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Abstract

Background: Leishmania is the etiologic agent of leishmanisais, a protozoan disease whose pathogenic events are not well
understood. Current therapy is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug
resistance. Compounding these problems is the increase in the number of cases of Leishmania-HIV coinfection, due to the
overlap between the AIDS epidemic and leishmaniasis.

Methodology/Principal Findings: In the present report, we have investigated the effect of HIV aspartyl peptidase inhibitors
(PIs) on the Leishmania amazonensis proliferation, ultrastructure, interaction with macrophage cells and expression of
classical peptidases which are directly involved in the Leishmania pathogenesis. All the HIV PIs impaired parasite growth in a
dose-dependent fashion, especially nelfinavir and lopinavir. HIV PIs treatment caused profound changes in the leishmania
ultrastructure as shown by transmission electron microscopy, including cytoplasm shrinking, increase in the number of lipid
inclusions and some cells presenting the nucleus closely wrapped by endoplasmic reticulum resembling an autophagic
process, as well as chromatin condensation which is suggestive of apoptotic death. The hydrolysis of HIV peptidase
substrate by L. amazonensis extract was inhibited by pepstatin and HIV PIs, suggesting that an aspartyl peptidase may be
the intracellular target of the inhibitors. The treatment with HIV PIs of either the promastigote forms preceding the
interaction with macrophage cells or the amastigote forms inside macrophages drastically reduced the association indexes.
Despite all these beneficial effects, the HIV PIs induced an increase in the expression of cysteine peptidase b (cpb) and the
metallopeptidase gp63, two well-known virulence factors expressed by Leishmania spp.

Conclusions/Significance: In the face of leishmaniasis/HIV overlap, it is critical to further comprehend the sophisticated
interplays among Leishmania, HIV and macrophages. In addition, there are many unresolved questions related to the
management of Leishmania-HIV-coinfected patients. For instance, the efficacy of therapy aimed at controlling each
pathogen in coinfected individuals remains largely undefined. The results presented herein add new in vitro insight into the
wide spectrum efficacy of HIV PIs and suggest that additional studies about the synergistic effects of classical
antileishmanial compounds and HIV PIs in macrophages coinfected with Leishmania and HIV-1 should be performed.
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Introduction

Leishmaniasis is among the most neglected of the tropical

diseases: more than 12 million people are currently infected

worldwide, there are 2 million new cases every year (a number that

is growing), and 350 million people are considered to be at risk.

Two basic clinical forms are recognized – cutaneous leishmaniasis

(CL), a disfiguring and stigmatizing disease, and visceral

leishmaniasis (VL) or kala-azar, which is fatal without treatment

[1]. The development of the HIV/AIDS pandemic during the last

20 years has modified the spectrum of leishmaniasis in both the

clinical and epidemiological fields [2]. Cutaneous leishmaniasis,

for instance, has attracted more attention due to reactivation, or

even visceralization, in the immunocompromised hosts [2].

Currently available therapeutic options range from topical

treatment to systemic therapy for more complex cases. These

agents are expensive, not active orally, require long-term

parenteral administration and produce serious side effects (e.g.

cardiac and renal toxicity); moreover, resistance to these

compounds has become a severe problem [3].
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In recent years, the introduction of anti-retroviral drugs,

particularly aspartyl peptidase inhibitors (PIs) used in the

chemotherapy of HIV, into medical practice has led to a marked

improvement in the life expectancy of AIDS sufferers by the fall of

HIV viremia and by restoring the immune responses with an

increase in the number of CD4+ T lymphocytes [4–7]. In addition,

the functional upgrading of two critical components of innate

antimicrobial immunity, such as neutrophils and monocytes, may

contribute to the improved cell-mediated immune responses

against opportunistic infections in highly active anti-retroviral

therapy (HAART)-treated patients [5].

Indeed, after the introduction of PIs in the antiretroviral therapy

for HIV, the number of coinfected cases reported in European

Leishmania-endemic countries fell sharply. Nevertheless, the disease

still constitutes an issue in patients who have AIDS, being the third

most frequent parasitic opportunistic infection in Europe [8]. The

drastic reduction in the incidence, morbidity and mortality of

AIDS coinfections after the introduction of PIs in the antiretroviral

therapy was the first line of evidence that these compounds could

exert a direct effect on opportunistic pathogens [9], which was

demonstrated in several fungi, such as Cryptococcus neoformans [10],

Candida albicans [11] and Fonsecaea pedrosoi [12], and also in the

protozoa Plasmodium falciparum [13]. Finally, it was recently

demonstrated that two PIs (indinavir and saquinavir) have a

direct effect on Leishmania infantum and Leishmania major promasti-

gotes in vitro, which are responsible for visceral and cutaneous

manifestations, respectively [14].

Leishmania species are dimorphic protozoa existing as promas-

tigote and amastigote forms, which survive in the lumen of the

digestive system of the sand fly and within the phagolysosomal

compartment of mammalian macrophages, respectively. In the

mammalian host, these protozoa are obligate intracellular

parasites of cells from the macrophage-dendritic cell lineages

[15]. Since Leishmania and HIV infect the same target cells, it is

believed that complex interactions between these pathogens take

place.

Peptidases participate in several physiological and pathological

processes in different cell types. In Leishmania, this class of

hydrolytic enzymes directly acts in different steps of the

microorganism-host interplay, being considered as virulence

factors [16–18]. Considering all these facts together, we have

conducted a study to investigate the direct effect of five different

HIV PIs (indinavir, saquinavir, nelfinavir, lopinavir and ampre-

navir), commonly used in HAART, on L. amazonensis growth

ability, ultrastructure, interaction of this human pathogen with

mouse peritoneal macrophages in vitro, and expression of

peptidases, which are classical leishmanial virulence factors.

Methods

Chemicals
Saquinavir and nelfinavir were obtained from Hoffmann-La

Roche AG (Grenzach-Wyhlen, Germany), indinavir from Merck

Sharp & Dohme GmbH (Haar, Germany), lopinavir from Abbott

Laboratories (Abbott Park, IL, USA) and amprenavir from

GlaxoSmithKline (NC, USA). Anti-a-tubulin monoclonal anti-

body, bovine serum albumin (BSA), dimethylsulfoxide (DMSO),

heat-inactivated fetal bovine serum (FBS), 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyl tetrazolium bromide dye (MTT), dithiothreitol

(DTT), ethylenediaminetetraacetic acid (EDTA), propidium

iodide, Schneider’s insect medium, 3-[(3-cholamidopropyl)-di-

methylammonio]-1-propanesulfonate-Chaps (CHAPS) and HIV-

1 peptidase substrate [Arg-Glu(EDANS)-Ser-Gln-Asn-Tyr-Pro-Ile-

Val-Gln-Lys(DABCYL)-Arg] were purchased from Sigma Chem-

ical Co. (St Louis, USA). Media constituents, buffer components,

reagents used in electrophoresis and immunoblotting were

purchased from GE Life Care (Little Chalfont, UK). All other

reagents were analytical grade or superior.

Parasite culture
Leishmania amazonensis (MHOM/BR/77/LTB0016 strain) was

obtained from Leishmania Type Culture Collection (Fundação

Oswaldo Cruz, Rio de Janeiro, RJ, Brazil). Promastigote forms

were maintained by weekly transfers in 25-cm2 culture flasks with

Schneider’s insect medium, pH 7.0, supplemented with 10% FBS

at 26uC.

Multiplication inhibition assay
The effects of five distinct HIV aspartyl PIs (amprenavir,

indinavir, lopinavir, nelfinavir and saquinavir) on promastigote

forms of L. amazonensis were assessed by a method similar to that

described previously [19]. Promastigotes were counted using a

haemocytometer and re-suspended in fresh medium to a final

concentration of 56107 viable promastigotes/ml. Viability was

assessed by mobility and lack of staining after challenge with

trypan blue. Each inhibitor compound was added to the culture at

final concentrations ranging from 15 mM to 500 mM (starting from

a 20 mM solution in DMSO that was serially diluted in culture

medium). Alternatively, promastigotes were also treated with

different concentrations (25, 50 and 100 mM) of pepstatin A (a

classic aspartyl peptidase inhibitor). Dilutions of DMSO corre-

sponding to those used to prepare the drug solutions were assessed

in parallel. After 24, 48, 72 and 96 hours of incubation at 26uC,

the number of viable motile promastigotes was quantified by

counting the flagellates in a Neubauer chamber. The 50%

inhibitory concentration (IC50), i.e. the minimum drug concen-

tration that caused a 50% reduction in survival/viability in

comparison with that in identical cultures without the compound,

was evaluated after 48 hours for the most effective PIs. These

values were determined by linear regression analysis by plotting

the number of viable promastigotes versus log drug concentration

using Origin Pro 7.5 computer software.

Viability assays
The effect of the HIV PIs on the murine macrophage viability

was evaluated by an MTT micromethod described previously

[20]. First, peritoneal macrophages from female BALB/c mice (6–

8 weeks old) were collected in cold phosphate-buffered saline (PBS;

150 mM NaCl, 20 mM phosphate buffer, pH 7.2) and 56105 cells

were allowed to adhere in 96-well tissue culture plates for 1 hour

at 37uC, in a 5% CO2 atmosphere. Non-adherent cells were

removed by washes with PBS and the wells refilled with DMEM

medium supplemented with 10% FBS. Macrophages were then

incubated with increasing concentration of PIs (1.56 to 25 mM) in

triplicate. After 24 hours, the medium was discharged and the

formation of formazan was measured by adding MTT (5 mg/ml

in PBS, 50 mg/well) and incubating the wells for 3 hours in the

dark at 37uC. The plates were subsequently centrifuged at

1100 rpm for 7 minutes, the supernatant was removed, the pellet

was dissolved in 200 ml of DMSO and the absorbance measured

in an ELISA reader at 490 nm (Bio-Tek Instruments). Concen-

trations of the HIV PIs capable of maintaining 95% macrophage

viability were used in the interaction assays.

To determinate the promastigotes viability, parasites were

resuspended in Schneider’s insect medium supplemented with

10% FBS in 96-well plates (16107 promastigotes/well), and

incubated at 26uC with increasing concentrations of HIV PIs (50–

250 mM) in triplicate. After 1–4 hours, viable cells were estimated

HIV PIs on L. amazonensis
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by propidium iodide staining. In this last methodology, cell death

due to a loss in cell membrane integrity of drug-treated L.

amazonensis was assessed by flow cytometry measuring the level of

propidium iodide uptake into damaged promastigotes. Concen-

trations of the HIV PIs capable of maintaining at least 95% of

living promastigotes were used in the experiments. Experiments

were carried out in accordance with protocols approved by the

Institutional Animal Care and Use Committee at Universidade

Federal do Rio de Janeiro and Fundação Oswaldo Cruz (CEUA

L-0006/07).

Leishmania-macrophage interaction assay
Stationary-phase promastigotes were washed with PBS, counted

in a Neubauer chamber, added to the macrophage culture well

plates at a parasite to cell ratio of 10:1, and incubated for 2 hours

at 37uC in a 5% CO2. The free parasites were removed by

successive washes with PBS. Thereafter, Leishmania-infected cells

were treated for 24 hours with PIs that had a prominent effect on

promastigote growth, at final concentrations of 6.25, 12.5 and

25 mM of nelfinavir and 3.125, 6.25 and 12.5 mM of amprenavir

and lopinavir (concentrations of the HIV PIs capable of

maintaining 95% macrophage viability). After the interaction,

cells were washed with PBS at 37uC, the coverslips were fixed in

methanol and stained as described below. Alternatively, parasites

were pre-treated with PIs for 1 hour with sub-inhibitory drug

concentrations (50 and 100 mM of nelfinavir and lopinavir; 100

and 200 mM of amprenavir), washed three times in PBS and then

added to the macrophage culture in well plates. After 1 hour of

interaction, cells were fixed in methanol, Giemsa-stained and

dehydrated in acetone solutions progressively replaced by xylol.

The assembly of the slides was done with Permount. The

percentage of infected macrophages was determined by randomly

counting at least 200 cells in each of duplicated cover slips.

Experiments were repeated three times. The association index was

obtained by multiplying the percentage of infected macrophages

by the number of amastigotes per infected macrophage.

Experiments were carried out in accordance with protocols

approved by the Institutional Animal Care and Use Committee

at Universidade Federal do Rio de Janeiro and Fundação Oswaldo

Cruz (CEUA L-0006/07).

Electron microscopy
Control and HIV PIs-treated parasite cells were cultured as

described above and promastigotes were incubated with nelfinavir

or lopinavir at the IC50 concentration. The possible parasite

ultrastructure modifications along different time periods of

treatment with HIV PIs were performed. In this context,

promastigote cells (16108) were treated for 2, 4, 6, 8, 12 and

24 hours and then fixed overnight at 4uC in 2.5% glutaraldehyde

in 0.1 M cacodylate buffer, pH 7.2. After fixation, cells were

washed in cacodylate buffer and postfixed for 1 hour in 0.1 M

cacodylate buffer containning 1% osmium tetroxide, 0.8%

potassium ferrocyanide and 5 mM CaCl2. The cells were then

washed in the same buffer, dehydrated in acetone, and embedded

in Epon. Ultrathin sections were mounted on 300-mesh grids,

stained with uranyl acetate and lead citrate and observed under a

Zeiss 900 transmission electron microscope (Zeiss, Oberkochen,

Germany).

Evaluation of peptidase expression by gelatin-SDS-PAGE
Promastigotes (16108 cells) were incubated with PIs (nelfinavir,

lopinavir and amprenavir) for 4 hours at 26uC at a final

concentration of 100 mM. The gels were loaded with 56106 cells,

which were added to SDS–PAGE sample buffer (125 mM Tris,

pH 6.8, 4% SDS, 20% glycerol and 2% bromophenol blue).

Electrophoresis was performed at a constant current of 60 mA at

4uC for 2 hours. After electrophoresis, SDS was removed by

incubation with 10 volumes of 1% Triton X-100 for 1 hour.

Subsequently, the gels were incubated in 50 mM sodium

phosphate buffer, pH 5.5, supplemented with 2 mM DTT at

37uC. After incubation for 48 hours, the gels were washed twice

with distilled water, stained for 2 hours with 0.2% Coomassie

brilliant blue R-250 in methanol-acetic acid-water (50:10:40), and

destained overnight in a solution containing methanol-acetic acid-

water (5:10:85), to intensify the proteolytic halos. The gels were

dried, photographed and the density profiles digitally processed

[21].

Evaluation of peptidase expression by immunoblotting
Promastigote forms treated or not with PIs, as described above,

were added to SDS–PAGE sample buffer and mixed with 10% b-

mercaptoethanol, followed by heating at 100uC for 5 minutes.

Thereafter, protein extracts (equivalent to 56106 cells) were

separated in 12% SDS–PAGE and the polypeptides electropho-

retically transferred at 4uC at 100 V/300 mA for 2 hours to a

nitrocellulose membrane. The membrane was blocked in 5% low-

fat dried milk in PBS containing 0.5% Tween 20 (PBS/Tween) for

1 hour at room temperature. Then, membranes were washed

three times (10 min each) with the blocking solution and incubated

for 2 hours with the following polyclonal antibodies: anti-cpb

(1:1000) raised against Leishmania mexicana cysteine peptidase B

(kindly provided by Dr Mary Wilson – Department of Internal

Medicine, Biochemistry, Microbiology and Epidemiology, Pro-

gram in Molecular Biology, University of Iowa, USA), anti-gp63

(1:2000) raised against L. mexicana (kindly provided by Dr Peter

Overath – Max-Planck-Institut für Biologie, Abteilung Membran-

biochemie, Germany), and anti-a-tubulin monoclonal antibody at

1:500. The secondary antibody used was peroxidase-conjugated

goat anti-rabbit IgG at 1:20000 followed by chemiluminescence

immunodetection after reaction with ECL reagents [21]. The

relative molecular mass of the reactive polypeptides was calculated

by comparison with the mobility of SDS–PAGE standards. The

X-ray films were photographed and the density profiles digitally

processed [21].

Aspartyl peptidase assay
The enzymatic activity over HIV-1 peptidase substrate was

determined using L. amazonensis extract, which was obtained by

repeated freeze-thawing cycles of cells in 10 mM Tris-HCl, pH 7.2,

containing 1% CHAPS. Then, the cellular extract was incubated

for 40 min at 4uC, centrifuged at 10,000 g for 30 min at 4uC, and

stored at 270uC in aliquots for no longer than 4 days. Cleavage of

HIV-1 peptidase substrate was monitored continuously in a

spectrofluorometer (SpectraMax Gemini XPS, Molecular Devices,

CA, USA) using an excitation wavelength of 340 nm and an

emission wavelength of 490 nm. A 500 mM stock solution of the

fluorogenic substrate sample was prepared in DMSO. The reaction

was started by the addition of 2 mM substrate to the parasite extract

(10 mg) in a total volume of 60 ml of 100 mM sodium acetate, 1 M

sodium chloride, 1 mM EDTA, 1 mM DTT, 10% DMSO, 1 mg/

ml BSA, pH 4.7, in the presence or absence of nelfinavir,

amprenavir, lopinavir or pepstatin A. The reaction mixture was

incubated at 37uC for 15 min. The assays were controlled for self-

liberation of the fluorophore over the same time interval.

Statistical analysis
All experiments were repeated at least three times, and

representative images of these experiments are shown. The data
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were analyzed statistically using Student’s t test using EPI-INFO

6.04 (Database and Statistics Program for Public Health) computer

software. P values of 0.05 or less were considered statistically

significant.

Results

Effect of HIV PIs on the growth
In order to establish whether the aspartyl HIV PIs might have

any effect on L. amazonensis multiplication, we performed

experiments in which each PI was added to replicating

promastigote forms (56107 cells) at different concentrations and

cell growth was monitored for 4 days in vitro. Only lopinavir and

nelfinavir significantly reduced leishmanial development at 50 mM

(P,0.05) (Fig. 1, HIV PIs). After this preliminary screen, each

inhibitor was tested in the appropriate concentration range. All the

PIs inhibited the parasite growth in a dose-dependent manner

(Fig. 1). Nelfinavir and lopinavir induced a powerful reduction in

the cellular growth rate from 20 and 25 mM concentration on,

respectively. The IC50 after 48 hours was 15.1261.1 mM and

16.4760.8 mM, respectively. Amprenavir significantly impaired

parasite multiplication only after 48 hours of growth at 100 mM

(P,0.05). This drug at 250 mM virtually blocked parasite

proliferation, while at 500 mM, parasite death was detected

(Fig. 1, Amprenavir). The IC50 after 48 hours was

62.062.1 mM. Indinavir only at the highest concentration and

after 72 hours of cultivation significantly altered parasite growth

(Fig. 1, Indinavir). Conversely, saquinavir at the highest concen-

tration used only marginally diminished the L. amazonensis

proliferation (Fig. 1, Saquinavir). Pepstatin A was assayed in

parallel for comparative purposes. This inhibitor powerfully

diminished parasite growth at 50 mM (data not shown). DMSO

did not significantly affect parasite growth behavior.

Effect of HIV PIs on the ultrastructure
Based on the efficacy of the HIV aspartyl PIs in diminishing the

growth of L. amazonensis, particularly nelfinavir and lopinavir, we

next investigated the effect of these inhibitors in the Leishmania

ultrastructure, by transmission electron microscopy. For this

purpose, the morphology of non-treated cells (Fig. 2A) was

compared with the ultrastructure of PIs-treated protozoa (Fig. 2B–

J). Results showed blebs detaching from the entire cell surface

(Fig. 2B–C, arrowheads), including the flagellar membrane

(Fig. 2D, arrowheads), after 4 hours of treatment using the IC50

concentration (15.12 mM to nelfinavir and 16.47 mM to lopinavir).

Interestingly cells treated with nelfinavir, but not with lopinavir,

presented cytoplasm shrinking (Fig. 2B,E, ), a higher number of

vesicles, which according to their electron-density, probably

corresponds to lipid-containing compartments (Fig. 2E,F, v) or

acidocalciosomes (Fig. 2G, w). Cells treated with both drugs

presented the nucleus surrounded by endoplasmic reticulum

(Fig. 2G–H, black arrows), mitochondrial swelling (Fig. 2F,

white arrowhead) and myelin-like structures (Fig. 2H, larger
arrow). After 24 hours of treatment with lopinavir, extensive

blocks of condensed chromatin were observed close to the nuclear

envelope (Fig. 2I–J, white arrows), which is suggestive of

apoptosis, as well as enlarged vesicles (Fig. 2J, ). These effects

were commonly visualized in the drug-treated population.

Effect of HIV PIs on Leishmania aspartyl peptidase
The effect of distinct HIV aspartyl PIs on the hydrolytic activity

of L. amazonensis extract over HIV-1 peptidase substrate was

determined. To this end, nelfinavir, amprenavir and lopinavir, as

well as pepstatin A were tested in concentrations ranging from 0.1

to 10 mM. The inhibitory capability of these compounds was very

divergent (Fig. 3). Lopinavir was by far the most effective inhibitor,

reducing the proteolytic hydrolysis of the substrate by approxi-

mately 90% at 1 mM, and virtually abolishing the proteolytic

activity at 10 mM, while at 0.1 mM, the inhibitor exerted no

significant effect in relation to control. Nelfinavir exhibited an

inhibition of approximately 98% at 10 mM, however, at 1 mM, the

inhibitor was ineffective, while amprenavir even at 10 mM did not

significantly inhibited the hydrolysis of the substrate by L.

amazonensis extract. The inhibition of hydrolysis by lopinavir was

comparable to that exerted by pepstatin A, which is a prototypal

inhibitor of aspartyl-type peptidases (Fig. 3).

Effect of HIV PIs on the interaction of Leishmania-
macrophage cells

The effects of PIs on the L. amazonensis-macrophage interaction

are shown in Fig. 4 and 5B. The promastigote forms of the parasite

were treated for 1 hour before interaction with the PIs that showed

more effectiveness in suppressing parasite proliferation in vitro,

i.e., nelfinavir, lopinavir and amprenavir. At the drug concentra-

tions tested (50 and 100 mM for nelfinavir and lopinavir; and 100

and 200 mM for amprenavir), the parasites maintained their

viability after the treatment for 1 hour with each PI, as judged by

their morphology, motility and propidium iodine staining, in

which more than 95% of the promastigotes were viable (data not

shown). Then, the drugs were washed away and the parasites were

allowed to interact with macrophages for 1 hour, free parasites

were removed and the cells incubated for an additional hour, then

the association indexes were determined. We showed that

nelfinavir was the most potent inhibitor of the interaction process

between L. amazonensis and macrophage cells, showing a clear

dose-dependent inhibition profile, where the inhibition increased

from 86 to 93% (in relation to control) as nelfinavir concentration

rose from 50 to 100 mM. When parasites were pretreated with 100

or 200 mM of amprenavir, the association indexes were,

respectively, 75 and 81% lower as compared to the control

system. Lopinavir was also capable of interfering in the interaction

process; however, a dose-dependent inhibition profile was not

prominent, being around 80% either at 50 or 100 mM (Fig. 4).

Given that PIs can interfere in the early steps of parasite

infection, since the inhibitors were added exclusively to Leishmania

promastigotes and that the interaction process was stopped with

only 1 hour, we resolved to investigate the association index of L.

amazonensis with macrophage cells during the in vitro treatment for

24 hours with aspartyl PIs used in the chemotherapy of HIV. First

of all, we tested the effect of these three PIs alone on the mouse

peritoneal macrophages viability by using the MTT assay. A

significant deleterious effect was only observed with lopinavir at

25 mM, while amprenavir also at this concentration was in the

boundary between non-toxic and toxic effects (Fig. 5A). Therefore,

in the next section of these experiments, we used the PIs at the

maximal concentrations in which more than 95% of macrophages

were viable after 24 hours of treatment. Finally, the macrophages

were preinfected with L. amazonensis for 1 hour, unbound parasites

were washed away, and then treated with nelfinavir, lopinavir or

amprenavir for 24 hours. Our results evidenced that all the tested

aspartyl PIs notably reduced intracellular number of Leishmania in

macrophages in a dose dependent manner.

Effect of HIV PIs on the expression of classical leishmanial
peptidases

In this set of experiments we aimed to assess if the stress induced

by the PIs would led to any change in the pattern of peptidase

HIV PIs on L. amazonensis
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production by L. amazonensis. Cells were incubated for 4 hours in

the presence of nelfinavir, lopinavir and amprenavir at 100 mM

and assayed by zymography. At this experimental condition, the

parasites maintained their viability, as judged by their morphol-

ogy, motility and propidium iodine staining, in which more than

95% of the promastigotes were viable (data not shown). The

proteolytic profile of L. amazonensis in gelatin-SDS-PAGE at

pH 5.5 supplemented with DTT has been previously described

and is composed mainly of metallo- and cysteine peptidases

[16,17,22]. The comparison of the peptidase expression by gelatin-

SDS-PAGE in parasites incubated or not for 4 hours with the PIs

revealed that both the 63-kDa metallopeptidase and the low-

molecular mass cysteine peptidases had their activity enhanced

when parasites were subjected to PIs (Fig. 6). In order to further

determine the influence of the PIs on classical peptidases from L.

amazonensis, we have performed western blotting analysis of these

molecules employing anti-gp63 or anti-cpb antibodies. In

agreement with the gelatin-SDS-PAGE analysis, the gp63

molecule (a 63 kDa polypeptide) and the cpb (17 and 31 kDa)

were enhanced when the parasites were incubated with nelfinavir,

amprenavir and lopinavir. In all the methods employed, lopinavir

promoted the most pronounced effect. For sample loading control,

we have revealed the western blotting with anti-a-tubulin, which

showed no difference between the experimental systems (Fig. 6).

Discussion

Leishmaniasis is one of the most neglected tropical diseases [1],

and the HIV/AIDS pandemic has changed the natural history of

leishmaniasis [23]. The number of co-infections is increasing

Figure 1. Effect of HIV PIs on the growth rate of Leishmania amazonensis. The growth pattern of L. amazonensis was followed for parasites
cultivated at 26uC in the absence (control) or presence of lopinavir, nelfinavir, amprenavir, saquinavir and indinavir at 50 mM (HIV PIs). Subsequently,
lopinavir and nelfinavir were assayed in concentrations ranging from 15 to 50 mM. Amprenavir, saquinavir and indinavir were tested in concentrations
ranging from 50 to 500 mM. The PIs were added to the cultures at 0 hour and viable cells were counted daily by trypan blue exclusion and motility. In
all experiments, the data from DMSO represents the concentration present in the highest dose of each compound. Data shown are the
mean6standard error (S.E.) of three independent experiments performed in triplicate.
doi:10.1371/journal.pone.0004918.g001
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dramatically, especially due to increased overlap of both diseases

[2]. Additionally, the real impact of Leishmania/HIV co-infection is

probably underestimated on the global scale due to deficiencies in

the surveillance systems. The fact that leishmaniasis is not included

among the AIDS-defining diseases contributes to this scarcity of

information [24]. HIV infection can increase the risk of developing

leishmaniasis by 100–2000 times [2]. In addition, visceralization of

Leishmania strains, such as L. amazonensis, that are classically

Figure 2. Ultrastructural changes observed in L. amazonensis after HIV PIs treatment. Parasites (16108 cells) from 48-hours cultures were
inoculated in fresh medium in the absence (A) or in the presence of nelfinavir at 15.12 mM (IC50) (B–H) or lopinavir at 16.47 mM (IC50) (I–J) and
incubated for 4 (B–E), 6 (F–G), 8 (H) and 24 (I–J) hours. Subsequently, cells were processed for transmission electron microscopy. An intense flagellar
and plasma membrane shedding (black arrowheads) was seen after 4 hours of treatment with both inhibitors (B–D). Some effects were exclusive of
nelfinavir, such as cytoplasm shrink (B and E, ), increase in the number of intracellular vesicles, resembling acidocalcisomes (G, w) and lipid
inclusions (E and F, v). Both drugs induced nuclear wrapping by the endoplasmic reticulum (G and H, black arrows), mithocondrial swelling (F, white
arrowheads) and myelin-like structures (H, larger arrow). In lopinavir treated cells, blocks of condensed chromatin were observed close to the nuclear
envelope (I, white arrow), as well as enlarged vesicles (J, ). n - nucleus; k - kinetoplast; f - flagellum and m - mithocondrion. Some of the
ultrastructural alterations described for nelfinavir (B–H) were also visualized with lopinavir, for simplicity, these phenomena were represented only by
nelfinavir treated cells.
doi:10.1371/journal.pone.0004918.g002
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restricted to cutaneous leishmaniasis has often been observed in

patients with Leishmania–HIV co-infection [2]. HIV infection also

reduces the likelihood of a therapeutic response, and greatly

increases the probability of relapse [25–27]. At the same time,

visceral leishmaniasis promotes the clinical progression of HIV

disease and the development of AIDS-defining conditions. Both

diseases exert a synergistic detrimental effect on the cellular

immune response because they target similar immune cells [2].

Patients with HIV infection are surviving longer and with an

improved quality of life as a result of the institution of HAART,

regimens that usually consist of a PI combined with at least two

other antiretroviral drugs [28,29]. PIs bind competitively to the

cleavage site within the HIV-1 aspartyl peptidase enzyme. They

render the enzyme non-functional and lead to the release of

Figure 3. Effect of aspartyl PIs on Leishmania aspartyl peptidase
activity. L. amazonensis soluble extract was incubated with 2 mM HIV-1
peptidase substrate for 15 min at 37uC in 100 mM sodium acetate, 1 M
sodium chloride, 1 mM EDTA, 1 mM DTT, 10% DMSO, 1 mg/ml BSA,
pH 4.7, in the absence (control) or in the presence of different
concentrations of the following PIs: nelfinavir, amprenavir, lopinavir and
pepstatin A (0.1 to 10 mM). The control (16.664.5 arbitrary fluorescence
units) was taken as 100%. The values represent the mean6standard
deviation of three independent experiments performed in triplicate.
Symbol denotes systems treated with PIs that had a rate of substrate
hydrolysis significantly different from the control (P,0.01; Student’s t
test).
doi:10.1371/journal.pone.0004918.g003

Figure 4. Effect of the pre-treatment of promastigotes with HIV
PIs on the Leishmania amazonensis–macrophage interaction. The
promastigotes of L. amazonensis were treated or not with nelfinavir,
amprenavir or lopinavir (as indicated) for 1 hour prior to macrophage–
parasite interactions, then the cells were washed with PBS. Parasites
maintained their viability under this experimental condition (see
Methods section). Macrophages were then infected with promastigote
forms for 1 hour at 37uC, and macrophage monolayers were washed
with PBS to remove unbound parasites. The association index was
determined after 1 hour of infection by light microscopy, counting at
least 200 cells in each of duplicated coverslips. Each bar represents the
mean6standard error of at least three independent experiments.
doi:10.1371/journal.pone.0004918.g004

Figure 5. Toxicity of HIV PIs in mouse peritoneal macrophages
and susceptibility of intracellular parasites to HIV PIs in
macrophages. Initially, the macrophages (16105 cells) were incubated
in a 96-well plate for 24 hours in the absence or in the presence of
different concentrations (as indicated) of the following PIs: nelfinavir,
amprenavir and lopinavir. After this period, the viability of the
macrophage cells was determined spectrophotometrically at 490 nm
by means of MTT assay. The dotted line separates the graphic in two
portions: minor than and equal or major than 95% of macrophage
viability. Control represents untreated macrophages (A). After that, we
studied the susceptibility of intracellular parasites to HIV PIs in
macrophages. Macrophages were infected with promastigotes of L.
amazonensis for 1 hour at 37uC, followed by exhaustive washing in PBS
and then the interaction was incubated for additional 24 hours in the
absence (control), or in the presence of nelfinavir, amprenavir or
lopinavir as indicated. The concentrations employed correspond to
those in which more than 95% of the macrophage cells were viable as
demonstrated in (A). Finally, the association index was determined by
light microscopy, counting at least 200 cells in each of duplicated
coverslips. Control system is shown as 100%. Each bar represents the
mean6standard error of at least three independent experiments (B).
doi:10.1371/journal.pone.0004918.g005
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immature, non-infectious viral particles [30]. Moreover, it has

been demonstrated that PIs have advantageous effects on some

opportunistic infections caused by fungal pathogens, and also some

protozoa, both known to be the major causes of morbidity and

mortality in AIDS subjects, due to restoration of the host immune

system and a direct action on the pathogens. Although there are

several studies concerning Leishmania/HIV co-infection, some

particularities of its epidemiology, pathogenesis, prophylaxis and

especially of its treatment remain unclear and undefined [1,31].

Based on these preceding evidences, we studied the implication of

distinct HIV PIs on the human protozoan parasite L. amazonensis,

focusing on the effects in the peptidase activity, parasite

proliferation, ultrastructure and interaction with animal cells.

Promastigote forms of L. amazonensis were cultured with

pepstatin A, nelfinavir, indinavir, saquinavir, lopinavir and

amprenavir up to 96 hours, and the parasite survival was

analyzed. Pepstatin A promoted a powerful reduction on the

growth of L. amazonensis. Pepstatin-like drugs, however, are not

used clinically because of their metabolism in the liver and rapid

clearance from blood [32]. Nelfinavir and lopinavir robustly

inhibited the L. amazonensis growth at 25 mM, in contrast to the

other PIs tested. It should be pointed out that the inhibitory effect

Figure 6. Effect of HIV PIs on peptidase expression by L. amazonensis. Differential peptidase expression observed in L. amazonensis
promastigote forms grown in the absence (control) or in the presence of nelfinavir, amprenavir and lopianvir at 100 mM. Gelatin-SDS-PAGE: The
gel strips, containing the equivalent to 56106 cells of parasite extract obtained after 4 hours of incubation with each inhibitor, were incubated at
37uC for 48 hours in 50 mM sodium phosphate buffer (pH 5.5) supplemented with 2 mM DTT. Numbers on the left indicate relative molecular mass
of the peptidases, expressed in kilodaltons (kDa). Immunoblotting: anti-gp63 or anti-cpb antibodies were employed to detect gp63- and cpb-like
molecules, respectively, in the whole cellular extract from L. amazonensis grown in the absence (control) or in the presence of nelfinavir, lopianvir and
amprenavir for 4 hours at 26uC; Anti-tubulin monoclonal antibody was used as a control for sample loading in the gels. The graphics represent the
densitometric measurements of the proteolytic halos observed in the gelatin-SDS-PAGE. The values represent mean6standard deviation of three
independent measurements. Similar densitometric analyses were performed using the reactive polypeptides detected in the immunobloting assays
(data not shown). Symbol denotes systems treated with PIs that had densitometric units significantly different from the control (P,0.05; Student’s t
test).
doi:10.1371/journal.pone.0004918.g006
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of HIV PIs in vitro were observed at substantial PI concentrations

(mM range), much higher than those needed for HIV peptidase

inhibition (on the nM order) [33]. This probably reflects a much

lower affinity of these drugs for a yet unidentified target in

Leishmania compared with their high affinity for HIV peptidase

[33].

Parasitic protozoa of the genus Leishmania are a biologically

diverse group of microorganisms. Taxonomic studies of field

Leishmania isolates indicate a tremendous diversity within this genus

[34], and genetic diversity may have a direct impact on relevant

properties of the organisms, including distinct clinical manifesta-

tions and drug susceptibility [35]. So, it is not surprising that the

effect of HIV PIs on Leishmania species responsible for visceral or

mucocutaneous leishmaniasis seems to be very distinct. Savoia and

colleagues [14] reported the IC50 for L. major promastigote in the

10 mM range for indinavir and saquinavir after 24 hours of

growth, while L. infantum, responsible for visceral leishmaniasis,

was inhibited only partially (about 30%) at the highest concen-

tration tested (50 mM) and only after 72 hours of growth [14]. In

the course of this manuscript preparation, Trudel and colleagues

[36] reported the effects of nelfinavir, ritonavir and saquinavir on

the extracellular growth of L. infantum promastigotes. No

significant alteration in parasite growth was reported in drug

concentrations up to 25 mM, after 72 hours of incubation [36].

Our results showed an IC50 for L. amazonensis in the 15 mM range

for nelfinavir or lopinavir after 24 hours of growth.

The effectiveness of HIV PIs in treating parasitic infections may

be associated to their capacity to modulate or block the cell

proteasome or to promote apoptosis [9]. Alternatively, it could act

directly on aspartyl peptidases produced by protozoa. This

proteolytic class has already been described in L. amazonensis [37]

and L. mexicana [38]. In the latter, it was also shown that diazo-

acetyl-norleucinemethylester (DAN), an aspartyl peptidase inhib-

itor, significantly reduces promastigote growth. Moreover, in the

present report, we demonstrated that nelfinavir and lopinavir

powerfully inhibited the hydrolysis of HIV-1 peptidase substrate,

at 10 and 1 mM, respectively. Although it seems reasonable to

assume that the HIV PIs target Leishmania aspartyl peptidase and/

or proteasome, the possibility of unrelated effects of inhibitors on

L. amazonensis should also be considered, such as nonspecific or

generally toxic effects on parasite cells. In this context, electron-

micrographic examination of protozoan cells exposed to nelfinavir

or lopinavir revealed some peculiar alterations in vital cellular

structures, such as cytoplasmic membrane and internal cellular

structures, suggesting irreversible metabolic injuries that culminate

in the parasite cell death.

Some of the ultrastructural alterations observed in L. amazo-

nensis, such as increase in the number of vesicles and wrapping of

the nucleus by the endoplasmic reticulum, are suggestive of

autophagy. In this sense, recent data have provided evidence for

the existence of different forms of programmed cell death. In

addition to the long time established existence of apoptosis,

autophagy has been increasingly described in eukaryotic cells [39].

Autophagy is a normal degradative process that exists in all

eukaryotic cells and is stimulated in response to a variety of

environmental stresses, which necessitate the use of autophagic

mechanisms to enable cellular survival [40,41]. Autophagy

involves the sequestration of cytosol or cytoplasmic organelles

within double membranes, thus creating autophagosomes (also

called autophagic vacuoles). Autophagosomes subsequently fuse

with endosomes and eventually with lysosomes, thereby creating

autophagolysosomes or autolysosomes. In the lumen of these latter

structures, lysosomal enzymes operating at low pH then catabolize

the autophagic material [42,43]. Low levels of autophagy are

considered to be responsible for better survival, while abnormally

high levels of autophagy might be responsible for cell death [43].

Up to now, the deregulation events responsible for uncontrolled

autophagic activity have not been well characterized [44].

Additionally, in contrast to mammalian cells, the autophagic

process in unicellular organisms is less understood. Finally, the

accumulation of autophagic vacuoles can precede apoptotic cell

death [44]. Indeed, Leishmania cells grown in the presence of

lopinavir for 24 hours displayed a chromatin condensation, which

is one of the hallmarks of apoptosis. Therefore, it would be

interesting to further explore the mechanism of cell death induced

by HIV PIs in Leishmania.

In the opportunistic fungal pathogen Cryptococcus neoformans,

indinavir selectively inhibits the production of some virulence

factors, such as urease and peptidase. Additionally, this inhibitor

also interfered with polysaccharide capsule formation, the major

virulence factor produced by this microorganism [45]. In this

context, we aimed to assess if the PIs would induce any change in

the peptidase expression by L. amazonensis. Over the past few years

it has become clear that peptidases from the pathogenic

trypanosomatids play an important role in several steps of the

host infection: adhesion, penetration, intracellular survival,

replication, differentiation, infectivity, immune evasion and

nutrition. Trypanosomatids present a large and varied array of

intracellular and/or extracellular peptidases whose regulated

expression entails specific functions in the parasite life-cycle stages

[18]. Leishmania spp. contain multiple, highly active intracellular

cysteine peptidase activities and an abundant intracellular or

surface-associated metallopeptidase, named gp63 or leishmanoly-

sin [16-18]. The majority of the studies so far developed have dealt

with only three types of cysteine peptidases, designated CPA, CPB

and CPC [16]. The generation of null mutants for CPA, CPB and

CPC genes in L. mexicana has provided the first genetic support for

the key role of leishmanial cysteine peptidases in parasite

virulence, and hence their validation as drug targets [16].

Accordingly, it has been demonstrated that cysteine peptidases

are preferentially expressed in virulent, as opposed to avirulent L.

amazonensis promastigotes [22]. Leishmanolysin is also involved in

Leishmania virulence and pathogenicity. The expression of the

enzyme is increased in metacyclic promastigotes and it may be a

ligand involved in the interaction of the parasite with defensive

systems of the host, including components of the complement

system and the macrophage surface. This enzyme can also play a

role in intracellular amastigote survival within macrophage

phagolysosomes. Nevertheless, data from gp63 knockouts are

conflicting [17].

In this context, contrary to the view that HIV PIs would lead to

a reduction in peptidase levels, as described for virulence factors in

fungi, our data revealed a significant increase in the expression of

these molecules when parasites were subjected to PIs before

protein extraction. Curiously, a similar effect was described when

L. amazonensis was treated with parthenolide, which is a

sesquiterpene lactone purified from the hydroalcoholic extract of

aerial parts of Tanacetum parthenium [46]. One hypothesis could be

that the HIV PIs are inhibiting an aspartyl peptidase that should

be otherwise degrading some of the gp63 and CPB peptidases.

Accordingly, the degradation of the HIV-1 peptidase substrate was

substantially inhibited by HIV PIs. An alternative hypothesis could

be that the HIV PIs are exerting stress, or some other non-specific

effect, on the promastigotes that leads to changes in parasite gene

expression. Indeed, stresses such as heat shock are important to the

differentiation of L. amazonensis into axenic amastigotes, whereup-

on cysteine peptidase gene expression, and hence activity, is

upregulated [37,47].
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The murine infection is one of the best characterized

experimental models for studying Leishmania-mammalian host cells

interplays [48]. Data from infection of peritoneal mouse

macrophages by L. amazonensis revealed that the parasites

pretreated with PIs had association indexes considerably lower

in comparison to control system. Taken together, these results

suggest interference in early steps of macrophage infection either

through modulation of yet unidentified virulence factors, blockade

of ligand/receptor binding, suppression of ligand/receptor

expression or due to direct non-specific toxic effects of the

inhibitor. It should be pointed out that these interaction inhibition

profiles were not caused by a decreased viability of L. amazonensis

cells, as assessed by propidium iodide staining. The identification

of the molecular mechanism by which the HIV PIs interfere with

promastigote interaction with mammalian cells remains an open

question.

It has been previously demonstrated that inhibitor compounds

effectiveness may depend on the developmental stage of the

parasite. For instance, L. mexicana amastigotes developing within

macrophages during human infection are more sensitive to

lactacystin than promastigotes developing in culture medium

[49], which may be explained by a distinct action of the drugs on

promastigotes alone and on amastigotes in an intracellular

environment. In order to assess if the same applies to HIV PIs,

we evaluated the effect of nelfinavir, amprenavir and lopinavir on

the Leishmania development inside target cells. The drug concen-

trations employed in this assay showed no direct toxicity on

macrophages, while they drastically reduced the association index

at considerably lower doses than those required to interfere with

promastigotes. Whether the inhibitors are acting directly in the

amastigotes or indirectly, modulating the killing capability of the

macrophages, remains an open question. Alternatively, macro-

phages could concentrate higher levels of PIs. Accordingly, it was

shown in L. chagasi that higher drug concentrations are necessary

to interfere with axenic amastigotes when compared to intracel-

lular amastigotes [36]. Finally, even the lower doses required to

inhibit amastigote development are still higher than those needed

for the inhibition of HIV progression in humans. However, we

have to consider that HAART consists of a combination of

antiretroviral drugs and the pharmacodynamics of an in vitro

model is very different from those in humans. Moreover, the HIV

PIs were designed to fit viral peptidases and may thus have a lower

affinity for aspartyl peptidases of L. amazonensis. Additional in vivo

studies will help to elucidate this issue, and also further efforts

should be directed to find new PIs that are more specific for these

parasite enzymes.

In Brazil, the clinical forms found among coinfected cases are

43% mucocutaneous, 37% visceral, and 20% cutaneous leish-

maniasis [50], a clinical pattern that differs from that found in

southern Europe, where typical visceral leishmaniasis represents

88% of coinfected cases; 8% of cases are atypical because of

intestinal, lung, or other parasite colonizations, about 5% are

cutaneous, and 0.3% are combined cases of visceral and cutaneous

leishmaniasis [2,51]. In the face of leishmaniasis distribution in

Brazil, its spread to important cities and the overlap with HIV-

infected individuals, it is critical to further comprehend the

sophisticated interplays among Leishmania, HIV and macrophages.

In addition, there are many unresolved questions related to the

management of Leishmania-HIV-coinfected patients. For instance,

the efficacy of therapy aimed at controlling each pathogen in

coinfected individuals remains largely undefined. The results

presented herein add new in vitro insight into the wide spectrum

efficacy of HIV PIs and suggest more detailed studies about the

synergistic effects of classical antileishmanial compounds and HIV

PIs in macrophages coinfected with Leishmania and HIV-1,

especially in the light that sodium stibogluconate can stimulate

HIV-1 replication in vitro [52], and that Leishmania infection

enhances HIV-1 replication [53,54]. Macrophages infected with

HIV-1 allow the intracellular growth of an otherwise non-

pathogenic protozoan, Blastocrithidia culicis, which illustrates the

susceptibility of these cells to parasite infections [55]. Finally, it was

recently reported that L. infantum promastigotes enhance HIV-1

replication in monocyte-derived macrophages at late time points

in the virus growth curve but also, surprisingly, a reduction in

HIV-1 production is seen during the initial days after infection.

This early effect is caused by a Leishmania-mediated inhibition of

virus entry into monocyte-derived macrophages through the

action of lipophosphoglycan (LPG), the major promastigote

surface glycolipid. Altogether, these data suggest the establishment

of complex interactions in Leishmania-HIV common natural host

cells [56].
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