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Abstract

Background: Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The
transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic
conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative
capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage
responses and cell cycle regulation.

Methodology/Principal Findings: We have generated conditional knockout mice to obtain NFAT5 '~ T lymphocytes,
which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered
an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of
cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an
osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and
displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5 /~ cells failed to induce
osmoprotective genes and exhibited poorer viability. Although surviving NFAT5 /" cells downregulated genotoxic stress
markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2
and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of
osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in
fresh NFAT5 /" lymphocytes.

Conclusions/Significance: We conclude that NFATS5 facilitates cell proliferation under hypertonic conditions by inducing an
osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.
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Introduction

Hypertonic stress occurs in cells exposed to elevated extracel-
lular tonicity, which causes the uptake of Na* and other ions as a
rapid response mechanism to maintain cell volume. Since the
resulting increase in intracellular ionic strength is harmful for the
function of cellular components, cells synthesize chaperones, such
as Hsp70, as well as enzymes and transporters whose collective
function is to increase the intracellular concentration of compat-
ible organic osmolytes to normalize the ionic strength of the
intracellular fluid [1,2]. Hypertonicity can be harmful for cells, as
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it can induce double-strand DNA breaks, interfere with DNA
repair, exacerbate the effect of genotoxic agents such as UV and
lonizing radiation, inhibit proliferation and induce apoptosis
(reviewed in [2]). In this regard, studies in immortalized renal
medullary cells and other cell lines have shown that hypertonic
stress can activate proteins involved in DNA damage sensing and
checkpoint activation, such as Nbsl [3], ATM, p33, Chk2 [3,4],
and GADD45 [5].

The transcription factor NFAT5/TonEBP is a major activator
of the expression of osmoprotective gene products in mammalian
cells. This protein belongs to the Rel family, which also comprises
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NF-kB and the calcineurin-dependent NFATc proteins [6-8].
NFATS is activated by hypertonic stress, by mechanisms involving
DNA-damage responsive and stress-activated kinases such as
ATM [9], DNA-PKc [10] and p38 [11,12]. NFAT5-regulated
osmoprotective gene products include, among others, the
chaperones Hsp70 [13] and Hspa4l/Osp94 [14], and enzymes
and transporters that increase the intracellular concentration of
compatible osmolytes, such as aldose reductase (AR), the Na*/
Cl" -coupled betaine/y-aminobutyric acid transporter (BGT1), the
Na*/myo-inositol cotransporter (SMIT) [6], the Na* and CI -
dependent taurine transporter (TauT) [15], the UT-A urea
transporter [16,17], and the sodium-dependent neutral aminoacid
transporter (ATA2, SNAT2) [18].

It has been found that a wide variety of mammalian cell types
have the ability to respond and adapt to hypertonic conditions.
Overall, NFAT5 has been shown to be functional in response to
hypertonicity in cell types as diverse as renal medullary cells [19—
21], embryonic fibroblasts [20], neurons [22], lymphocytes
[18,23,24], macrophages [25], myoblasts [26] and cardiomyocytes
[27]. The mmportance of NFAT5 for the adaptive response of
primary cells to osmotic stress has been addressed in mouse models
of NFAT) deficiency. Our previous work showed that NFAT5-
null mice suffered severe atrophy and cellular loss in the renal
medulla due to deficient expression of the osmoprotective gene
products aldose reductase, BGT1 and SMIT [20]. Another study
showed that overexpression of a dominant negative NFATS
transgene in kidney collecting tubules impaired the expression of
UT-A and aquaporin 2 and also caused atrophy of the renal
medulla [19]. The same group later reported that expression of
this dominant negative in non-proliferating, terminally differenti-
ated eye lens fiber cells caused apoptosis and accumulation of the
DNA damage markers p53 and phospho-Chk2 [28]. Besides these
models, the Ho laboratory showed that impairment of NFAT5
function in T cells caused a decrease in their viability and
proliferative capacity under hypertonic stress [18,24].

The study of the role of NFATY) in specific types of primary cells
has been hindered by the severe phenotype of NFAT5-deficient mice,
since only a small proportion survive after birth, and those that do
manifest pronounced renal atrophy and growth defects [20]. To
circumvent these problems, we generated NFAT5™H* mice
which could be used to inactivate NFAT) in a tissue-specific manner.
We have crossed the NFAT5™ ™ mice to CD4-Cre animals to
obtain mice with a selective deletion of NFAT5 in mature T cells, and
analyzed the role of this factor in the hypertonic stress response and
cell cycle regulation in T lymphocytes. We have used lymphocytes as
a model of non-transformed, proliferating cells since previous work by
us and others has shown that they regulate NFATS comparably to
other cell types [18,23-25]. Our results show that hypertonicity
elicited an early, NFAT5-independent, genotoxic stress response and
cell cycle arrest in proliferating lymphocytes, which was followed by
an NFAT5-dependent phase in which cells induced osmoprotective
gene products, downregulated genotoxic stress markers and reacti-
vated the cell cycle. Lack of NFAT5 did not substantially affect the
DNA damage-like response, but impaired the expression of
osmoprotective genes and caused cell cycle arrest associated with
defective expression of G1, S and G2 cyclins and aurora B kinase.

Results

1) Defective induction of osmoprotective genes and cell
cycle arrest in NFAT5 /T lymphocytes exposed to
hypertonicity

We were interested in analyzing how the deficiency of NFAT5
in proliferating cells affected hypertonicity-regulated processes
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such as the induction of genotoxic stress-like responses and the cell
cycle. Since NFAT5 deficiency impairs the survival and prolifer-
ation of T cells [18,24], and lymphocytes regulate NFATS
comparably to other cell types [23,25], we studied lymphocytes
as a model of non-transformed proliferating cells. To overcome
the severe viability problems encountered with NFAT5-null mice
[20,24], we generated conditional NFAT5-knockout mice which
lacked NFAT5 only in mature T cells (see Methods and
Supporting information Figs. S1 and S2 for a detailed description
of these mice). Mice lacking NFATS specifically in T cells had no
apparent defects compared to wild-type animals in terms of
viability and development and, in contrast to previous models of
NFATS5 deficiency [18,24], had normal numbers and proportions
of T cells i vivo (Fig. S2).

We analyzed the induction of osmoprotective gene products
in response to hypertonicity in proliferating T' cells obtained by
culturing splenocytes with the mitogen concanavalin A plus IL-2
during 72 hours. Cells were then cultured during 8 or 24
additional hours in either isotonic medium (300 mOsm/kg), or
subjected to hypertonic conditions (500 mOsm/kg). Hyperto-
nicity induced, in an NFAT5-dependent manner, the expression
of Hsp70.1, the Na'/myo-inositol cotransporter (SMIT),
the sodium-dependent neutral aminoacid transporter 2
(SNAT?2), and the Na* and Cl -dependent taurine transporter
(TauT) (Fig. 1A). Of these, Hsp70.1 was induced the earliest
and was downregulated by 24 hours, while SMIT and SNAT2
showed sustained expression at 8 and 24 hours, and TauT
was expressed at later times (24 hours). These results showed
that NFAT5 activated an osmoprotective program in T cells
that included gene products known to be induced by hyperto-
nicity in other cells, indicating that different cell types utilize
similar NFAT5-regulated mechanisms to respond to osmotic
stress.

In parallel experiments, we observed that NFAT5 ™~ T cells
exposed to hypertonicity during 24 hours exhibited poorer
viability (56%) than wild-type cells (70%) (Fig. 1B), and those
surviving displayed cell cycle defects, with cultures having a lower
proportion of cells in S, and a greater accumulation in G1 and
G2/M (Fig. 1C). The decrease in BrdU uptake in NFAT5 ™/~
cells indicated defective DNA replication, which was in
agreement with results by Go et al. showing reduced 3H-Thy
incorporation in NFAT5-deficient lymphocytes under osmotic
stress [24]. We observed that cell cycle defects in NFAT5 ™/~ T
cells were more evident at later times (24 hours) than in the first
8 hours, in which both wild-type and NFAT5 ™"~ T cells showed
a comparably mild viability loss and a similarly pronounced cell
cycle arrest with enhanced accumulation in S and G2/M relative
to GO/G1 (Fig. S3). Both wild-type and NFAT5 /™ cells had the
same viability and cell cycle profile in isotonic conditions (Fig. 1B,
1C and S3), indicating that lack of NFAT) did not affect the
expansion and proliferative capacity of T cells in the absence of
hypertonic stress. Altogether, these results indicated that
hypertonicity triggered a rapid cell cycle arrest in both wild-type
and NFAT5/" T cells, but while the former induced
osmoprotective gene products and resumed proliferation with
only a moderate viability loss, NFAT5 /" cells had poorer
viability, and those surviving exhibited cell cycle defects. At this
point, we explored two potential scenarios to address the causes
underlying the cell cycle arrest of NFAT5 ™/~ cells: one, we asked
whether these cells displayed enhanced markers of genotoxic
stress; and two, we analyzed how hypertonicity affected the
expression of cell cycle regulators in wild-type and NFAT5 ™/~
lymphocytes.
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Figure 1. Induction of osmoprotective gene products, viability and cell cycle in proliferating NFAT5 '~ lymphocytes under
hypertonic stress. A) RNA was isolated from NFAT5"* and NFAT5 /" proliferating T cells that were either maintained in isotonic conditions
(300 mOsm/kg) or switched to hypertonic medium (500 mOsm/kg) for 8 and 24 hours. Relative mRNA abundance for each gene was determined by
RT-gPCR and values were normalized to their respective L32 mRNA levels (bars are mean=SEM of four independent experiments). B) Percentage of
viable cells in cultures of NFAT5™* and NFAT5 /™ proliferating T cells after 8 or 24 hours in isotonic (300 mOsm/kg) or hypertonic conditions
(500 mOsm/kg). Bars represent the mean*=SEM of five independent experiments, (*=p<0.05). C) Proliferating lymphocytes growing in isotonic
medium or switched to hypertonic medium during 24 hours were pulsed with BrdU during the last 30 minutes of culture, then fixed and analyzed by
flow cytometry. The upper panel depicts one representative experiment showing BrdU incorporation plotted against DNA content, and the lower
panel represents the results (mean+SEM) from three independent experiments (* =p<0.05).

doi:10.1371/journal.pone.0005245.g001

2) Induction of p53 and markers of genotoxic stress in carly after exposure to hypertonicity (4-6 hours). This response
hypertonicity-treated NFAT5 ™/~ cells was downregulated in wild-type cells by 8 hours, but persisted in
&76 analyzed the induction of stress markers associated with NFAT5 /" cells up to at least 10 hours, although eventually it

DNA damage responses. As shown in Fig. 2A, both NFAT5** subsided by 24 hours, and only a small proportion (~7%) of live
and NFAT5 /" cells displayed a comparable activation of p53 NFAT5 /" cells had phospho-Serl5-p53 after 24 hours, as
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Figure 2. Induction of p53, p21 and GADD45 in proliferating NFAT5 '~ lymphocytes exposed to hypertonic stress. A) Western blot
shows the time course of p53-Ser15 phosphorylation, accumulation of total p53 and induction of p21 in NFAT5"* and NFAT5 /™ cells in response to
hypertonicity. The experiment shown is representative of three independently performed (see Fig. S4). B) RNA was isolated from NFAT5"* and
NFAT5 /"~ proliferating T cells that were either maintained in isotonic conditions (300 mOsm/kg) or switched to hypertonic medium (500 mOsm/kg)
for 8 and 24 hours. Relative mRNA abundance for each GADDA45 isoform was determined by RT-qPCR and values were normalized to their respective
L32 mRNA levels (bars are mean=SEM of four independent experiments).

doi:10.1371/journal.pone.0005245.9g002

detected by intracellular staining (Fig. S4A). Consistent with the
activation of p53, p21 was rapidly upregulated in response to
hypertonic stress in both wild-type and NFAT5 ™/~ cells (Fig. 2A
and S4B). Of note, although induction of p53 preceded the
increase in NFAT) expression, this was p53-independent, whereas
induction of p2l required p53 (Fig. S4C). Despite the more
prolonged induction of p53 in NFAT5~ lymphocytes, these cells
did not accumulate greater amounts of the p53 targets p21 and
GADD450 and B (Fig. 2 and Fig. S4). GADD45Yy was comparably
downregulated by osmotic stress in both cell types (Fig. 2B). These
results showed that induction of at least some p53-dependent cell
cycle repressors in response to hypertonicity was very similar in
wild-type and NFAT5-deficient cells, suggesting that the persistent
cell cycle arrest observed in the latter might not depend on p53.
We next assessed whether NFAT5 ™/~ cells had a greater extent
of DNA damage than wild-type cells under hypertonic conditions.
Detection of YH2AX, a sensitive marker of double strand DNA
breaks, showed only a moderately higher proportion of YH2AX"
cells in NFAT5 ™/~ cultures (11.6%) than in wild-type ones (5.2%)
after 24 hours of stress (Fig. 3A). Also, a small fraction (<5%) of
NFAT5 " cells were undergoing apoptosis, as shown by
annexin-V staining (Fig. 3B). These results indicated that the
population of NFAT5 ™’ cells gated as alive contained a very low
percentage of cells exhibiting markers of either enhanced
genotoxic stress or apoptosis. Consistent with this result, analysis
of DNA breaks by alkaline comet assay did not reveal a greater
extent of DNA damage in live NFAT5 /™ cells than in wild-type
ones (Fig. 3C). In addition, NFAT5-deficient lymphocytes that did
not have phosphorylated H2AX still exhibited features of cell cycle
arrest (fewer cells in S phase and accumulation in G2/M) (Fig. 3D).
Altogether, these results suggested that the cell cycle arrest of
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NFAT5 /™ cells exposed to hypertonicity was not associated with
a generalized genotoxic stress response.

3) Defective expression of cyclins in hypertonicity-treated
NFAT5 /" cells

We analyzed the expression of several cyclins relevant for cell
cycle progression. A short exposure to hypertonic stress (8 hours)
had similar effects on the expression of different cyclins in wild-
type and NFAT5 ™~ lymphocytes: cyclin D3 was downregulated
in both cell types in six out of six independent experiments, cyclin
El in two out of five, and cyclin Bl in three out of seven
independent cultures tested for each wild-type and NFAT5 ™/~ T
cells, whereas cyclin A2 was not affected in the majority of
experiments (Fig. 4A and S5). However, after 24 hours in
hypertonic medium, wild-type and NFAT5 /" cells displayed
distinct differences. Whereas wild-type lymphocytes maintained
the expression of cyclins E1, A2 and B, NFAT5™ /" cells had
substantially reduced levels of these cyclins (Fig. 4A and Fig. S5),
though they were able to express cyclin D3. We analyzed whether
downregulation of cyclins was associated with a decrease in their
mRNA levels (Fig. 4B). The amount of mRNA for cyclins A2 and
B1 was substantially decreased (by 60-70%) in both wild-type and
NFAT5 ™ lymphocytes after 8 hours of hypertonicity treatment.
By 24 hours, wild-type lymphocytes had recovered similar cyclin
mRNA levels as those of cells grown in isotonic medium, whereas
NFAT5 /" cells did not. With regard to cyclin El, its protein
levels were much more reduced than its mRNA abundance in
NFAT5 " cells, suggesting that its downregulation might involve
defective protein synthesis and/or enhanced degradation. We next
analyzed whether the lack of NFA'T5 affected the activity of cyclin
A2 and Bl promoters. Jurkat T cells were transfected with
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Figure 3. Analysis of DNA damage markers in proliferating NFAT5 '~ lymphocytes exposed to hypertonic stress. A) Dot plots
representing YH2AX (H2AX phosphorylated in Ser 139) and DNA content in live NFAT5"* and NFAT5 /™ lymphocytes after 24 hours in isotonic or
hypertonic conditions. Bars on the right represent the percentage of YH2AX" cells after 24 hours in isotonic or hypertonic medium (values are the
mean*SEM of seven independent experiments; * = p<0.05). B) T cells grown in isotonic or hypertonic conditions during 24 hours were stained with
the DNA dye Hoechst 33342 and annexin-V-Fluos, and analyzed by flow cytometry. The experiment shown is representative of three independently
performed. C) Single-cell alkaline gel electrophoresis assay (comet assay) done on the population of live cells isolated from cultures of NFAT5 ™/~ and
wild-type cells after 6 or 24 hours in isotonic or hypertonic conditions. Etoposide-treated wild-type cells are included as a positive control. The
experiment shown is representative of three independently performed. D) Cell cycle distribution of viable, YH2AX-negative cells after 24 hours in

hypertonic medium (representative of seven independent experiments).

doi:10.1371/journal.pone.0005245.9g003

NFATS-specific shRNAs and reporter constructs driven by cyclin
promoters, and then cultured in isotonic or hypertonic conditions
during 8 or 24 hours. Since the activity of at least the cyclin A2
promoter is regulated by NFATI/NFATc2 [29], we first
confirmed that the NFAT5 shRNAs inhibited only this factor,
and not NFATc proteins. We tested both shRNAs with the same
reporter, 9 XNFAT-Luc, which can be activated independently by
NFATS) in response to hypertonic stress, or by the calcineurin-
dependent NFATc proteins in response to PMA and ionomycin
[25] (Fig. 4C). With regard to the cyclin A2 and Bl promoters,
suppression of NFAT5 did not have a substantial effect on their
activity after 8 and 24 hours of hypertonic stress (Fig. 4C).
Although one of the shRNAs (shN5-1) slightly increased the
activity of the cyclin A2 promoter after 24 hours in isotonic
conditions, this effect was likely non-specific, since it was not
observed with another shRNA (shN5-3) that was comparably
effective in inhibiting NFAT5. On the other hand, overexpression
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of NFAT)5 enhanced the activity of the control 9xNFAT-Luc
reporter during both short (8 hours) and longer (24 hours)
hypertonicity treatments, and did not affect the cyclin Bl
promoter (Fig. 4D). We observed that overexpressed NFAT)
caused a transient increase in the activity of the cyclin A2
promoter at 8 hours (Fig. 4D). However, since this effect was
moderate, occurred in both isotonic and hypertonic conditions,
and we had not observed a decrease in cyclin A2 promoter activity
upon suppessing NFAT)S (Fig. 4C), it is unclear whether it reflected
a meaningful function of NFATS5. Altogether, these results
suggested that NFAT5 was not required for the activity of cyclins
A2 and Bl promoters under hypertonic stress.

4) Regulation of NFAT5 throughout the cell cycle

Since lack of NFAT) caused defective cell cycle regulation in
lymphocytes exposed to hypertonic stress, we wondered whether
the activity of this factor varied in specific phases of the cell cycle.
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Figure 4. Expression of cyclins in proliferating NFAT5 '~ T cells upon exposure to hypertonic conditions. A) Expression of cyclins D3,
E1, A2 and B1 was analyzed by Western blot in lysates of proliferating NFAT5"* and NFAT5 /™ T cells after 8 and 24 hours of hypertonicity treatment.
Pyruvate kinase (PyrK) is shown as protein loading control. The result is representative of at least four independent experiments (see Fig. S5). B)
mRNA abundance of cyclins was analyzed by RT-qPCR in proliferating NFAT5"* and NFAT5 /™ T cells subjected to hypertonicity for 8 and 24 hours.
Values were normalized to L32 mRNA levels in each respective sample (bars are the mean=SEM of four independent experiments; *=p<0.05;
n.s.=not statistically significant). C) Effect of inhibiting NFAT5 on the activity of cyclin A2 and cyclin B1 promoters. Jurkat T cells cotransfected with
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PMA plus ionomycin. The right panel shows the effect of shRNAs on the activity of cyclin A2 and B1 promoter constructs after 8 and 24 hours in
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@ PLoS ONE | www.plosone.org 6 April 2009 | Volume 4 | Issue 4 | e5245



Cell Cycle Regulation by NFAT5

independent experiments. D) Jurkat cells cotransfected with reporter constructs and either empty vector (CMV-HA) or an NFAT5-expressing vector
were left untreated or subjected to hypertonicity during 8 or 24 hours. Luciferase activity was normalized to that of the pTK-Renilla reporter. Graphs

show the mean=SD of three independent experiments.
doi:10.1371/journal.pone.0005245.9g004

In order to measure the expression and activity of NFAT5
simultaneously, we used transgenic T cells with an integrated
NFAT5-responsive reporter, 9 xNFAT-Luc [25]. T cells prolifer-
ating under isotonic or hypertonic conditions were labeled with
the DNA dye Hoechst 33342, and sorted by cell cycle phase. We
observed that the expression of NFAT5 was already higher in S
and G2/M in isotonic conditions, and increased considerably
under osmotic stress, with a pronounced accumulation in both
phases (Fig. 5A). With regard to its activity, we observed that after
8 hours of hypertonic stress, with the cell cycle still arrested,
NFATS) was active in all phases but had greater activity in G2/M.
By 24 hours, when cells had resumed proliferation, NFAT5
activity increased substantially with respect to 8 hours and was
highest in S and G2/M, which were the phases more severely
affected by hypertonicity in NFAT5 ™ cells (Fig. 5B).

5) Defective induction of cell cycle regulators in response
to T cell receptor stimulation in NFAT5/~ lymphocytes
exposed to pathologic hypertonicity

In the experiments shown above, proliferating lymphocytes
were exposed to hypertonic conditions of 500 mOsm/kg, which
have been routinely utilized throughout the literature to analyze
NFAT5-dependent responses in diverse cell types. However,
switching cell cultures from an isotonic medium at 300 mOsm/
kg to 500 mOsm/kg constitutes a rather severe osmotic shock that
might not reflect pathophysiological situations. Dehydration [30],
as well as anisosmotic disorders described in patients [31-37], and
deficiency of osmoregulatory proteins such as vasopressin V2
receptor [38], or aquaporins 1 and 2, in mouse models [39,40],
have been reported to cause hypernatremia with plasma
osmolality values of 360430 mOsm/kg. These conditions would
expose different cell types, including lymphocytes, to a hypertonic
milieu.

We thus tested whether fresh NFAT5 /~ T cells exhibited
defects in the expression of different cell cycle regulators when
induced to proliferate in moderately hypertonic medium (380-
420 mOsm/kg). Induction of cyclins A2, Bl and aurora B kinase
by CD3/CD28 stimulation was more severely impaired in
NFAT5 /7 T cells at 420 mOsm/kg than in wild-type ones
(Figs. 6A and 6B). Cyclin E1, though, was comparably affected in
both cell types. We also observed that aurora B kinase, which has
been recently shown to regulate cell cycle progression in T cells
[41], was downregulated in hypertonicity-treated NFAT5 '~ T
cells (Figs. 6A and 6B). Similar results were obtained in cells
stimulated with concanavalin A and IL-2 (Fig. S6). In the same
experiments, NFAT5-deficient lymphocytes displayed a defective
osmoprotective response, with poor induction of Hsp70.1, aldose
reductase, SMIT, and SNAT?2 (Fig. 6C). Altogether, these results
showed that NFATS deficiency could impair the expression of
major cell cycle regulators in primary cells exposed to pathologic
hypertonic stress conditions. Finally, we assessed whether
sustained moderate hypertonic stress affected the proliferative
capacity of NFAT5-deficient lymphocytes. CFSE-labeled spleno-
cytes were stimulated with anti-CD3/CD28 antibodies and IL-2
during 3 days in isotonic (300 mOsm/kg) or hypertonic media
(420 mOsm/kg). In this assay, CFSE fluorescence decreases with
the number of cell divisions throughout the culture. Analysis of
CFSE fluorescence in viable T cells showed that both CD4 and
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CD8 NFAT5 ’~ lymphocytes proliferated comparably to wild-
type cells along a 3-day period of stimulation with anti CD3/
CD28 antibodies and IL-2 in isotonic conditions, but exhibited a
greater decrease In proliferative capacity upon exposure to
hypertonic stress (Fig. 6D). This result indicated that the early
defect in induction of cell cycle regulators in NFAT5™/~ T cells
under hypertonic stress was followed by an impaired proliferative
capacity at later time points.

Discussion

One of our main findings, not addressed in previous studies, has
been to draw a clear distinction between NFAT5-regulated and
NFAT5-independent events in the osmotic stress response of
proliferating mammalian cells. Our results show that this response
developed in two phases. The early phase was NFATS5-
independent and characterized by a sharp induction of p53 and
other genotoxic stress markers (p21, GADD45a and B), downreg-
ulation of cyclins mRINA, and acute cell cycle arrest in S and G2/
M. This initial response changed to an NFAT5-regulated adaptive
phase in wild-type cells, which induced osmoprotective gene
products such as Hsp70.1, SMIT, SNAT2 and TauT, resumed
cyclin expression, and reactivated the cell cycle. In contrast,
NFAT5 /™ cells showed poor induction of osmoprotective genes,
manifested an extended early stress phase with prolonged
accumulation of p53, and exhibited a greater viability loss than
wild-type cells by 24 hours. Surviving NFAT5 /" cells had
downregulated stress markers but displayed a reduced DNA
replication rate and defective cell cycle progression associated with
the inability to maintain the expression of cyclins that regulate G1
to G2/M progression. The finding that S and G2/M phases were
highly sensitive to hypertonic stress in NFAT5-deficient cells was
consistent with the observation that NFAT5 expression and
activity were enhanced in these phases in wild-type cells
proliferating under sustained hypertonic conditions.

We observed defective expression of osmoprotective gene
products and cell cycle regulators in actively proliferating
NFAT5 /" lymphocytes subjected to an osmotic shock of
500 mOsm/kg, as well as in fresh T cells that were induced to
proliferate in moderately hypertonic media (380-420 mOsm/kg),
in the range of osmolality levels described in plasma of dehydrated
animals [30], patients with hypernatremic disorders [31-37] and
mice deficient in osmoregulatory proteins [38—40]. Previous work
by others and us had shown that tonicity levels of 380-
420 mOsm/kg were sufficient to mobilize NFAT)5 in neurons
[42] and lymphocytes [25], and inhibited the proliferation of
NFAT5-deficient lymphocytes [24]. Our findings, together with
those by other authors, collectively indicate that the osmoprotec-
tive role NFA'T)5 is not limited to the renal medulla, but extends to
different cell types which might be exposed to hypertonic stress
under situations that affect the osmotic equilibrium of the
organism.

We also found that the number and proportion of T cells were
not altered i vivo in our conditional knockout mice (Fig. S2E). This
Is in contrast with previous findings from the Ho laboratory
showing that mice expressing a dominant negative NFATS
construct in thymocytes had reduced thymic cellularity and
decreased proportions of T cells in spleen [18]. Later work by
the same group showed a similar phenotype in mice in which one
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Figure 5. Expression and activity of NFAT5 throughout the cell cycle. A) Proliferating NFAT5™" T cells cultured during 24 hours in isotonic
(300 mOsm/kg) or hypertonic (500 mOsm/kg) conditions were labeled with Hoechst 33342 and sorted according to DNA content as GO/G1, S or G2/
M phase. Cell cycle histograms in the left panel show the efficiency of the sorting. Sorted cells were lysed and equal amounts of protein from each
lysate were analyzed by Western blot with anti-NFAT5 antibody. NFAT1 and anti-pyruvate kinase (PyrK) are shown as protein loading controls. The
result is representative of three independent experiments. B) Transgenic 9xNFAT-Luc T cells were labeled with Hoechst 33342 and sorted after 8 and
24 hours of exposure to hypertonicity. Sorted cells were split for Western blot and luciferase activity assays. A representative Western blot analysis
(upper panel) is shown of three independently performed. Pyruvate kinase (PyrK) is shown as protein loading control. 9 xNFAT-Luc reporter activity
normalized to endogenous LDH is shown in the lower panel. Results are the mean=SEM of three independent experiments.
doi:10.1371/journal.pone.0005245.g005

NFATS allele had been truncated and the expressed product was to osmotic stress  vitro. The reasons for the different i viwo T cell

suggested to act as an endogenous dominant negative [24].
Nonetheless, lymphocytes from our conditional knockout mice and
those described in [24] expanded normally in isotonic medium
and showed a comparable impairment of their proliferative
capacity when cultured under hypertonic conditions, indicating
that NFAT5-deficient T cells in these mouse models react similarly
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phenotypes between mouse models are unclear. Go et al,
proposed that the moderately hypertonic millieu (~330 mOsm/
kg) of the thymus and other lymphoid organs could impair the
development and function of NFAT5-deficient lymphocytes [24],
whereas our results indicate that these environments may not be
unfavorable for mature NFAT5 ™/~ T cells in vivo, and suggest that
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Figure 6. Effect of pathologic hypertonicity on the induction of cyclins and aurora B kinase in response to T cell receptor
stimulation in NFAT5 /™ T cells. A) Splenocytes were induced to proliferate with anti-CD3/CD28 antibodies plus IL-2 in isotonic or moderately
hypertonic medium. Cultures were harvested at the indicated time points and depleted of B cells. RNA was isolated and analyzed by RT-gPCR. All
values were normalized to each respective L32 mRNA level. Graphs represent the mRNA abundance of the indicated gene products in hypertonic
relative to isotonic conditions. Values correspond to the mean=SEM of three independent experiments (* =p<0.05; n.s. = not statistically significant).
B) T cells were cultured and purified as in A), and the expression of the indicated proteins was analyzed by Western blot in cell lysates. B-actin was
used as protein loading control. The experiment shown is representative of three independently performed (see also Fig. $6). C) T cells were
cultured and purified as in A), and the abundance of the indicated mRNAs was analyzed by RT-gPCR. All values were normalized to each respective
L32 mRNA level. A representative experiment of three independently performed is shown. D) Splenocytes labeled with CFSE were induced to
proliferate with anti-CD3/CD28 antibodies plus IL-2 in isotonic (300 mOsm/kg) or moderately hypertonic medium (420 mOsm/kg). CFSE fluorescence
in the CD4 and CD8 T cell subsets was analyzed by two-color flow cytometry in the population of live cells after 1, 2 and 3 days of culture. The
experiment is representative of three independently performed.

doi:10.1371/journal.pone.0005245.g006
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this factor might play a more important role during abnormal
hypertonic stress conditions. Another difference between these
mouse models is that T cells in our conditional knockout mice
were NFAT5-null, whereas thymocytes and T cells in the two
previous models coexpressed functional NFAT5 molecules togeth-
er with truncated dominant negative products, which might have
additional effects on T cell development. On the other hand, a
recent article described that mice with reduced expression of the
guanine nucleotide exchange factor Brx had substantially
decreased NFATS expression in spleen and renal medulla [43],
exhibited B cell defects and reduced splenocyte counts, but had
normal T cell proportions. These findings suggest that different
NFAT5-deficient mouse models could exhibit variable degrees of
immune dysfunction depending on whether NFATS is impaired
only in mature T cells or in other cell types.

Our results indicate that lack of NFAT) in cells exposed to
hypertonicity could lead to different outcomes, with a proportion
of the cells dying, probably as result of an enhanced genotoxic
stress response, whereas surviving cells did not exhibit conspicuous
symptoms of DNA damage but had a substantially reduced
expression of cyclins and aurora B kinase. Previous work had
shown that inhibition of NFAT) could cause symptoms of DNA
damage in non-proliferating cells [28], but until now it was not
known that the abundance of specific cell cycle regulators was
sensitive to hypertonicity and the lack of NFATS. Defective
expression of cyclins and aurora B kinase might underlie the cell
cycle defects of NFAT5 /" cells under hypertonic stress, since
cyclins A2 and Bl are needed for S and G2/M progression in
different cell types [44,45], and aurora B kinase is a positive
regulator of cell cycle progression through G1/S to M in T cells
[41]. Here it is important to notice that lack of NFAT) did not
shut down all processes, and for instance NFAT5-deficient cells
were able to reinduce cyclin D3 after its initial downregulation by
hypertonic stress. Our results also indicate that expression of these
cell cycle regulators was affected at different levels in NFAT5-
deficient cells, as loss of cyclins A2, Bl and aurora B kinase
correlated with a reduction in their mRNA abundance, whereas
the decrease in cyclin E1 did not appear to be solely attributable to
mRNA deficiency, and might be due to reduced protein stability
and/or synthesis rate. On the other hand, suppression or
overexpression of NFATS did not substantially affect the activity
of cyclins A2 and Bl promoters under hypertonic stress. Although
these results do not rule out that NFAT5 might have an effect on
other regulatory regions of cyclin genes, they suggest that it does
not control the activity of their promoters. In this regard, NFAT5
differs from the NFATc protein NFAT1/¢2, which can repress the
expression of cyclins E, A2 and Bl during T cell activation by
antigen [46]. At least for cyclin A2, this repression was mediated
by inhibition of the activity of its promoter by NFAT1/c2 [29]. In
view of these observations, we propose that lack of NFAT5 might
indirectly perturb the expression of cyclins and possibly other
genes in cells exposed to osmotic stress as result of the combined
deficiency in osmoprotective gene products, which are needed for
the adaptation to hypertonic conditions and are the primary
targets of NFAT5. This interpretation is consistent with the finding
that cells lacking the chaperones Hsp70 and Hspa4l/Osp94,
whose induction by hypertonicity is NFAT5-dependent, have
defects similar to those of NFAT5 /" cells: Hsp70-deficient
fibroblasts and renal medullary cells have reduced viability under
hypertonic conditions [47], and Hspa4l/Osp94-deficient mice
exhibited loss of renal medullary cells similarly to NFAT5-deficient
mice [20,48].

Here we have used primary lymphocytes as a cell model to
study the response of proliferating NFATS-deficient cells to
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pathologic hypertonic stress conditions. We have shown that
moderate osmotic stress induced an NFAT5-dependent osmopro-
tective gene expression program in T cells, and that lack of this
factor led to defects in the expression of several cyclins and aurora
B kinase. The feasibility of generating mice lacking NFATS in
specific cell lineages will be useful to determine the sensitivity of
other types of primary cells to pathophysiologic alterations of
tonicity, and to elucidate the role of this factor in different cellular
functions and processes.

Materials and Methods

Generation of NFAT5 conditional mice

A targeting vector was designed to flank exon 6 of the mouse
NFATS gene with two loxP sites (Fig. S1). A BamHI fragment of
the mouse NFAT) genomic locus isolated from a P1 clone was
used. A 3.3-kb ApaLI-Avrll fragment was used as 5’ homology
region, and a 4.8-kb EcoRI-Xbal fragment was used as 3’
homology region. One loxP site was introduced 5’ to exon 6, in the
1.8-kb AvrlI-EcoRI fragment. An fit site-flanked selection cassette,
with a neomycin resistance gene, the Flpe cDNA cloned under
control of the ACE promoter [49], and the second loxP site, was
inserted into an EcoRI site in the sixth intron of the NFAT) gene.
The targeting vector also contained a thymidine kinase gene was
used for negative selection of clones with random integration of the
targeting vector.

Bruce-4 embryonic stem (ES) cells [50] derived from C57BL/6
mice were transfected, cultured, and selected as previously
described [20]. Of 800 G418 (neomycin) and gancyclovir-resistant
colonies, 3 were identified as homologous recombinants with
cointegration of the second loxP site by Southern blot analysis of
BamHI-digested DNA, using a probe spanning the exon 5 as 5’
external probe (Fig. S1) and Neo as a 3’ probe. ES clones with the
appropriately targeted allele were injected into BALB/c blasto-
cysts to generate chimeric mice, which transmitted the targeted
allele to their progeny. All mice were maintained on a pure
C57BL/6 genetic background. The fit-flanked neomycin resis-
tance cassette was removed through intercrossing with FLPe-
deleter mice [51]. Mice lacking NFAT5 in T cells were obtained
after successive crosses of NFAT5™™* mice with CD4-Cre
transgenic mice, in which the Cre recombinase is under the
control of the mouse CD4 promoter/enhancer/silencer [52]. In
these mice, Cre is induced during the double positive stage of
thymocyte development after cells have rearranged the T cell
receptor. Mice were bred and maintained in specific pathogen-free
conditions, and animal handling was performed according to
institutional guidelines approved by the ethical committee (PRBB
Animal Care and Use Committee). The CD4-Cre transgenic
mouse strain [52] was obtained from the Jackson Laboratory (Bar
Harbor, ME).

9xNFAT-Luc mice and p53~/~ mice

9xNFAT-Luc mice (line 15.1) in FVB background were
previously described [25,53]. p53~/~ mice were obtained from
the Jackson Laboratory and have been previously described [54].

Lymphocytes

Primary mouse T cells were obtained from spleens of CD4-
Cre*/NFAT5" "% mice (hereafter abbreviated as NFAT5 /™),
littermate CD4-Cre” /NFAT5™ ™% mice (wild-type), 9xNFAT-
Luc mice, p53~"" and p53™* mice of 8-12 weeks of age. We
confirmed that NFAT5-expressing T cells derived from CD4-
Cre” /NFAT5"Y"'% or CD4-Cre*/NFAT5"* mice were indis-
tinguishable in their response to the stresses tested (not shown).
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Splenocytes were isolated by density gradient centrifugation with
Lymphoprep™ (Axis-Shield PoC AS, Oslo, Norway). Proliferat-
ing T cells were obtained by activating splenocytes (2.5 x10° cells/
ml) with 2.5 pg/ml concanavalin A (Cat. C-2010, SIGMA) plus
25 ng/ml recombinant human IL-2 (Proleukin; Chiron, formerly
Eurocetus. Amsterdam, The Netherlands) in culture medium
(Dulbecco’s Modified Eagle Medium DMEM, Gibco. Paisley,
UK), supplemented with 10% fetal bovine serum (Cat.
CH30160.03 Hyclone, Logan, UT, USA), non-essential amino
acids (Gibco), 2 mM L-glutamine (Gibco), 50 UM beta-mercap-
toethanol (Gibco), 1 mM sodium pyruvate (Gibco) and antibiotics
penicillin and streptomycin (Gibco). Splenocytes cultures grown in
this medium for 72 hours were then cleaned of dead cells and
debris by centrifugation on Lymphoprep™, washed and replated
in fresh medium supplemented with IL-2 for an additional
24 hours, after which both wild-type and NFAT5-conditional
knockout cultures had >95% CD3*, TCRB* T cells (not shown).
Before subjecting T cells to hypertonic conditions, dead cells and
debris in the cultures were again removed by centrifugation on a
Lymphoprep™ cushion. Then, T cells were adjusted to 0.5x10°
cells/ml in medium supplemented with 25 ng/ml IL-2, and
cultured under isotonic or hypertonic conditions as indicated in
the figure legends. Proliferating B cells were obtained by culturing
splenocytes (2x10° cells/ml) with 25 pg/ml of lipopolysaccharide
(LPS, Cat. L7261, SIGMA) during 7 days. For Figs. 6 and S6,
fresh splenocytes were induced to proliferate with hamster anti-
mouse CD3 (1 ug/10° T cells) plus hamster anti-mouse CD28
(1 ug/10° T cells) antibodies and seeded onto goat-anti hamster
IgG coated plates (0.6 pg/cm?), or stimulated with concanavalin A
and IL-2 as described above. Cells were either grown in isotonic or
moderately hypertonic media as indicated in figure legends. Before
lysing cells for protein and mRINA analysis, samples were depleted
of remaining B cells by incubation with sheep anti-mouse IgG
magnetic beads (Dynabeads Cat. 110.31. Dynal Biotech, Invitro-
gen. Paisley, UK).

Hypertonic stress

The osmolality of the culture medium was measured in a Fiske
ONE TEN osmometer (Fiske Associates. Norwood, MA, USA) or
with a VAPRO 5520 vapor pressure osmometer (Wescor. Logan,
UT, USA). Since the T cell medium with supplements had an
osmolality of 330 mOsm/kg, we adjusted it to an isotonic baseline
of 300 mOsm/kg by adding 10% sterile HoO (Milli-Q Biocel A10.
Millipore, Bedford, MA, USA). This medium was made
hypertonic by adding NaCl from a sterile 4 M stock solution.
Over an isotonic baseline of 300 mOsm/kg, addition of 40 mM
Na(l raised the osmolarity to 380 mOsm/kg, 60 mM NaCl to
420 mOsm/kg, and 100 mM NaCl to 500 mOsm/kg.

Antibodies

The anti-NFAT)5 polyclonal antibody (Cat. PA1-023) was from
Affinity Bioreagents (Golden, CO, USA) and recognizes a
carboxy-terminal epitope (DLLVSLONQGNNLTGSF). The
anti-NFAT5 polyclonal antibody recognizing the N-terminal
region of NFAT5 was previously described [7]. Rabbit polyclonal
anti-phospho-p53 (Ser15) (Cat. 9284), mouse monoclonal anti-p53
(Cat. 2524) and mouse monoclonal anti-cyclin D3 (Cat. 2936)
were from Cell Signaling Technology (Danvers, MA, USA); mouse
monoclonal anti-phospho-histone H2AX (Ser139, YH2AX) (Cat.
05-636) was purchased from Upstate Technologies (Lake Placid,
NY, USA); mouse monoclonal anti-BrdU antibody (Cat. 555627)
was purchased from BD Pharmingen (San Diego, CA, USA). The
anti-NFAT1 antibody (anti-NFAT1-C) has been described [55].
Anti-CD3-PE (Cat. 553064), anti-Thyl.2-PE (Cat. 553090) and
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anti-B220-PE (Cat. 553006) were from BD Biosciences. Anti-
cyclin A2 (Cat. sc-751), anti-cyclin B1 (Cat. sc-245), anti-cyclin E1
(Cat. sc-481) and anti p21 (Cat. sc-397) were from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Anti-aurora B kinase (Cat.
ab2254) was from Abcam (Cambridge, UK). Hamster anti-mouse
CD3 (Cat. 553058) and hamster anti-mouse CD28 (Cat. 553295)
were from BD Biosciences; goat anti-hamster IgG (Cat. 55397)
was from MP Biomedicals (Illkirch, France). Goat anti-pyruvate
kinase (AB1235) was purchased from Chemicon (Hampshire, UK).
Anti-B-actin (Cat. A5441) was from SIGMA (Steinheim, Ger-
many). FITC-labeled anti-mouse IgG (Cat. FO313), FITC-labeled
anti-rabbit IgG (Cat. F0054), and HRP-labeled anti-goat IgG
(Cat. P010.60) were from DAKO (Glostrup, Denmark). HRP-
labeled anti-mouse IgG (Cat. NA931V), and HRP-labeled ant-
rabbit IgG (Cat. NA934V) were from Amersham (Buckingham-
shire, UK).

Surface marker analysis

2x10° cells were blocked for 20 minutes in 1x PBS containing
3% fetal calf serum (FCS), 0.1% sodium azide, and anti-Fcy
receptor antibody (1 pg/10° cells) (BD Biosciences, Cat. 553142).
Cells were then incubated with surface marker-specific antibodies
in the same solution (1 ug/10° cells) and analyzed with a
FACScan flow cytometer (BD Biosciences) and Cellquest software.

Viability, apoptosis, and cell cycle analysis

Flow cytometry was done with a BD LSR flow cytometer (BD
Biosciences). For viability and cell cycle analysis, cells were labeled
during the last hour of culture with the DNA dye Hoechst 33342
(SIGMA) (5 pg/ml, 60 minutes in incubator at 37°C with 5%
COy). For the determination of apoptosis, cells were first labeled
with Hoechst 33342 and then stained with annexin-V Fluos
(Roche. Manheim, Germany) during 30 minutes on ice. Viability
was determined by flow cytometry analysis of forward and side
scatter parameters (FSC/SSC) together with DNA content. Non-
viable cells had a DNA content <2N and were readily identified
by their distinct position in the FSC/SSC plots (Fig. 3B). Cell
proliferation was also analyzed in CIFSE-labeling experiments.
Briefly, splenocytes were labeled with 5 UM carboxyfluorescein
diacetate succinimidyl ester (CFSE, Molecular Probes, Invitrogen)
at day 0 and then stimulated with anti-CD3/CD28 antibodies plus
IL-2 during 72 hours in isotonic or hypertonic conditions. The
decrease in CFSE fluorescence intensity in CD4 and CD8 T cells,
which was proportional to the number of cell divisions, was
analyzed by two-color flow cytometry in the population of live
cells.

Determination of DNA replication by BrdU incorporation

Cells were pulse-labeled during 30 min (in a 37°C, 5% COq
incubator) with 10 uM BrdU (Cat. B5002, SIGMA) and then
fixed in 70% ethanol. BrdU was detected with a monoclonal
mouse anti-BrdU antibody after acidic denaturation following the
protocol supplied by the manufacturer (BD Pharmingen). Labeled
cells were then stained with propidium iodide in RNase A-
containing solution to simultaneously analyze DNA replication
and cell cycle.

Intracellular detection of YH2AX and phospho-p53 (Ser-
15)

Cells were labeled following an intracellular staining protocol
previously described [56]. Briefly, cells were fixed in 1.5%
paraformaldehyde (SIGMA) on ice for 15 minutes, and permea-
bilized with 70% ethanol at —20°C for at least 2 hours. Ethanol
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was removed by centrifugation and two washes with PBS, and cells
were incubated with mouse monoclonal anti-yH2AX antibody
(1 ug/10° cells) or rabbit polyclonal anti-phospho-p33 (Serl5)
(1 ug/10° cells) for 2 hours. Bound primary antibodies were
detected by incubating cells with FITC-labeled secondary
antibodies for 1 hour at room temperature and protected from
light.:. DNA was stained with 5 pg/ml Hoechst 33342 for
30 minutes at room temperature.

Comet assay

Alkaline comet assay to visualize DNA damage was done using
the Trevigen kit (catalog 4250-050-K), according to the manufac-
turer’s instructions (Trevigen, Gaithersburg, MD, USA). In order
to assess DNA breaks only in the population of live cells, dead cells
were removed by centrifugation on a Lymphoprep™ cushion and
excluded from the assay.

Cell sorting

Cells were labeled with Hoechst 33342 as indicated above,
sorted with a FACSvantage flow cytometry system (BD Biosci-
ences) according to their cell cycle phase; GO/G1, S, or G2/M,
collected at 4°C and lysed immediately after sorting. The
efficiency of the sorting was routinely verified by analyzing the
cell cycle distribution of the sorted fractions.

Protein sample preparation and Western blot Analysis

Cells were lysed (30 minutes at 4°C) in 50 mM HEPES
(pH 7.4), 80 mM NaCl, 5 mM MgCl,, 10 mM EDTA, 5 mM
sodium pyrophosphate, 1% Triton X-100, 20 mM B-glycerophos-
phate, and protease inhibitors PMSF, leupeptin (SIGMA),
aprotinin (Roche), and pepstatin A (SIGMA). Lysates were cleared
by centrifugation (15,000g, 15 minutes, 4°C) and the protein
concentration in the supernatants was determined using the BCA
Protein Assay (Pierce, Rockford, IL, USA). Equal amounts of
protein from each sample were separated in SDS-polyacrylamide
gels under reducing conditions, transferred to PVDF membranes
(Immobilon-P. Millipore, Bedford, MA, USA), and detected with
specific primary antibodies followed by HRP-labeled secondary
antibodies and enhanced chemiluminescence (Supersignal West
Pico Chemiluminescent Substrate, Pierce). Pyruvate kinase or -
actin were used as protein loading controls.

Real-time quantitative PCR (RT-qPCR)

Total RNA was isolated using the RNeasy kit (Cat. 74104.
Quiagen. Qiagen Iberia S.L., Madrid, Spain) following manufac-
turer’s instructions. 2—-3 Ug of total RNA was retro-transcribed to
c¢DNA using SuperScript III reverse transcriptase and random
primers (Invitrogen). For real-time quantitative PCR (RT-qPCR),
Power SYBR Green PCR master mix (Applied Biosystems, Cat.
4367659) and an ABI7900HT sequence detection system (Applied
Biosystems) were used following the manufacturer’s instructions.
Samples were normalized to L.32 mRNA levels using the ABI
Prism SDS 2.1 software. Primers were: mouse NFAT5: 5'-CAG
CCA AAA GGG AAC TGG AG-3’ (Forward) and 5'-GAA AGC
CTT GCT GTG TTC TG-3' (Reverse); mouse L32: 5'-ACC
AGT CAG ACC GAT ATG TG-3' (Forward) and 5’-ATT GTG
GAC CAG GAA CTT GC- 3" (Reverse); mouse Hsp70.1: 5'-
CTT CTA CAC ATC CAT CAC GC-3' (Forward) and 5'-TTG
AAG AAG TCC TGC AGC AG- 3" (Reverse); mouse SMIT: 5'-
ATG GTT GTC ATC AGC ATA GCA TGG-3’ (Forward) and
5'-GGT GGT GTG AGA AGA CTA ACA ATC-3" (Reverse);
mouse TauT: 5'-TAC TAT GCA GCT AGT GGT GTA TGC-
3’ (Forward) and 5-ACC TGG TCC TAT GAG AAT CTA
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ACG-3" (Reverse); mouse aldose reductase (AR): 5" TGA GCT
GTG CCA AAC ACA AG-3’ (Forward) and 5'-GGA AGA AAC
ACC TTG GCT AC-3' (Reverse); mouse sodium-dependent
neutral aminoacid transporter 2 (Sl3842, SNAT2): 5'-GGC AAG
GTA TGT CTG CCA TT (forward) and 5'-GGG TTT CAT
CTT GGG ACA GA (reverse); mouse cyclin E1: 5'-CTG GAC
TCT TCA CAC AGA TG-3' (Forward) and 5'-CAT CCA CAC
TTG CTC ACA AC- 3’ (Reverse); mouse cyclin A2: 5'-GAC
CAA GAG AAT GTC AAC CC-3' (Forward) and 5'-CAT CGT
TTA TAG GAA GGT CC- 3" (Reverse); mouse cyclin Bl: 5'-
AGT TAC TGC TGC TTC CAA GC-3' (Forward) and 5'-GGT
AGG GCT TTA ACA GTA CC- 3’ (Reverse); mouse aurora B
kinase: 5'-AAG AGT CGG ACC TTC GAT GA-3' (Forward)
and 5-CTC CCT GCA GAC CTA ACA GC- 3’ (Reverse);
mouse GADD45a: 5'-AGA AGA CCG AAA GGA TGG AC-3'
(Forward) and 5'-GAT GTT GAT GTC GTT CTC GC- 3’
(Reverse); mouse GADD45f: 5'-CTG CTG CGA CAA TGA
CAT TG-3' (Forward) and 5'-GAC CCA TTG GTT ATT GCC
TC- 3" (Reverse); mouse GADD45y: 5'-TGT TCG TGG ATC
GCA CAA TG-3' (Forward) and 5'-CTC ATC TTC TTC ATC
GGC AG- 3’ (Reverse).

DNA constructs

The luciferase reporter 9 xNFAT-Luc was previously described
[53]. Cyclin A2-862-Luc was kindly provided by Dr. J.B.P Viola
(Division of Cellular Biology, National Cancer Institute (INCA);
Rio de Janeiro, Brazil) and has been described [29]. Cyclin Bl
reporter plasmid was kindly provided by Dr. A. Gewirtz
(University of Pennsylvania, Philadelphia, USA) and has been
described [57]. The transfection control plasmid TK-Renilla was
from Promega (Promega Biotech Ibérica, Madrid, Spain). The
GFP-specific shRNA in the pBSU6 vector was previously
described [58], and the two NFAT5-specific shRNAs were done
by inserting the following 21-nucleotide sequences complementary
to NFAT5 mRNA in pBSU6: shNFAT5-1 (shN5-1), 5'-GGT
CAA ACG ACG AGA TTG TGA-3'; and shNFAT5-3 (shN5-3),
5'-GGT CGA GCT GCG ATG CCC TCG-3'. The CMV-HA
vector was from Clontech (Clontech Palo Alto, CA). Full-length
human NFAT), corresponding to human isoform NFAT5a
(GenBank AF134870) tagged with 6 copies of Myc in its amino-
terminal and the enhanced green fluorescence protein (GFP) at its
carboxy-terminus (Myc-NFAT5-GFP) has been described [7].

Transfections and reporter assays

The human T cell line Jurkat (Clone E6-1, American Type
Clulture Collection, #TIB 152) was kindly provided by Dr. J.
Luban (Columbia Universtity College of Physicians and Surgeons,
New York, NY) and maintained in Dulbecco’s modified Eagle’s
Medium (DMEM) supplemented with 10% heat-inactivated fetal
bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate and
50 UM beta-mercaptoethanol (Gibco. Pasley, UK). Cells (20x10°
cells/400 W serum-free DMEM) were transfected by electropora-
tion (260 V, 950 uF, with a Bio-Rad Gene Pulser. Bio-Rad,
Hemel Hampstead, UK) with luciferase reporter plasmids (60 ng/
10° cells), TK-Renilla (0.1 ug/10° cells) and shRNA vectors
(1.8 ug/10° cells) as indicated in figure legends. 36 hours post-
transfection, cells were placed in fresh isotonic medium
(300 mOsm/kg) and subjected to hypertonic conditions
(500 mOsm/kg) or stimulated with 20 nM phorbol 12-myristate
13-acetate (PMA) plus 1 pM ionomycin (Calbiochem. Darmstadt,
Germany) as indicated in figure legends. Luciferase and Renilla
were measured with the Dual-luciferase reporter system (Promega)
with a Berthold FB12 luminometer (Berthold, Pforzheim,
Germany). Luciferase activity was normalized to Renilla. Lucif-
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erase activity in transgenic 9XNFAT-Luc lymphocytes was
normalized to endogenous lactate dehydrogenase (LDH), in the
same lysate. LDH was proportional to the number of viable cells
and was measured with the CytoTox 96 Non-Radioactive
Cytotoxicity Assay (Promega) [25].

Statistical Analysis

Mean, standard error of the mean (SEM) and statistical
significance (t-Student test) were calculated using Microsoft Excel
software.

Supporting Information

Figure S1 Generation of NFAT5-conditional knockout mice. A)
Schematic representation of the targeting construct, in which exon
6, encoding the DNA binding loop in the DNA binding domain of
NFATS, was flanked by loxP sites. The vector contained an fi--
flanked neomycin-resistance cassette (Neo) inserted at the EcoRI
site. downstream of exon 6 and upstream of the 3" lxP site.
Restriction sites in brackets indicate that they were inactivated
during subcloning. Mouse ES clones with the correctly recom-
bined allele were used to generate mice that were crossed to FLPe-
deleter mice to produce NFAT5-floxed mice, without the Neo
cassette, and with Exon 6 flanked by /loxP sites so that it could be
removed by the Cre recombinase.

Found at: doi:10.1371/journal.pone.0005245.s001 (1.86 MB TTF)

Figure 82 Lack of NFAT) expression in T lymphocytes from
NFAT5-conditional knockout mice. A) Southern blot of genomic
DNA extracted from T cells of wild-type (WT), NFAT5-floxed
(Flox) mice, and mice obtained after crossing them with CD4-Cre
transgenic mice (CD4-Cre”). Genomic DNA was digested with
BamHI and hybridized to a probe for exon 5. B) Specific deletion
of NFAT5 in T cells, but not in B cells of CD4-Cre™/NFAT5"%/
Flox mice was confirmed by Western blotting with an antibody
against a carboxy (C)-terminal epitope. The non-specific cross-
reacting band (n.s.) above NFAT5 serves as a loading control. C)
Western blot detecting NFAT) in activated T cells was performed
with two different antibodies, specific for a C-terminal epitope and
the amino (N)-terminal region respectively. The majority of T cells
obtained from CD4-Cre*/NFAT5™ % mice lacked NFATS,
although in some experiments we could detect a small proportion
of cells (below 10%) that had escaped deletion. D) NFAT5 mRNA
was analyzed by RT-qPCR (bars represent the mean*SEM of five
independent experiments). E) Weight of mice and spleens, and
splenocyte count after Lymphoprep TM gradient separation
(n=8, bars are the mean®=SEM). Expression of surface markers
Thyl.2, B220 and CD3 in fresh splenocytes was analyzed by flow
cytometry (n =5, values are the mean*SEM).

Found at: doi:10.1371/journal.pone.0005245.s002 (2.20 MB TIF)

Figure 83 Cell cycle profile of proliferating NFAT5—/— T cells
under hypertonic stress. NFAT5™" and NFAT5 ™"~ proliferating
T cells were either maintained in isotonic conditions (300 mOsm/
kg) or switched to hypertonic medium (500 mOsm/kg) for 8 and
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24 hours. The upper panel shows DNA content histograms
representing the cell cycle distribution in live cells: GO/G1, early
S (ES), late S (LS), and G2/M. The lower panel, shows the cell
cycle distribution in wild-type and NFAT5 ™/~ cells after 8 and
24 hours in isotonic or hypertonic conditions. Values are the
mean*SEM of five independent experiments (* = p<<0.05).

Found at: doi:10.1371/journal.pone.0005245.s003 (2.15 MB TIF)

Figure 84 Induction of p53 and p21 in NFAT5—/— T cells in
response to hypertonicity. A) Phospho-p53 (Ser15) was detected by
intracellular staining in NFAT5"* and NFAT5™/" T cells
cultured in isotonic or hypertonic medium during 24 hours.
Results correspond to cells gated as alive. Dot plots show one
representative experiment. Bars on the right represent the
mean*SEM of four independent experiments (*=p<0.05). B)
Time course of p53-Serld phosphorylation, accumulation of total
p53 and p21 in NFAT5"* and NFAT5 ™/~ T cells in response to
hypertonicity were analyzed by Western blot. Pyruvate kinase
(PyrK) is shown as protein loading control. C) Time course of
NFAT5 and p21 induction in p53** and p53~/~ T cells in
response to hypertonicity. The experiment shown is representative
of three independently performed.

Found at: doi:10.1371/journal.pone.0005245.s004 (1.90 MB TIF)

Figure S5 Expression of cyclins in proliferating NFAT5—/— T
cells upon exposure to hypertonic conditions. Expression of cyclins
D3, E1, A2 and Bl was analyzed by Western blot in lysates of
proliferating NFAT5™* and NFAT5 /" T cells after 8 and
24 hours of hypertonicity treatment. Pyruvate kinase (PyrK) is
shown as protein loading control.

Found at: doi:10.1371/journal.pone.0005245.s005 (1.81 MB TIF)

Figure 86 Effect of hypertonicity on cyclin induction by
mitogens or T cell receptor activation in NFAT5—/— T cells.
Expression of cyclins A2 and Bl was analyzed by Western blot in
lysates of NFAT5* and NFAT5 ™/~ T lymphocytes induced to
proliferate with (A) anti-CD3/CD28 antibodies plus IL-2 or (B)
concanavalin A (ConA) plus IL-2 in isotonic or moderately
hypertonic media. Pyruvate kinase (PyrK) was used as protein
loading control.

Found at: doi:10.1371/journal.pone.0005245.s006 (2.20 MB TIF)
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