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Abstract

Accurate identification of promoter regions and transcription start sites (TSS) in genomic DNA allows for a more complete
understanding of the structure of genes and gene regulation within a given genome. Many recently published methods
have achieved high identification accuracy of TSS. However, models providing more accurate modeling of promoters and
TSS are needed. A novel identification method for identifying transcription start sites that improves the accuracy of TSS
recognition for recently published methods is proposed. This method incorporates a metric feature based on
oligonucleotide positional frequencies, taking into account the nature of promoters. A radial basis function neural
network for identifying transcription start sites (RBF-TSS) is proposed and employed as a classification algorithm. Using non-
overlapping chunks (windows) of size 50 and 500 on the human genome, the proposed method achieves an area under the
Receiver Operator Characteristic curve (auROC) of 94.75% and 95.08% respectively, providing increased performance over
existing TSS prediction methods.
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Introduction

The accurate identification of promoter regions and transcrip-

tion start sites (TSSs) is an important step for in-silico gene

discovery and understanding of the transcription regulation

mechanisms. Every eukaryotic gene has a core promoter region

in the 59 untranslated region (UTR) that contains at a minimum a

TSS signal. Most eukaryotic genes are transcribed by RNA

Polymerase 2 (Pol-II) which binds at the TSS. Promoter regions

are found to share common subtle patterns or models known as

motifs that act as binding sites where other transcription factors

(TFs) attach to facilitate or regulate transcription. For example, up

to 80% of human promoters contain an initiator element (Inr)

located at the transcription start site with a consensus sequence of

YCAYYYYY, where Y represents a pyrimidine base C or T [1].

Roughly 30% of human core promoters are found to contain a

TATA box at position of 220 to 230 from the TSS with the

consensus TATAAA [1]. The TATA box tends to be surrounded

by GC rich sequences. Promoter signals with greater variation are

found in the promoter region proximal to the TSS, where motifs

such as the CAAT, GC, E, and GATA boxes are located [2].

More details about compositional characterization of known

human promoter motifs can be found in [2].

Promoter detection algorithms
A number of algorithms for promoter and TSS recognition are

currently available. Each attempts to model promoter pattern(s)

using features such as CpG islands and known transcription factor

binding sites (TFBS) to distinguish promoters from non-promoters.

Some methods such as Autogene [3] and Promoter Scan [4] use

position weight matrices (PWM) to signal the presence of a high

density of binding sites indicating potential promoters. However, it

has been shown that both the location and combination of

different binding sites are important for promoter recognition

[5,6]. Eponine [7] improves recognition by associating every

PWM with a probability distribution based on its position relative

to the TSS. A more recent tool that tries to model the

oligonucleotide positional densities is described in [8]. However,

this particular design employs a naı̈ve Bayes classifier that assumes

every oligonucleotide’s positional distribution is independent, and

is therefore unable to capture the co-occurrence of a specific

combination of binding sites.

In a recent study, Bajic and colleagues conducted a large scale

comparison study of eight known TSFs [9]. They demonstrate that

a number of these tools perform well, yet leave a lot of room for

improving detection accuracy. Among the most successful tools

identified were Eponine [7], McPromoter [10], FirstEF [11] and

DragonGSF[12].

A more successful approach is the ARTS tool developed by

Sonnenburg and colleagues [13] which uses a support vector

machine (SVM) with multiple advanced sequence kernels. ARTS

is able to achieve a high accuracy with the area under the ROC

curve of 92.77% and 93.44% for genomic DNA chunk sizes of 50

and 500 respectively, demonstrating a superiority to Eponine [7],

McPromoter [10] and FirstEF [11]. As part of the ARTS system, a

large training and testing data set was constructed along with

PLoS ONE | www.plosone.org 1 March 2009 | Volume 4 | Issue 3 | e4878



measures for testing and evaluating promoter detection approach-

es in a consistent fashion. This data set and methodologies are

used to compare the results of our approach, RBF-TSS, to ARTS,

which has been shown to be the best performing approach

previously available. In the comparison section, the performance

measures of ARTS, Eponine, McPromoter and FirstEF are listed

as they were reported in [13]. Furthermore, we evaluated the

performance of a more recent tool, ProStar [14]. ProStar is

developed based on a hypothesis that core and proximal regions

characterize unique deformation and stiffness properties. From the

analysis of the helical stiffness along the human genome, distinctive

structural properties were shown to have a strong correlation with

annotated TSSs. For a given sequence, ProStar computes a six-

dimensional deformation vector v (twist, tilt, roll, shift, slide, rise)

for the whole sequence and uses Mahalanobis distance to find the

closest class. Due to the limited flexibility of the available ProStar

software, it was evaluated at limited number of thresholds and thus

the complete ROC and PRC curves were not generated.

RBF-TSS
We propose a new method to model the positional frequency of

oligonucleotides to form a single feature to represent the given

sequences for promoter detection. Unlike [8], which measures the

frequency at every single base pair position from the TSS, our

approach takes the sequence around the TSS and divides it into

overlapping windows for which the frequency of oligonucleotides

of specific length are measured. A number of different combina-

tions of window sizes, varying overlapping lengths and oligonu-

cleotides length were examined. The combination resulting in the

largest area under the ROC curve in classifying the validation data

was chosen for the testing phase.

The extracted positional frequency feature is used as an input

into RBF-TSS, a classification algorithm for transcription start

sites based on a radial basis function neural network (RBFNN). For

training, gradient descent learning is used to simultaneously

estimate the RBFNN optimal weights, sub-models’ centers and

sub-models’ covariance matrices [15]. RBF-TSS employs a

recently published clustering algorithm for initialization that

utilizes the large number of available background samples found

within genomic DNA [16]. Weight decay is implemented to

regularize the classifier [17] and the improved Rprop algorithm

(iRprop+) [18] is used for estimating the learning rate factors for

the gradient descent learning of the optimal parameters of the

network. iRprop+ was shown to be fast, easy to implement and

suitable when estimating many different variables since it uses

separate learning rate factors for every variable.

The same experiment setting published to test the ARTS

method and others in [13] is used to evaluate RBF-TSS. The

proposed method showed to be superior to the ARTS in terms of

the area under the ROC curve but not in terms of the area under

precision recall curve (PRC). However, the PRC might not be a

suitable measure of the performance of promoter identification

tools since some samples labeled as true negatives might indeed be

novel promoter regions. For example, removal of a 100 negative

samples out a million causes the area under the PRC to increase

by 6.36 and 10.86 with chunk sizes of 50 and 500, respectively,

while the area under the ROC remains nearly identical.

Methods

Feature Prototype (Local Oligonucleotide Frequencies)
Promoter regions function as such due to the co-occurrence of a

specific set of motifs at specific yet flexible distances from the TSS

[5,6]. However, none of the published studies or tools has found a

single common pattern that can explain all promoters, indicating

the likelihood of multiple promoter patterns.

In order to capture the characteristics of the given promoter

sequences, training sequences with known TSS are divided into

overlapping regions (Fig. 1). Either 4-mer or 3-mer oligonucleotide

frequencies are measured in every sub-region. All of these sub-

frequencies are combined to form a feature vector to describe and

represent the given sequence sample. This approach is a

compromise between methods that use the frequencies of all

oligonucleotides around the TSS regardless of their positions, and

those that measure positional densities at every single base relative

to the TSS. Knowing the region in which each oligonucleotide

occurs yields approximate positional information about the motifs.

Eight combinations of region lengths and overlap sizes are tested

to extract separate features, including seven with oligonucleotide of

length four and one with oligonucleotide of length three. The

overlapping regions considered for each of these combinations are

listed in Table 1, with the position relative to the known TSS. These

regions are further illustrated in (Fig. 1) for combination seven. In

general, regions and overlap areas close to the TSS are short and

increase in length as they go farther from the TSS. This is due to the

knowledge that common motifs in the core promoter region (close to

the TSS) are found to have more strict positions than common

motifs found in the promoter proximal region area (farther from the

TSS) [5,6]. After each combination is considered, the one resulting

in a classifier with the highest area under the ROC for the validation

data is selected for testing.

Radial basis function (RBF)
For learning and classification, a modified version of the radial

basis function network trained by three learning phases is employed

[15]. Radial basis functions [19] are composed of three layers: input,

hidden and output (Fig. 2). The hidden layer nodes use radial basis

functions such as a Gaussian membership while the output layer is a

weighted sum of the outputs from the hidden layer nodes. Such a

network has been shown to be useful in classification problems [20].

Typically, training radial basis function neural networks is

performed in two phases. First, the parameters (means and variances)

of the hidden layers nodes are estimated using clustering or a density

estimation algorithm. Afterward, either gradient descent or a pseudo

inverse solution is used to estimate the optimal weights to minimize

the error criterion described in Eqn. (1) Where ti is assigned the value

of 0 or 1 depending on the true label of training sample xi and f xið Þ
is the output score computed by the network using Eqn. (2).

error~
1

2

Xn

i~1

ti{f xið Þð Þ2 ð1Þ

f xið Þ~
Xk

j~1

wjhj xið Þ ð2Þ

Figure 1. Training sequences are divided around the TSS with
overlapping regions. This specific subdivision shows feature 7
settings, as described in Table 1.
doi:10.1371/journal.pone.0004878.g001

RBF-TSS
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In Eqn. (2) wj is the weight assigned to node (j) in the hidden

layer and hj xið Þ is the membership of sample xi to node (j). In the

case of the Gaussian function being used to compute the

membership, hj xið Þ is computed using Eqn. (3).

hj xið Þ~e
{0:5

xi{mj
sj

� �2

ð3Þ

It has been shown that using a third phase learning process

where the means, variances and the weight are all being estimated

simultaneously by gradient descent and back propagation provides

significant improvement on classification accuracy [15].

We improve on the three phase learning RBF in three different

ways. First, instead of initializing the hidden layer nodes using the

K-means clustering algorithm, we initialize them using a modified

k-means algorithm accompanied by split and merge operations

[16] where abundant background samples are used to estimate the

number of clusters while at the same time avoiding non-descriptive

local minimums. Clustering is performed among promoter

samples only while non-promoter samples are considered

background. Split and merge operations are performed in a

direction to minimize the overlap between the clusters of

promoters and background samples.

The second improvement is derived from observations in neural

networks where it has been demonstrated that keeping weights at

low variation and small values increases the performance of

classifier [17]. This is accomplished by adding a new term to the

objective function in Eqn. (1) that penalizes the large weight values

using Eqn. (4).

error~
1

2

Xn

i~1

ti{f xið Þð Þ2z l

2

Xk

j~1

wj
2 ð4Þ

In Eqn. (4), l is a constant determined by validation data. After

adding the new term and using gradient descent, it can be shown

that in order the minimize the error value for Eqn. (4) the weights,

means and variances need to be iteratively updated as given in

Eqns. (5–7), respectively.

Dwj~g
Xn

i~1

ti{f xið Þð Þhj xið Þ{lwj

" #
ð5Þ

Dmjz~g
Xn

i~1

wj ti{f xið Þð Þhj xið Þ
xiz{mjz

sjz
2

ð6Þ

Dsjz~g
Xn

i~1

wj ti{f xið Þð Þhj xið Þ
mjz{xiz

� �2

sjz
3

ð7Þ

In Eqns. (5–7), mjz,sjz are the mean and the standard deviation

of node j along dimension z while g is an estimated learning rate

factor.

The third improvement over the three phase RBF learning

algorithm is to replace the common learning rate g factor by

separate factors for every variable and use the improved RProp

algorithm (iRprop+) [18] to estimate learning factors at every

iteration. The iRprop+ has been shown to increase the speed of

learning by adaptively estimating separate learning rates for every

variable. This last step is critical since there are different variables

that are scaled differently and hence are very likely to demand

changes with different rates. Furthermore, the iRprop+ algorithm

employs a backtracking mechanism where updates that worsen the

learning are rescinded.

Training and model selection
Eight different features were extracted as described in the

‘‘Feature Prototype’’ section. Each dimension was normalized by

Table 1. Sub-regions and oligonucleotide lengths considered for feature extraction.

Feature Sub-region ranges (relative to the TSS) Oligonucleotide

1 (2500,2230),(2300,250),(2100,20),(220,99) 4 mer

2 (2500,2220),(2310,240),(2110,30),(230,99)

3 (2500,2240),(2290,260),(290,10),(210,99)

4 (2600,2230),(2280,240),(270,70),(40,199)

5 (2600,2240),(2270,250),(260,60),(50,199)

6 (2600,2280),(2330,2110),(2150,20),(220,149)

7 (2600,2230),(2280,240),(270,70),(40,249)

8 (2650,2490),(2550,2400),(2450,2310),(2350,2220),(2260,2140),(2170,260),(290,10),(10,70), (50,150),(120,229) 3 mer

doi:10.1371/journal.pone.0004878.t001

Figure 2. Typical Radial Basis Function network topology.
doi:10.1371/journal.pone.0004878.g002

RBF-TSS
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dividing by the mean. Clustering to initialize the RBF network was

performed using k-means with split and merge operations as

described in [16]. We used the default settings with merge and split

thresholds of 0.5 and 0.9 respectively while the clustering

misclassification of the background samples was weighted by 0.5.

The large thresholds and the weighting correspond to accepting

relatively high noise to address the abundance of background

samples and to avoid a large number of clusters.

Initially, for every feature, a separate RBF network was

constructed without weight regularization (l= 0). The two best

performing features in classifying validation data were chosen for

further training. Those two features were four and seven

(Table 1). Both features were extracted by measuring the

frequency 4-mers in four overlapping sub-regions of the given

sequences as described in Table 1. Afterward, different values for

l (0.5, 1, 2, 4, 8, 16, 32, 64 and 256) to regularize the weights

were tried with both features seven and four separately. Feature

seven with l= 64 was found to generate the best performance

with an area under the ROC curve of 93.58% for validation data

and 96.7% for training data.

Figure 3 shows the average single base validation data score of

the final network in the range [2600 to 600] around the known

TSS position compared to the average score for negative

examples. At every base, the feature vector was extracted using

sub-regions as if that base was the TSS. It is clear from the curve

that the classifier is able to produce output scores capable of

distinguishing positive from negative examples. These scores get

significantly higher the closer we get to the true TSS.

Given the high dimensionality of the proposed feature prototype

and the different choices, building the proposed model with the

different parameters for model selection demanded heavy

computation. The approximate time needed to build a whole

model for a single feature choice varied. Using a 3.0 GHz Xeon

processor, a single clustering demanded 8–14 hours while training

the un-regularized RBF network took 7–9 hours and the time

needed for convergence increased as the regularization parameter

increased up to 36with l= 64. On the other hand, a memory of

2GB was quite enough for a single process. However, with the

availability of multi-core processors, we were able to cut the

training time significantly as we tried different configurations on

different cores.

Results

Data set
The data set used for evaluating ARTS [13] was downloaded

from (http://www.fml.tuebingen.mpg.de/raetsch/projects/arts)

and used to evaluate RBF-TSS. This data set is divided into

three parts: training, validation and testing. As a summary of the

ARTS paper, the training and validation were extracted from the

dbTSS version 4 (dbTSSv4) [21] which is based on the UCSC

human genome sequence assembly and annotation version 16

(‘‘hg16’’) [22]. RefSeq [23] identifiers from dbTSSv4 were used to

extract the corresponding mRNA using NCBI nucleotide batch

retrieval. Afterward, they aligned all the retrieved mRNA from

NCBI to hg16 genome using BLAT [24]. The best alignment

position at the genome was compared to the putative TSS

positions as stated in dbTSSv4. Sequences whose positions did not

meet the following checks were discarded: 1.Chromosome and

strand of the TSS position and of the best BLAT hit match. 2. The

TSS position is within 100 base pairs from the gene start as found

by the BLAT alignment. 3. There does not exist a processed

putative TSS within 100 bp of the current one. A total of 8,508

genes were accepted and positive examples were extracted as a

window of size [21200, +1200] around the TSS.

For this dataset, 85,042 negative samples were created by

randomly extracting 10 subsequences of window length [21200,

+1200] from the interior of every gene between 100 bp

downstream of the known TSS and the end of the gene [9]. This

method is arguable since it cannot be guaranteed these negative

samples do not contain promoters. However, it is near certain

most of the extracted negative samples are true negatives since

TSS are found to be rare compared to the size of the genome.

Furthermore, there is not any other natural method of recognizing

true negatives in the genome.

The 8,508 positive and 85,042 negatives examples were both

divided into 50% for training and 50% for validation. The testing

data set was extracted as the set of all new genes from dbTSSv5

[25] which is based on hg17 and did not appear in dbTSSv4.

Genes that have more than a 30% mRNA overlap are removed

from consideration.

Testing procedure
We performed the same testing procedure as described in [13].

Every chromosome strand was divided into non-overlapping

chunks of size 50 and 500 bases. Any chunk that falls within 20 bp

from any known TSS position of any of the testing genes was

considered as a positive sample. Any chunk that falls between

+20 bp downstream of the start of any of these genes to the end of

the same gene and was not labeled positive was considered a

negative sample. In the case of chunks of size 50, the number of

positive and negative examples were 1,588 and 1,087,666

respectively while in the case of chunks of size 500 they were

943 and 108,782 respectively. Non- ACGT bases (i.e. long runs of

N’s) were randomly substituted by A, T, C or G.

For every chunk, a feature vector was extracted at every single

base as if that base was the TSS position. A network score is

computed at every base and each chunk is assigned the maximum

value found for any of the bases contained within it. This may

result in chunking and labeling of positive samples despite being

up to 20 bp away from the true TSS. This is by design to

acknowledge the flexibility of POL-II which does not always bind

to a specific single base but rather anywhere in the range [220,

+20] from the start of the TSS. The difference in distribution of

scores calculated by RBF-TSS for true TSS and non-TSS

sequences is shown in (Fig. 3).

Figure 3. Average scores at positions around the true TSS vs.
average scores of negative examples in validation data. The
x-axis represents the relative position to the true TSS within the positive
examples.
doi:10.1371/journal.pone.0004878.g003

RBF-TSS

PLoS ONE | www.plosone.org 4 March 2009 | Volume 4 | Issue 3 | e4878



The true positive rate (TPR) for TSS identification was

calculated as the percentage of positive samples identified as

such by RBF-TSS while the false positive rate was calculated as

the percentage of true negative samples mistakenly labeled as

positive. A comparison of these rates is shown in Figs. 4 and 5.

The positive predictive value (PPV) is calculated as the ratio of

the positive samples whose true label is positive to the total

number of samples classified as positive. As illustrated in Fig. 5,

the area under the precision recall curve is relatively low due to

the fact that the ratio of negative to positive samples is very

high, and varies widely between the two cases of chunk size of

50 and 500.

Comparison to Other Methods
The performance of RBF-TSS was compared to other

methods using both the area under the ROC and PRC curves

(Table 2). Note that the results for the ARTS, Eponine,

McPromoter and FirstEF methods are taken as reported in

[13]. As seen in Table 2, the proposed method has better

performance in terms of area under the ROC curve in both

chunk size cases 50 and 500. Furthermore, the similar

performance between chunks of size 50 and 500 indicates high

locality of the proposed method for locating the TSS positions as

compared to the other methods.

On the other hand, the proposed method fails to exceed the

ARTS method when using area under precision recall curve. This

should be of no surprise since it has been analytically shown in

[26] that optimizing the area under the ROC curve is not

guaranteed to optimize the area under the PRC curve.

The precision recall curve is found to be very sensitive to

having few negative samples with high scores with RBF-TSS.

For example, the removal of the 100 negative samples with the

highest network scores results in a change of the auPRC from

24.08% to 30.44% and 54.64% to 65.5% for chunk sizes of 50

and 500 respectively. In contrast, the change in the auROC

was minimal, increasing from 94.75% to 94.76% and 95.08%

to 95.14% for chunk sizes of 50 and 500 respectively. These

100 samples represent less than 0.1% of the negative samples,

yet their removal illustrates the sensitivity of the PRC. The use

of the auPRC should be considered with caution as an

evaluation measure of TSS finders since the PRC has a

demonstrated sensitivity. Mislabeled negative samples could be

unknown TSS, which is shown to potentially have a significant

effect on the auPRC.

Discussion

A new novel feature is proposed that transforms the problem

from sequences and temporal space to Euclidian space. Such a

feature makes it possible to cluster promoter sequences and build

an RBF neural network.

A key advantage of the proposed method is that once training

the RBF network is finished, the set of resulting neurons with

positive weights can be perceived as a mixture of Gaussians

representing promoter samples probability distribution in the new

Euclidean space. Such knowledge can pave the way for a higher

level analysis in the time space. For example, having many

promoter sequences with high membership to one neuron

indicates that they belong to one cluster and hence share many

of their of oligonucleotides’ frequencies in the same sub-regions.

Therefore, it becomes more efficient to restrict motif searching or

multiple alignment to this set of promoters.

The proposed RBF-TSS method has demonstrated high

accuracy performance in detecting transcription start sites and

proven to be very competitive to the high performing ARTS tool

and others. The proposed method achieved area under the ROC

of 94.75% and 95.08% for chunks of size 50 and 500 as compared

to 92.77% and 93.44% achieved by the ARTS using the same

data set and testing procedure. The high performance of the

Figure 4. ROC curve for chunk sizes 50 and 500. Both axes are
scaled to logarithm base 10 to highlight the difference.
doi:10.1371/journal.pone.0004878.g004

Figure 5. PRC curve for chunk sizes of 50 and 500.
doi:10.1371/journal.pone.0004878.g005

Table 2. Area under the curve for RBF-TSS and ARTS.

Curve auROC % auPRC %

Chunk Size 50 500 50 500

RBF-TSS 94.75 95.08 24.08 54.64

ARTS 92.77 93.44 26.18 57.19

Eponine 88.48 91.51 11.79 40.80

McPromoter 92.55 93.59 6.32 24.23

FirstEF 71.29 90.25 6.54 40.89

doi:10.1371/journal.pone.0004878.t002

RBF-TSS
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proposed method with chunk size of 50 proves that RBF-TSS has

increased the classification accuracy over previously described

TSS prediction algorithms, and performs well with high locality

precision.

An executable Java JAR file for RBF-TSS is available for free

download at: http://bioinformatics.louisville.edu/RBF-TSS/.

This website contains additional supporting materials, including

training and testing data and a more detailed description of the

RBF-TSS algorithm.
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