

purely physical interactions, so that all genes involved in each

pathway can be placed back into pathways reconstructed solely

from genetic interactions.

Methods

Data
We downloaded the genetic and protein-protein gene interac-

tion networks used by Kelley and Ideker from their website [29].

We refer to this network as G. Our newer network G9 was

constructed from the BioGRID release 2.0.33 of Oct. 1, 2007. The

SL network used to construct G9 consisted simply of all SL

interactions recorded for S. cerevisiae, along with all genes which

participated in such interactions. The physical protein-protein

interaction network used to validate BPMs from both genetic

networks was also taken from this BioGRID release, and consisted

of all interactions labeled as ‘‘Affinity Capture,’’ ‘‘Affinity

Chromatography,’’ ‘‘Affinity Precipitation,’’ ‘‘Chip On-Chip,’’

‘‘Co-Crystal Structure,’’ ‘‘Co-Purification,’’ ‘‘Phosphorylation

Array,’’ ‘‘Purified Complex,’’ ‘‘Two-Hybrid,’’ ‘‘Protein-RNA,’’

Table 5. The top 25 dually-enriched BPMs with respect to
synthetic-lethality edge distribution.

BPM ID In pathway 1
Between
pathways In pathway 2 p

1336 8/2743 340/609 9/59 1.446102271

1322 8/3696 317/889 4/45 1.936102230

515 13/5203 390/1528 21/117 3.826102226

1222 8/4551 354/1254 17/102 2.566102221

247 4/2108 207/298 0/15 4.856102220

984 6/2576 225/372 5/21 5.166102220

431 16/5049 347/1241 22/93 1.346102216

624 23/54 265/598 9/3600 2.236102211

723 5/2300 212/353 0/21 1.216102209

121 8/4285 362/1407 15/78 4.186102205

1426 17/3748 332/1066 23/153 6.956102192

642 3/2520 234/550 0/28 9.796102192

854 18/4432 358/1253 43/209 1.046102191

1133 19/4418 364/1282 43/195 3.336102191

672 12/5013 397/1830 34/232 5.166102191

151 18/4316 358/1238 43/195 5.706102190

588 29/4354 389/1394 40/206 2.066102189

926 11/3747 302/1013 15/99 1.536102187

379 20/4671 381/1435 51/216 3.796102187

1096 22/4205 382/1378 40/192 4.536102187

831 10/3604 279/919 7/75 1.596102186

789 17/4060 348/1214 33/169 1.606102186

978 17/4173 355/1227 43/195 5.676102186

1324 6/2284 225/425 11/35 7.696102186

692 26/4543 387/1422 51/216 6.706102185

‘‘In pathway 1’’ represents the fraction of pairs of genes in the first pathway of
the BPM which are known to have been tested for synthetic lethality, which
actually exhibited an SL relationship. Likewise, ‘‘Between pathways’’ and ‘‘In
pathway 2’’ list the observed number of SL interactions over the number of
known tested pairs between the two pathways and within the second pathway,
respectively. The last column lists the probability of observing by chance the
bias of SL edges in the BPM in favor of appearing between rather than within
pathways if edges were placed independently at random between all known
tested pairs.
doi:10.1371/journal.pone.0005364.t005
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‘‘Protein-Peptide,’’ or ‘‘Reconstituted Complex.’’ Essential genes

were filtered out before any processing took place; we retrieved a

list of these genes from Stanford’s ‘‘Saccharomyces Genome Deletion

Project’’ website [30].

Algorithm
We define the yeast SL graph G to have a vertex (node)

corresponding to each gene/protein-product pair known to

participate in at least one synthetic-lethality interaction, and an

edge representing each such interaction. Let G have n vertices and

E edges.

Given any bipartition (A,B) of G (that is, given any division of the

nodes of G into two disjoint subsets A and B), let c denote the

number of edges with one endpoint in A and one in B. For any

vertex vMA, define two new sets A9 and B9 to be A2{v} and B<{v},

respectively. (Similarly, for vMB, define B9 to be B2{v} and A9 to

be A<{v}.) We say that the bipartition (A,B) is maximal in G if the

number of edges of G with one endpoint in A9 and one in B9 is at

most c: in other words, moving a single vertex from A to B or vice

versa cannot increase the number of edges that cross the cut

between A and B.

In any partition (A,B) of the vertices of G, call a vertex happy if it

has at least as many edges to vertices in the other partition as it

does to vertices in its own partition, and unhappy otherwise. (The

term ‘‘happy partition’’ was first used in [31].) The following

procedure Flip generates a maximal bipartition of G; it is based

on a classical result of Lovász [13].

1. Place each vertex of G into A or B uniformly at random.

2. While there exists at least one unhappy vertex in G:

(a) Choose a random unhappy vertex v.

(b) Switch its side (from A to B or from B to A).

3. Output the resulting sets A and B.

Theorem. Procedure Flip goes through its while loop at

most E times, and results in a maximal bipartition of G.

Proof. Call an edge crossing if it has one endpoint in A and one

endpoint in B. Each pass through the loop takes an unhappy

vertex and makes it happy. This flip can have the side effect of

causing previously happy vertices, which are neighbors of the

flipped vertex, to become unhappy, leading to any given vertex

potentially becoming happy and unhappy multiple times

throughout the course of the algorithm. Every time the while

loop is executed, however, the number of crossing edges increases by at

least one, and there are E edges, so the loop terminates in at most E

iterations. At termination, all vertices must be happy. Therefore,

for each node, at least as many of its edges cross the partition as

stay within a side of the partition. Thus, globally, there are at least

as many edges that cross the partition as stay within a side of the

partition. QED.

Running Flip several times may generate different maximal

bipartitions, because of the random choices in initializing vertices

to partitions, and also because of the random choices of which

unhappy node to switch to happy at each iteration of the while

loop. Notice that if we have a true example of the two-redundant-

pathway BPM motif, there will be a large bipartite or nearly-

bipartite subgraph contained in G whose SL edges are likely to

cross the partition in ‘‘most’’ of the maximal bipartitions of G

(because we get a large crossing gain for having the correct edges

Figure 4. Tripartite pathway redundancy. This is a modified reproduction of structure C in Figure 5 in [34]. This structure is tripartite, with three
interacting complexes. Our BPM 541 contains all but two of the genes involved in all three complexes (the two that are missing were not present in
our synthetic-lethality data to begin with). BPM 541 correctly separates the complex on the left (yellow nodes are in pathway 1 of BPM 541) from the
other two (violet nodes are in pathway 2 of BPM 541), but because our search is limited to bipartite structure, our algorithm grouped both the
complex on the bottom and the one on the right together into a single ‘‘pathway,’’ basing this decision on the fact that there are more SL
interactions observed between the bottom complex and the one on the left than were observed between the bottom complex and the one on the
right.
doi:10.1371/journal.pone.0005364.g004
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cross the partition). On the other hand, genes outside a BPM

motif, who have close to a balanced number of SL edges to both

pathways of a BPM motif, may appear as often on the A side as on

the B side. So it seems desirable to prune out from a candidate

BPM motif genes which frequently switch sides across different runs of

the Flip algorithm: this motivates the following definition.

Definition 1 Given a gene v in G, run Flip M times on G. Label each

gene with the number of times it appears on the same side as v in one of the

M maximal bipartitions generated in this way, as well as with the number of

times it appears on the opposite side from v. If gene w appears consistently

(at least C% of the time) in the same partition as v, or consistently in the

opposite partition from v, then w is included in the stable (bipartite)
subgraph of v; otherwise w is not included. The stable bipartite subgraph

of v in G, then, is the subgraph induced by all included vertices, where v along

with the vertices appearing consistently on the same side as v form one partition,

and the rest of the included vertices form the other.

Here M and C, the repetition threshold and the consistency

threshold, respectively, are settable parameters of our method. All

experiments in this paper used values of 250 and 70%,

respectively, because these values of M and C generated the same

or very similar stable bipartite subgraphs for each node v, across

different runs of the randomized algorithm (see [32] for discussion

of how these parameters were discovered and tuned). Thus we

refer to ‘‘the’’ stable bipartite subgraph for v produced by this

algorithm rather than ‘‘a’’ stable bipartite subgraph of v.

GO enrichment calculations
Each BPM consisted of two sets of nodes (genes), representing

two putative functional pathways exhibiting a redundant-backup

relationship. We ran each pathway through FuncAssociate [16]

(run with all default values, including for multiple testing

correction, except with the significance threshold lowered from

.05 to .01) to determine whether or not it was enriched for one or

more GO terms. We also used the GOstat program [33] to

calculate enrichment (using an FDR multiple testing correction)

and results were quite similar; we report only FuncAssociate

enrichment values because they are slightly more statistically

conservative.

When running FuncAssociate on a particular pathway, we used

the set of nodes in that pathway’s source network (i.e., the

BioGRID network or the Kelley-Ideker network) as a background set

against which enrichment calculations were to be made, as a

control against sampling biases in the networks themselves. GO

enrichment was only counted for terms of depth at least 3 in the

GO hierarchy (because enrichment for ‘‘biological_process,’’ for

example – a top-level GO annotation term – is essentially

meaningless for our purposes). We set the maximal p-value of the

enrichment output to be 0.01; FuncAssociate uses a conservative

familywise algorithm to correct against multiple testing errors.

p-values for physical and new-SL edge distributions
within BPMs

Given a BPM X = (A,B), constructed solely from SL edges, we

wanted to overlay known PIs on top of X (say there were pX such

interactions, with pA PIs between nodes in A, pB PIs between

nodes in B, and pAB PIs with one endpoint in A and the other in B),

and determine the probability that the observed bias of these PIs to

appear within rather than between gene-sets A and B was due to

random chance. To do this, we computed the probability, given a

graph G with node set V~ V1,V2ð Þ where V1j j~ Aj j, V2j j~ Bj j
and n~ V1j jz V2j j, that we would see at most pAB edges crossing

between sets V1 and V2, given an edge set E where Ej j~pX , where

edges in E were placed independently and uniformly at random

between pairs of nodes. The formula for this is
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Similarly but conversely, given a BPM X = (A,B) derived from G

(the original Kelley-Ideker network) and a set of SLX new SL

edges appearing between pairs of nodes in X, to determine the

probability that the observed bias of these new SL edges to appear

between A and B rather than remaining within either A or B was due

to random chance, the formula becomes
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Clustering: BPM redundancy
We used a straightforward clustering scheme to marginally

reduce redundancy in the BPMs generated by our method:

specifically, if two genes generated identical stable bipartite

subgraphs, we merged the two and reported them as a single

BPM. We note that this extremely conservative clustering method

certainly results in some redundancy in reporting; there was no

obviously justifiable place to set an ‘‘overlap threshold’’ (i.e., BPMs

which overlap by $X%, or by $X genes, are considered ‘‘the

same BPM,’’ while BPMs overlapping by ,X% are ‘‘different

BPMs’’). For example, on the BioGRID network, when the

overlap threshold was lowered in increments of 10% from 100%

down to 10%, the number of clusters (putatively unique BPMs)

generated at each threshold level were: 1,510 (100% – the

threshold we report – which contains some redundancy but

definitely does not merge unrelated BPMs), 867 (90%), 555 (80%),

299 (70%), 163 (60%), 84 (50%), 65 (40%), 56 (30%), 53 (20%)

and 52 (10%). In the absence of a clear cutoff point, we decided

only to cluster two stable subgraphs into a single BPM if they were

exactly identical. We note further, however, that the number of SL

edges covered by our total BPM set, as reported in Table 1,

contains no redundancy: 4,949 distinct SL interactions were

covered by our BPMs.
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