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Abstract

Background: Environmental processes in ecosystems are dynamically altered by several metabolic responses in
microorganisms, including intracellular sensing and pumping, battle for survival, and supply of or competition for
nutrients. Notably, intestinal bacteria maintain homeostatic balance in mammals via multiple dynamic biochemical
reactions to produce several metabolites from undigested food, and those metabolites exert various effects on mammalian
cells in a time-dependent manner. We have established a method for the analysis of bacterial metabolic dynamics in real
time and used it in combination with statistical NMR procedures.

Methodology/Principal Findings: We developed a novel method called real-time metabolotyping (RT-MT), which performs
sequential 1H-NMR profiling and two-dimensional (2D) 1H, 13C-HSQC (heteronuclear single quantum coherence) profiling
during bacterial growth in an NMR tube. The profiles were evaluated with such statistical methods as Z-score analysis,
principal components analysis, and time series of statistical TOtal Correlation SpectroScopY (TOCSY). In addition, using 2D
1H, 13C-HSQC with the stable isotope labeling technique, we observed the metabolic kinetics of specific biochemical
reactions based on time-dependent 2D kinetic profiles. Using these methods, we clarified the pathway for linolenic acid
hydrogenation by a gastrointestinal bacterium, Butyrivibrio fibrisolvens. We identified trans11, cis13 conjugated linoleic acid
as the intermediate of linolenic acid hydrogenation by B. fibrisolvens, based on the results of 13C-labeling RT-MT
experiments. In addition, we showed that the biohydrogenation of polyunsaturated fatty acids serves as a defense
mechanism against their toxic effects.

Conclusions: RT-MT is useful for the characterization of beneficial bacterium that shows potential for use as probiotic by
producing bioactive compounds.
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Introduction

A huge number of microorganisms are known to colonize and

form complex microbial ecosystems within the human and animal

gut [1–5]. It is generally accepted that microbial ecosystems

associated with humans or animals have a direct influence on the

host’s health. Gut microbiota possess a number of metabolic

capabilities that are lacking in the host and thus, can be viewed as

indispensable to the maintenance of health. Gut microbes

contribute to host nutrition by producing organic acids from

undigested carbohydrates and by synthesizing bioactive substanc-

es, including vitamins [6,7]. Intestinal bacteria and their

metabolites, including short-chain fatty acids (SCFAs), butyric

acid in particular, exert significant physiological effects on the host

by controlling the differentiation and proliferation of intestinal

epithelial cells, providing energy to epithelial cells, modulating the

immune system, and protecting against pathogens [6–10]. An

imbalance of intestinal microbiota can predispose individuals to a

variety of disease states ranging from inflammatory bowel disease

to allergy and obesity [3,4,11].

Recently, many probiotics have emerged and their effects on

human health have been partially demonstrated [12–15]. As a

single probiotic bacterium can exert several effects on human

health mainly through the improvement of host innate immune

responses by producing several bioactive substances[16–21], an

understanding of the metabolic dynamics of purified bacterium is

absolutely essential. However, the mechanisms underlying their

effects have not been well elucidated and thus, the functional

analysis of probiotics is eagerly anticipated. Because metabolites

that can be utilized similarly by host cells and bacterial cells are
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considered to be one of the most important factors to help us

understand the effectiveness of probiotics [22,23], we need to

establish a method for the analysis of metabolic dynamics.

Since bacteria grow in the gut, it is desirable to analyze their

metabolic dynamics at the growth phase to elucidate their ability

to produce organic acids and physiologically active substances.

The multiple high-throughput metabolic analysis of Escherichia coli

K12 knockdown system has been reported [24]; however, it

requires bacterial whole genomic information and knockdown

systems, and is not easily applicable to the estimation of bacterial

metabolic dynamics.

To use bacteria as probiotics, it is necessary to screen their

characteristics, such as pH resistance and the ability to produce

bioactive substances [25,26]. As screening methods are diverse and

usually complicated, an appropriate strategy is desired. By

characterizing bacteria based on their metabolic profiles, we

would be able to know and estimate their ability to produce

bioactive substances or their metabolic dynamics in response to

environmental factors, such as nutrients and chemicals. Accord-

ingly, the development of a universal bacterial evaluation system is

highly awaited in food science technology.

To understand bacterial metabolic dynamics, several analytical

strategies having notable technological features have been

introduced [27,28]. In addition, an important concept that is

based on the global analysis of environmental metabolites, the so-

called metabolic phenotype, has been reported [29–33]. However,

these strategies are insufficient because they can observe only

metabolites at a certain growth stage of living cells or under certain

environmental conditions. In other words, those strategies provide

only a ‘‘static’’ view of metabolic aspects. Most enzyme reactions

are completed within a few seconds, while metabolic reactions

occur on a time scale of minutes to hours and changes in microbial

growth occur on a time scale of hours to days. Several techniques

for monitoring living cells have been reported, including in situ, ex

vivo, and in vivo NMR [34–43]. However, efficient approaches that

combine such real-time dependent (in vivo) events and statistical

approaches have not been investigated.

We have reported that a gastrointestinal bacterium, Butyrivibrio

fibrisolvens, produces conjugated linoleic acid (CLA) and conjugated

linolenic acid (CLNA) from linoleic acid (LA) and alpha-linolenic

acid (LNA), respectively [44–47]. CLA and CLNA produced by B.

fibrisolvens are known as health-promoting substances because of

their beneficial effects on human health [48–53]. However, the

metabolic dynamics of B. fibrisolvens, including CLA and CLNA

production, is not well understood. Here we developed a novel

profiling technique called real-time metabolotyping (RT-MT) to

understand and evaluate metabolic dynamics when used in

combination with real-time and statistical NMR analysis methods.

As a result of performing 13C-labeling RT-MT experiments, we

clarified the LNA hydrogenation pathway of B. fibrisolvens based on

our accumulated knowledge in NMR analyses and stable isotope

labeling techniques [54–58].

Results and Discussion

Development of RT-MT to understand bacterial
metabolic dynamics and possible applications

We have developed RT-MT to understand and evaluate the

metabolic dynamics of several bacterial strains (Fig. 1). The most

important point of this method is that the time-dependent

Figure 1. Development of real-time metabolotyping (RT-MT) to analyze bacterial metabolic dynamics. In vivo 1H-NMR (right) and two-
dimensional 1H, 13C-HSQC with 13C labeled substrate technique (2D-13C-HSQC) (left) were continuously conducted during bacterial growth in an NMR
tube at 37uC, and the profiling data were processed and analyzed by several statistical methods, such as Z-score analysis, principal components
analysis (PCA), and time series of statistical total correlation spectroscopy (STOCSY). From the results of statistical analyses of In vivo 1H-NMR profiling
data, we extracted meaningful data related to time-varying information. Furthermore, from the results of in vivo 2D-13C-HSQC profiling data, we
revealed the metabolic kinetics of specific metabolic reactions.
doi:10.1371/journal.pone.0004893.g001
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metabolic profiles from 1H-NMR and 1H, 13C-HSQC sequential

observations during bacterial growth in an NMR tube are

calculated and evaluated with several statistical methods, such as

Z-score analysis, principal components analysis (PCA), and

statistical total correlated spectroscopy (STOCSY). It is considered

that the statistical analyses of time-dependent metabolic profiles

would show meaningful biological data related to metabolic

dynamics. In addition, time-dependent two-dimensional 1H, 13C-

HSQC with 13C labeled substrates (2D-13C-HSQC) profiles could

be used to generate three-dimensional metabolic kinetic profiles.

Time-dependent 2D-13C-HSQC can provide very detailed

information of specific metabolic dynamics. As anaerobic

conditions can be easily created in NMR tubes, RT-MT can be

applied to the analysis of anaerobic environments, such as soil,

industrial plant, and animal gut. RT-MT is expected to improve

our understanding of metabolic dynamics that would be necessary

for the extraction of particular characteristics of metabolic

changes.

Use of time-dependent 1H-NMR RT-MT to assess bacterial
characteristics

a) Z-score analysis of B. fibrisolvens strains. Z-score

analysis of three B. fibrisolvens strains revealed their metabolic

dynamics, including time-varying factors (Fig. 2). All samples

showed remarkable changes of the chemical shifts in the 1 to

4 ppm region, which were derived from lipids, organic acids, and

sugars, and around 8 ppm, which were derived from formic acid.

In particular, signals around 2 ppm, which were attributed mainly

to acetic acid present in abundance, were slightly shifted downfield

with decreasing culture pH. A negative correlation was observed

between glucose concentration, which was calculated from the 1H-

NMR standard curve (data not shown), and bacterial growth rate

(SI Fig. S1). It was possible to calculate the transition to acidic

culture pH due to organic acid production by bacteria from the

chemical shift changes of bacterial metabolites containing a

carboxylic group (SI Fig. S2). Furthermore, Z-score analysis

clearly showed changes in the chemical shifts of metabolites

present in small amounts, which appeared as unidentified signals

in the low field region (8.3–8.6 ppm) during bacterial growth.

Interestingly, the presence or absence of linoleic acid (LA) or

linolenic acid (LNA) contributed more significantly to the

difference in Z-score profiles than the difference in strain under

the same conditions. Anaerobic B. fibrisolvens strains exhibit

different metabolic activities of and tolerance activities to

exogenous lipids related to CLA production [47], and the

remarkable differences of the Z-score profiles among control,

LA, and LNA conditions are a reflection of the difference in

metabolic activities of the strains. From these findings, we

speculated that RT-MT may be applicable to chemical biological

research [59,60] as well as to silent phenotype analysis [61] to

screen for objective chemicals and phenotypes, because RT-MT

can easily monitor metabolic changes based on specific reactions

and responses by the addition of several compounds.

In cultures with LA or LNA, Z-score profiles mainly around the

1 to 4 ppm region were changed compared to the cultures without

LA or LNA (Fig. 2). In particular, Z-score variations around

3.5 ppm represent variations in the amounts of sugars. The results

show that the relative sugar consumption rates of MDT-5 and A38

strains grown in the presence of LNA, as well as of A38 grown in

the presence of LA, were lower than those of control cultures. This

result suggests that fatty acids (FAs) inhibit bacterial growth, as has

been reported previously [62]. However, the growth of MDT-10

was not markedly inhibited by LA or LNA. Our past data showed

that MDT-10 can rapidly metabolize LA and LNA to vaccenic

acid (VA), which is less toxic than LA and LNA to bacteria [45].

Therefore, MDT-10 is considered to be resistant to FAs. From

these results, we consider that RT-MT is useful for the rough

visualization of bacterial metabolic dynamics in response to

exogenous effectors.

b) PCA of B. fibrisolvens strains. Different from Z-score

analysis, it is possible to detect characteristic metabolites by PCA.

Interestingly, the differences in PCA profiles were more

Figure 2. Z-score analysis of time-dependent 1H-NMR profiles of three B. fibrisolvens strains incubated with or without LA or LNA. A
total of 120 continuously acquired in vivo 1H-NMR spectra were used in each Z-score analysis. MDT-10, MDT-5, and A38 were grown in anaerobic
culture (control), with 2.5 mM LA, or with 2.5 mM LNA. Asterisks mean low concentration (0.6 mM) of FAs, because MDT-5 did not grow in the
presence of 2.5 mM LA or 2.5 mM LNA, and A38 did not grow in the presence of 2.5 mM LNA. Data are representative of three independent
experiments. Contour levels (Z-score values) defined by different colors are indicated at the bottom.
doi:10.1371/journal.pone.0004893.g002
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remarkable among the different strains than among the different

medium conditions (Fig. 3-A). The PCA profiles of the three

strains revealed that the metabolic characteristics of MDT-10 and

MDT-5 were similar, while those of A38 were quite different. We

calculated the first two components that contained principal

components 1 and 2 contributing to 77.0% and 11.6% of the data

variance, respectively. The strains were well separated primarily in

PC2 and appeared to form two groups of A38 and of MDT-10

and MDT-5. In contrast, PC1 was dominated by the time course,

which is common to the three strains. The spectral regions that

contributed most to the difference between the two groups are

shown in the corresponding loading plot (Fig. 3-B). Metabolites

that exerted the greatest influence on this separation were lactate

and glucose in PC1 and butyrate, acetate, and formate in PC2

(Fig. 3-B). As the three strains grew, they consumed glucose and

produced lactate; however, butyrate, acetate, and formate

production was different between the two groups. It is well

known that B. fibrisolvens strains could be classified into Type I

(high butyrate and formate production) or Type II (high lactate

production) based on their fermentation products but not their

16S rDNA sequences [63–65]. It has been reported that these

differences may be the basis for genetic differences related to the

butyrate production pathway [65]. Therefore, this analytical

method could be used to characterize bacterial fermentation

patterns derived from functional genetic information.

c) STOCSY analysis of B. fibrisolvens MDT-10. In order

to clarify the pathway of LNA metabolism by B. fibrisolvens MDT-

10, we next analyzed the time series of STOCSY spectra [66], and

the results showed time-dependent metabolic changes in bacterial

growth at hourly intervals (SI Fig. S3). For the spectra obtained

without LNA, a negative correlation was observed between

glucose (around 3.5 ppm) and organic acids (around 1.5 ppm) in

the spectra at 3 to 6 h; the correlation corresponded to the activity

during the growth period of MDT-10, because the growth reached

a maximum after 6 h (SI Fig. S1). Moreover, the negative

correlation vanished after 8 h in the spectra of cultures grown

without LNA, whereas the negative correlation in the spectra of

cultures grown with LNA existed until 9 h in spite of the addition

of LNA, which has a stronger growth inhibitory effect than LA.

Negative correlations in the spectra of the cultures grown with

LNA were low at 3 to 9 h compared to control values (grown

without LNA), suggesting that the growth of MDT-10 was

inhibited by LNA, and that MDT-10 grew after LNA was

metabolized to VA, which is much less cytotoxic than LNA [47].

Analyzing the metabolic response of MDT-10 to LNA, signals

in the 1 to 3 ppm region were greatly changed and some of the

compounds were successfully identified. For example, several

organic acids produced from glucose were identified, and some

signals, such as those at 1.2, 1.5, 1.8, and nearby 2.8 ppm, showed

a positive correlation with glucose consumption (Fig. 4). As those

signals were assumed to be derived from LNA or its metabolites,

we next performed 2D 1H, 13C-HSQC analysis using U-13C18 LA

and U-13C18 LNA.

Utilization of time-dependent 2D-13C-HSQC RT-MT to
narrow down biochemical reactions analyzed

To monitor the specific metabolic dynamics, we developed

time-dependent 2D- 13C-HSQC with U-13C18 LA and U-13C18

LNA. As the time-dependent 2D-13C-HSQC profiles could be

used to generate three-dimensional metabolic profiles, it is possible

to understand very detailed information of specific metabolic

kinetics. It is well known that NMR signal intensities can be

altered by such factors as the mobility of molecules, pH, and

sample homogeneity [67–73]. However, our results indicated that

the normalized signal intensities of 13C-labeled substrate were little

affected by bacterial optical density, differences in NMR data

processing, and culture pH (SI Tables S1 and S2). In addition, the

variability of triplicate experiments was caused by differences in

the volume of pre-cultured bacterial medium that was initially

inoculated into the NMR tube. NMR tuning and shimming could

also change NMR signal intensities and line widths; however, we

Figure 3. Principal components analysis (A) and loading plot analysis (B) of three strains of B. fibrisolvens. MDT-10 (red), MDT-5 (blue),
and A38 (purple) are shown. Data under conditions of LA addition (open squares), LNA addition (close squares), or no addition (close circles) were
calculated. Data are representative of three independent experiments. (A) Hourly 1H-NMR profiling data of three strains of B. fibrisolvens incubated
with or without LA or LNA were analyzed. Contributions of PC1 and PC2 were 77.0% and 11.6%, respectively. All 0 h samples were assembled at the
left side of Figure 3A, indicating that metabolic conditions before bacterial growth were similar. However, after 10 h, the samples were located in the
right side of Figure 3A, suggesting that PC1 means bacterial growth and PC2 means metabolic differences among B. fibrisolvens strains. (B) Blue peaks
and words indicate PC1 contribution and those in red indicate PC2 contribution. The 4.2–5.2 ppm region was omitted to eliminate the effects of
imperfect water suppression.
doi:10.1371/journal.pone.0004893.g003
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found that these were constant during in vivo NMR observation.

Therefore, the results of our kinetic analysis were highly reliable.

In the case of RT-MT with U-13C18 LA and U-13C18 LNA, we

state two reasons why the signal intensities were largely unaltered.

First, the culture media contained large amounts of molecules,

including sugars, peptides, organic acids, minerals, and vitamins,

for bacterial growth [21]. Second, to dissolve U-13C18 LA and

U-13C18 LNA in culture media, they were mixed and adsorbed to

bovine serum albumin (BSA) [47]. It is for these two reasons that

we conclude that the signal intensities of U-13C18 LA and U-13C18

LNA were largely unaltered.

a) Dynamics of LA metabolism by B. fibrisolvens MDT-

10. It is well known that B. fibrisolvens hydrogenates LA and LNA

to VA in order to decrease their cytotoxicity [62]. Our past

findings also suggest that LA hydrogenation activity and tolerance

ability to LA are correlated [47]. When we monitored LA

metabolic kinetics of MDT-10 using time-dependent 2D-13C-

HSQC RT-MT, we found that the growth rate of MDT-10 was

low at the initial stage of growth when LA concentration was high.

However, the growth rate increased gradually as LA was reduced

to VA through the transient accumulation of cis9, trans11-CLA (SI

Fig. S4). As mentioned above, LA or CLA hydrogenation to VA

may be a defense response. These results are consistent with our

past data; therefore, time-dependent 2D-13C-HSQC RT-MT is

useful for understanding metabolic kinetics.

b) Dynamics of LNA metabolism by B. fibrisolvens MDT-

10. Our past work has demonstrated that the bacterial growth

inhibitory activity of unsaturated FAs increases with increasing

degree of unsaturation [47]. Therefore, we next analyzed the

metabolic dynamics of LNA, which is more unsaturated than LA,

using MDT-10. Similar to the case of LA (SI Fig. S4), MDT-10

growth was suppressed at the initial growth stage when LNA

concentration was high, but was gradually improved as LNA was

hydrogenated to VA (Fig. 5). The intermediates of LNA

hydrogenation were identified as CLNA, trans11, cis15–18:2 (t11,

c15–18:2), and VA. When similar analysis was performed with

MDT-5 and A38, the final product of LNA hydrogenation was

CLNA and t11, c15–18:2, respectively (Fig. 6-A). Previously, we

reported that strain TH1 produced CLNA and t11, c15–18:2 as

the intermediates of LNA hydrogenation [46], and we also

observed that strains ATCC19171 and ATCC51255 produced

CLNA and t11, c15–18:2 as intermediates (data not shown). Thus,

the LNA hydrogenation pathway may be similar among B.

fibrisolvens strains except A38 and MDT-5.

Figure 4. Time series of STOCSY analysis of B. fibrisolvens MDT-10 incubated with LNA. During these one-hour experiments, a total of
twelve continuously acquired in vivo 1H-NMR spectra were used for STOCSY analysis. Spectra appearing on the right side are the sum of the twelve in
vivo 1H-NMR spectra measured in every one-hour experiment. Contour levels (STOCSY correlations) defined by different colors are indicated at the
bottom. Blue represents high positive correlation and red represents low. Optical density (OD) is a measure of bacterial growth. Arrows indicate
butyrate (black), lactate (orange), acetate (pink), and ethanol (purple). Signals surrounded by green squares are assumed to be derived from LNA or its
metabolites. Data are representative of three independent experiments.
doi:10.1371/journal.pone.0004893.g004
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Application of time-dependent 2D-13C-HSQC RT-MT to
protein functional analysis based on biochemical reactions:
LNA hydrogenation pathway in B. fibrisolvens MDT-10

We found previously that CLA-R from MDT-10 reduces CLNA to

t11, c15–18:2 but did not reduce t11, c15–18:2 to VA [44]. Therefore,

we surmised that t11, c15–18:2 is isomerized once to another form,

and then reduced to VA. When MDT-5, which has no CLA-R

activity, was grown with t11, c15–18:2 that was produced from

U-13C18 LNA by A38, only an unidentified 18:2 FA was produced

(Fig. 6-A), and A38 did not metabolize t11, c15–18:2 further (data not

shown). Meanwhile, MDT-10 converted the unidentified 18:2 FA

produced by MDT-5 into VA. These results are consistent with the

information for LNA metabolism described above.

The unidentified 18:2 FA produced by MDT-5 was shown to be

an isomer of t11, c15–18:2, as examined by gas chromatography-

mass spectrometry (GC-17A, Shimadzu Co., Kyoto, Japan) (data

not shown). This FA exhibited absorbance at 233 nm in reversed-

phase HPLC (Prominence, Shimadzu Co., Kyoto, Japan) (data not

shown), indicating that the FA has conjugated double bonds.

When we compared the structures of the intermediates produced

by U-13C18 LNA hydrogenation by 2D 1H, 13C-HSQC profiling,

the unidentified 18:2 FA was found to have trans and cis double

bonds (SI Fig. S5). In addition, since purified CLA-R from MDT-

10 reduced this FA directly to VA, which has a trans-11 double

bond, this FA would have at least one trans-11 double bond (data

not shown). TOCSY analysis revealed that CH3 and CH of the

double bond of the unidentified 18:2 FA were correlated, whereas

CH3 and CH of the double bond of VA were not correlated,

suggesting that the double bonds of this FA are located at positions

11 and 13, respectively (SI Fig. S6). Thus, 18:2 FA was identified

as t11, c13-CLA. It has been suggested that conjugated 18:2

isomers in general have health-promoting activities [48]. t11, c13-

CLA was found in milk of cows grazing mountain pasture, which

is rich in LNA [74]. Taken together, we conclude that the LNA

hydrogenation pathway in the three B. fibrisolvens strains is as

shown in Fig. 6-B. It is noteworthy that the CLA-R from MDT-10

hydrogenates both CLNA and t11, c13-CLA.

It has been reported that LA isomerase (LA-I) purified from A38

isomerized not only LA to CLA but also LNA to CLNA [75–77]. As

mentioned above, our experiments with A38 showed that the final

product of LNA hydrogenation is t11, c15–18:2, indicating that LA-I

of A38 is unable to isomerize t11, c15–18:2 to other isomers, such as

t11, c13–18:2. Although we have not purified LA-I from MDT-10 or

MDT-5, their LA-I may be similarly unable to isomerize t11, c15–

18:2. Thus, we speculate that MDT-10 and MDT-5 have a specific

t11, c15–18:2 isomerase that differs from LA-I.

Possible applications to applied sciences
We demonstrated that metabolic changes of the three strains of

B. fibrisolvens in response to unsaturated FAs can be evaluated by

Figure 5. LNA metabolic dynamics of B. fibrisolvens MDT-10 analyzed by time-dependent 2D-13C-HSQC RT-MT. The NMR tube was
anaerobically inoculated with B. fibrisolvens MDT-10 and U-13C18 LNA (2.5 mM) was added to follow LNA hydrogenation reactions in in vivo 2D-13C-
HSQC RT-MT. A: Typical 2D HSQC spectra (sequential growth at 0, 2, 3, and 4 hours) are shown. 2D HSQC spectra were observed every 8 minutes.
Arrows in upper panel indicate C-H structures corresponding to the signals. Signal intensities were calculated based on their standard curves. Arrows
pointing to lower panel (B) indicate 2D HSQC spectra measured at the indicated time point. B: LNA metabolic dynamics of B. fibrisolvens MDT-10
calculated from time-dependent 2D-13C-HSQC RT-MT. LNA (black circles), CLNA (blue triangles), t11, c15–18:2 (pink diamonds), VA (green squares),
and bacterial growth (open red squares) are shown. Mean values of triplicate experiments are shown.
doi:10.1371/journal.pone.0004893.g005
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RT-MT. Therefore, this method is a powerful tool for the

investigation and estimation of bacterial metabolic dynamics. By

monitoring bacterial metabolic dynamics in real time, we would be

able to understand their metabolic activities and evaluate their

effectiveness as candidates for probiotics. The characteristics of the

three B. fibrisolvens strains are as follows: MDT-5 has higher

CLNA-producing ability than the other two strains (Fig. 6-A), but

its growth is inhibited at high LA and LNA concentrations (Fig. 2).

A38 produces a large amount of butyrate having several

physiological activities [21], compared to the other two strains

(Fig. 3). MDT-10 metabolizes LA and LNA to VA and produces

t11, c13 conjugated FA from LNA (Figs. 2, 6, and SI Fig. S4). We

previously proposed that MDT-5 and MDT-10 may be beneficial

as probiotics for animals including humans, by acting to increase

CLA and CLNA production in the intestine [45,46], and that

MDT-10 may also be useful to augment butyrate production in

the intestine [21]. Thus, to improve bacterial production of

bioactive substances, a solid understanding of metabolic dynamics

is important.

RT-MT can be used to understand metabolic pathways and

may have applications in industry as an innovative bacterial

monitoring system. Bacterial fermentation products have been

examined for possible use as renewable energy and materials in the

biorefinery industry [78] and therefore, RT-MT might be

extended to strain screening, strain improvement, and evaluation

for metabolic engineering [36,79–81]. Further applications include

process monitoring in the food industry and environmental

management, including wine fermentation [82], lactobacillus

fermentation [82,83], and bioremediation [28]. It is considered

that the detection limit of metabolites by NMR is generally much

lower than that of other apparatuses, such as GC-MS and LC-MS.

However, the amounts of metabolites affecting human health,

such as SCFAs produced by colonized gut microbes, are

considerably high [84]. If only the quantification of metabolites

could be accomplished, we would be able to partially predict

metabolic pathways and use them in combination with genomic

information. Thus, in vivo NMR techniques are considered to be

useful for the characterization of bacterial strains, and our newly

proposed method, RT-MT, may open a new avenue for basic life

science, industry, and environmental management.

Materials and Methods

Bacterial strains, reagents, and culture conditions
Sources of B. fibrisolvens strains (A38, MDT-5, and MDT-10)

were described previously [45–47]. Unless otherwise stated, each

strain was grown in 30 mL serum vials containing growth medium

(15 mL) with 5 g/L glucose. Details of culture medium, growth

conditions, and procedures were as described previously [21,85].

In the case of in vivo NMR measurement, the strains were cultured

in a 5 mmı̂ NMR tube containing 1 mL of growth medium, 10%

(v/v) D2O, and 1 mM sodium 2,2- dimethyl-2- silapentane-5-

sulfonate (DSS).

U-13C18 LA and LNA, D2O, and DSS were purchased from

Shoko Tsusho Ltd. (Tokyo, Japan). FAs were added as a mixture

with BSA, which was prepared as described previously [47].

1D and 2D NMR measurements
All NMR spectra were recorded on a Bruker DRX-500

spectrometer operating at 500.03 MHz 1H frequency with the

temperature of NMR samples maintained at 310 K. For 1D in vivo
1H-NMR, spectra were observed every 5 minutes and residual

water signals were suppressed by Watergate pulse sequence with

1.2 second repetitive time. 2D 13C-HSQC spectra were measured

every 8 minutes according to the method of Kikuchi and

Hirayama [86]. Briefly, 1D NMR spectra were measured on a

Bruker DRX-500 spectrometer equipped with a 1H inverse probe

with triple axis gradient. All 2D 13C-HSQC spectra were recorded

Figure 6. Metabolic dynamics of LNA and t11, c15–18:2 in three strains of B. fibrisolvens analyzed by time-dependent 2D-13C-HSQC
RT-MT. A: When the initial OD was approximately 0.5, U-13C18 LNA or t11, c15–18:2 (2.5 mM) was added to cultures to avoid growth inhibition. LNA
(black circles), CLNA (blue triangles), t11, c15–18:2 (pink diamonds), t11, c13–18:2 (orange circles), VA (green squares), and bacterial growth (open red
squares) are shown. A38 did not metabolize t11, c15–18:2 (data not shown). Mean values of triplicate experiments are shown. B: LNA hydrogenation
pathway of three strains of B. fibrisolvens deduced from the results of this study. Chemical structures and location of double bonds of LNA and its
metabolites are shown. Arrows indicate enzymes responsible for each reaction. Light blue, red, and dark blue arrows represent LNA isomerase, CLA-R,
and t11, c15–18:2 isomerase, respectively.
doi:10.1371/journal.pone.0004893.g006
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on a Bruker DRX-500 spectrometer equipped with a 1H inverse

cryogenic probe with Z-axis gradient. A total of 32 complex f1

(13C) and 1024 complex f2 (1H) points were recorded with 8 scans

per f1 increment. Spectral widths were 2,640 Hz and 5000 Hz for

f1 and f2, respectively. To quantify signal intensities, a Lorentzian-

to-Gaussian window with a Lorentzian line width of 10 Hz and a

Gaussian line width of 15 Hz was applied in both dimensions,

prior to Fourier transformation. A fifth-order polynomial baseline

correction was subsequently applied in f1 dimension. The indirect

dimension was zero-filled to 512 points in the final data matrix.

NMR spectra were processed using NMRPipe software [87,88].

Quantitative statistical analysis of 1D 1H-NMR spectra
1D 1H-NMR data were reduced by subdividing spectra into

sequential 0.04 ppm designated regions between 1H chemical

shifts of 0.5 to 10.0. After exclusion of water resonance, each

region was integrated and normalized to the total of all resonance

integral regions. 2D spectral assignments were performed using

customized software (Chikayama and Kikuchi, unpublished data).

The Z-score matrix that was used to visualize sequential

changes of chemical shifts is defined as the matrix that has each

element of

Zij~ sij{SsjT
� ��

sj ,

where sij is the intensity of the j-th bin in the i-th 1D spectrum, Æsjæ
is the average of all the intensities of the j-th bins in all the spectra,

and sj is the standard deviation of them. Any elements that had

intensity less than 3000 (arbitrary unit) in the final Z-score

matrices were replaced with zero.

PCA was run on R software. Data were visualized in the form of

PC score plots and loading plots. Each coordinate on the score

plot represents an individual sample and each coordinate on the

loading plot represents one NMR spectral data point related to

metabolites. Thus, the loading plots provide information on

spectral regions responsible for the positions of coordinates or

clusters of samples in the corresponding score plots.

STOCSY was also analyzed using Excel software, as described

by Cloarec et al. [66]. Briefly, a STOCSY spectrum was calculated

as a symmetric matrix in which an element at position (i, j) is

defined as a correlation coefficient between i-th and j-th bins in a

set of 1D spectra (twelve spectra each acquired on an hourly basis).

A positively (negatively) higher coefficient means the existence of a

positive (negative) correlation between i-th and j-th peaks

throughout the spectra.

Quantification and identification of FAs
Lipids were extracted by shaking cultures with isopropanol-

isooctane-6N H2SO4 (20:10:1), as reported previously [85]. Then,

the lipids were transmethylated with 5% HCl in methanol at 60uC
for 20 min under N2 gas [85]. Methylated FAs were analyzed by

gas chromatography-mass spectrometry (GC-17A, Shimadzu Co.,

Kyoto, Japan) as described previously [85]. In order to identify the

FAs derived from LNA hydrogenation, FAs extracted from

cultures were separated and collected by reversed-phase HPLC

(Prominence, Shimadzu Co., Kyoto, Japan) using COSMOSIL

5C18-AR-II (4.6 mm I.D.6150 mm, Nacalai Tesque Inc., Kyoto,

Japan).

Supporting Information

Figure S1 Glucose concentration and growth rate of three

strains of B. fibrisolvens incubated in NMR tubes. Glucose

concentration (circles) was calculated from the signal intensities

observed every 5 minutes. OD (squares) was determined hourly.

Mean values of triplicate experiments are shown.

Found at: doi:10.1371/journal.pone.0004893.s001 (0.42 MB TIF)

Figure S2 Dependence of pH on chemical shift mobility of

acetate (A) and succinate (B). Mean values of triplicate experiments

are shown.

Found at: doi:10.1371/journal.pone.0004893.s002 (0.16 MB TIF)

Figure S3 Time series of STOCSY analysis of B. fibrisolvens

MDT-10 incubated with or without LNA. During these one-hour

experiments, a total of twelve continuously acquired in vivo 1H-

NMR spectra were used for STOCSY analysis. Contour levels

(STOCSY correlations) defined by different colors are indicated at

the bottom. Blue represents high positive correlation and red

represents low. Data are representative of three independent

experiments.

Found at: doi:10.1371/journal.pone.0004893.s003 (3.06 MB TIF)

Figure S4 LA metabolic dynamics of B. fibrisolvens MDT-10

analyzed by time-dependent 2D-13C-HSQC RT-MT. B. fibrisol-

vens MDT-10 was anaerobically inoculated in an NMR tube and

U-13C18 LA (2.5 mM) was added to monitor LA hydrogenation by

in vivo 2D-13C-HSQC. Mean values of triplicate experiments are

shown. LA (circles), CLA (triangles), VA (squares), and bacterial

growth (open squares) are shown.

Found at: doi:10.1371/journal.pone.0004893.s004 (0.39 MB TIF)

Figure S5 Comparison of 2D-13C-HSQC spectra obtained from

LNA and its metabolites. Distinct signals are shown by arrows

indicating D15 double bond (red), cis double bond (purple), and

trans double bond (green). Unidentified 18:2 has trans and cis

double bonds, but no D15 double bond.

Found at: doi:10.1371/journal.pone.0004893.s005 (0.37 MB TIF)

Figure S6 Comparison of TOCSY spectra of LNA metabolites.

A: CLNA (c9, t11,c15–18:3), B: t11,c15–18:2, C: VA (t11–18:2), D:

Unidentified 18:2. Black line indicates correlation between CH3

(brown square) and CH (green square). It was shown that

unidentified 18:2 exhibits correlation between CH3 and CH,

meaning that one of the double bonds of this FA is located more

closely to the methyl group side than D11.

Found at: doi:10.1371/journal.pone.0004893.s006 (1.37 MB TIF)

Table S1 Fluctuation of signal intensities of methylene group of

U-13C18 LA under various in vivo NMR conditions.

Found at: doi:10.1371/journal.pone.0004893.s007 (0.02 MB

DOC)

Table S2 Fluctuation of signal intensities of methylene group of

U-13C18 LA under various pH conditions.

Found at: doi:10.1371/journal.pone.0004893.s008 (0.02 MB

DOC)
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