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Abstract

Background: Alternative mRNA processing mechanisms lead to multiple transcripts (i.e. splice isoforms) of a given gene
which may have distinct biological functions. Microarrays like Affymetrix GeneChips measure mRNA expression of genes
using sets of nucleotide probes. Until recently probe sets were not designed for transcript specificity. Nevertheless, the re-
analysis of established microarray data using newly defined transcript-specific probe sets may provide information about
expression levels of specific transcripts.

Methodology/Principal Findings: In the present study alignment of probe sequences of the Affymetrix microarray HG-
U133A with Ensembl transcript sequences was performed to define transcript-specific probe sets. Out of a total of 247,965
perfect match probes, 95,008 were designated ‘‘transcript-specific’’, i.e. showing complete sequence alignment, no cross-
hybridization, and transcript-, not only gene-specificity. These probes were grouped into 7,941 transcript-specific probe sets
and 15,619 gene-specific probe sets, respectively. The former were used to differentiate 445 alternative transcripts of 215
genes. For selected transcripts, predicted by this analysis to be differentially expressed in the human kidney, confirmatory
real-time RT-PCR experiments were performed. First, the expression of two specific transcripts of the genes PPM1A
(PP2CA_HUMAN and P35813) and PLG (PLMN_HUMAN and Q5TEH5) in human kidneys was determined by the transcript-
specific array analysis and confirmed by real-time RT-PCR. Secondly, disease-specific differential expression of single
transcripts of PLG and ABCA1 (ABCA1_HUMAN and Q5VYS0_HUMAN) was computed from the available array data sets and
confirmed by transcript-specific real-time RT-PCR.

Conclusions: Transcript-specific analysis of microarray experiments can be employed to study gene-regulation on the
transcript level using conventional microarray data. In this study, predictions based on sufficient probe set size and fold-
change are confirmed by independent means.
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Introduction

DNA microarrays are important experimental tools to gain

knowledge about the steady state levels of mRNA species.

Affymetrix GeneChips were designed to contain a series of

oligonucleotide probes complementary to a specific mRNA of

known genes. To quantify a specific mRNA species, the signals

from a group of probes (i.e. probe sets) representing a specific gene

are normalized and averaged (e.g. [1]). However, often the design

of the array and the selection of probe sequences were finalized

before the human genome was fully annotated. Therefore some

probes lack specificity and the conventional probe sets do not

always reflect current knowledge about the multiple individual

transcripts encoded by the same gene. Furthermore, mRNA

processing mechanisms can lead to different transcripts of the

same gene which can have specific biological functions [1,2].

Methods that apply microarray profiling would – by using the

available and measured transcript-specific probes – provide

additional information not on the expression levels of a gene but

also the respective splice isoforms.

Several tools have been developed to customize the analysis of

gene expression data. Novel mapping of given probe sequences

to more recent genomic data was performed by Gautier et al. [3]

and Harbig et al. [4]. Both groups were able to show that re-

mapping of the probe sequences affects data analysis for specific

arrays. Dai et al. [5] introduced re-defined probe sets after re-

alignments of probe sequences to genes as well as transcripts.

However, as probes of a given probe set were allowed to match

several different transcripts, their overall signal will still be

influenced by several transcripts. Additional alignment algo-

rithms were used to define transcript-specific probe sets

employing different databases as RefSeq or AceView [6,7].

However, none of these reports experimentally validated

alternative transcript expression.

PLoS ONE | www.plosone.org 1 March 2009 | Volume 4 | Issue 3 | e4702



Independent confirmatory experiments by real-time RT-PCR

or other techniques are clearly advisable for any microarray results

obtained with a modified measurement or analysis protocol [8].

The goal of the present work was to annotate probe sequences of

the widely employed microarray Affymetrix HG-U133A to

Ensembl transcript definitions and select probes whose sequences

are specific and suitable to estimate expression of transcripts. Re-

defined transcript-specific probe sets were used on available

microarray data of human renal tissue [9] to predict the expression

of individual transcripts. Two potential biological differences in the

expression profile of transcripts were analyzed: First, genes having

a lowly as well as a highly abundant transcript in healthy human

renal tissue were searched. Secondly, genes were selected with

differentially regulated transcripts between normal renal tissue and

tissue from kidney patients. From both analyses, two genes were

selected for confirmatory experiments and their respective

transcript expression levels quantified using transcript-specific

real-time RT-PCR on the identical mRNA used for array

hybridization.

Results

Defining transcript- and gene-specific probe sequences
To determine transcript-specific expression information from

the HG-U133A microarray, individual probe sequences were first

aligned to Ensembl transcript sequences, then grouped to

transcript-specific probe sets, which were employed in robust

multiarray average analysis (RMA, see Methods).

In the Blast analysis two types of alignments were exploited:

‘‘exact alignment’’, i.e. 100% sequence identity over 25 base pairs

of transcript and probe sequence, and ‘‘near-exact alignment’’

with at most one mismatch (identity of 24 base pairs). We defined

transcript-specific probes to have one ‘‘exact alignment’’ with a

transcript, but no ‘‘exact alignment’’ in other transcripts, and no

‘‘near-exact alignment’’. For gene-specific probes the same

definition was used with respect to alignments to transcript

sequences of one gene (instead of alignment to one transcript).

Probes showing evidence for cross-hybridization (‘‘exact align-

ments’’ to transcript sequences of more than one gene) were

excluded from this study. The alignment of probes to Ensembl

transcripts gave 95,008 transcript-specific and 180,403 gene-

specific probes out of a total of 247,965 probes (Table 1,
supporting tables S1 and S2, and dataset S1).

To roughly test the characteristics of the transcript- and gene-

specific probes, five probe categories were defined: transcript-

specific, gene-specific (both as defined above), non-perfect match

probes (alignments with gaps or mismatches), no-match probes (no

alignment with an e-value smaller than 1), and negative control

probes (non-human sequence, indicated by the manufacturer).

Probes with transcript- or gene-specific alignments were expected

to show higher signal intensities in an experiment due to more

complete template hybridization compared to non-perfect match,

no-match, or negative control probes. This was tested on data

from human renal tissue. Signal intensity histograms of probes of

the above categories were plotted from a single array experiment

(Figure 1). Non-perfect match probes had, as expected, a similar

intensity distribution as probes with no match. Gene-specific

probes showed an almost identical distribution compared to

transcript-specific probes. These specific probes had a higher

percentage of probes with high intensity signals compared to non-

perfect or no match probes: Choosing the 95%-quantile of the

intensities of non-human control probes a higher fraction of gene-

and transcript-specific probes showed intensities above this

threshold than non-perfect or no-match probes (33.8%, 33.7%,

21.1%, 18.8%; respectively). The specific probes showed higher

signal intensities than non-specific probes probably due to

complete hybridization with corresponding templates. A few

non-specific probes showed also high signal intensities potentially

corresponding to as of yet unidentified transcripts (in Ensembl).

Grouping such individual probes to probe sets resulted in 7,941

transcript-specific probe sets and 15,619 gene-specific probe sets.

The general size of probe sets were multiples of 11, since the

original HG-U133A array probe sets consist of 11 probes each.

The transcript-specific probe sets were then ‘‘re-annotated’’ to the

respective gene to determine how many individual transcripts

could be quantified for a specific gene. For 215 genes, two or more

transcripts were covered by the newly defined transcript-specific

probe sets with a minimal probe set size of 1 (Table 2). A minimal

probe set size of 3 reduced the number of genes to 141 (136 genes

with 2 transcripts, 4 genes with 3 transcripts, 1 gene with 4

transcripts).

The newly defined probe sets were then used to analyze human

renal gene expression data to predict transcript-specific expression

profiles further to be confirmed by real-time RT-PCR.

Analysis of high and low abundant renal mRNA
transcripts

To test the alignment data and to identify genes with differential

expression of alternative transcripts in human renal tissue,

transcript levels for two genes were first tested based on the newly

defined transcript-specific probe sets. Expression levels were then

validated in a confirmatory experiment by real-time RT-PCR

using the same cDNA hybridized on the array. For this

experiment four transcripts of two genes were selected from

expression data of human kidneys (living allograft donors (LD);

n = 3) with the following rationale: The distributions of transcript-

specific probe intensities appeared distinguishable (no or little

overlap of probe intensities between the transcripts) and the

number of probes for each transcript was at least 3. For both

selected genes, PPM1A and PLG, two transcripts have been

annotated in Ensembl and for each transcript, 6 to 11 specific

probes are available on the array. In the case of gene PPM1A

higher signal levels of the probe set for transcript PP2CA_HU-

Table 1. Transcript-specificity of HG-U133A probes to
Ensembl transcripts.

number of probes number of transcripts

56388 0

95008 1

50011 2

19901 3

9836 4

5131 5

2895 6

1721 7

… …

1 44

1 50

The number of probes with at least one ‘‘exact alignment’’ with a transcript, and
no ‘‘near-exact alignments’’ were computed and grouped by the number of
different transcripts they have an ‘‘exact alignment’’ with. The probes in this
table with number of transcripts equal to 1 are the transcript-specific probes.
doi:10.1371/journal.pone.0004702.t001

Transcript Analysis
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MAN were observed than of the probe set for the second transcript

P35813-2 (7.860 and 3.660.1, respectively; p,0.001). For the

gene PLG the probe set for transcript PLMN_HUMAN showed

higher signal intensities than the one for the transcript

Q5TEH5_HUMAN (9.460.4 and 3.460.1, respectively;

p,0.01) (see Figure 2).

Real-time RT-PCR quantification of the transcripts on

independent kidney samples (tumor nephrectomies (TN); n = 6)

gave transcript-specific expression values in agreement with the

transcript-specific expression pattern generated with the micro-

array expression data (PPM1A: PP2CA_HUMAN: 8.762.5;

P35813-2: 160.4, p,0.001; PLG: PLMN_HUMAN 217.86

125.8; Q5TEH5_HUMAN 160.6, p,0.01) (see Figure 2). This

‘‘qualitative’’ approach – although problematic due to comparison

of signal intensities of different microarray probes which have

different hybridization efficiencies (see e.g. [10]) – underlined the

prospects of a transcript-specific analysis, which were further

studied on the quantitative level as follows.

Analysis of quantitative differences in renal mRNA
transcripts

To find genes that showed transcript-specific alterations

between different patient cohorts, two analyses were performed:

Expression profiles from renal allografts from LD (n = 3) were

compared to renal biopsies from deceased (cadaveric) allograft

donors (DD; n = 4) and the same LD expression data were

compared to renal biopsies from patients with diabetic nephrop-

athy (DN; n = 10). After background-correction, quantile normal-

ization and summarization according to transcript-specific probe

set definition (see methods) these data were analyzed for fold

changes and q-values using significance analysis of microarrays

(SAM) [11]. Genes with i) a quotient of maximal to minimal

transcript-specific fold change of at least 1.5 and ii) at least one

transcript with q-value,0.1 between LD vs. DD or LD vs. DN,

respectively, were considered for experimental confirmation. Nine

genes for LD versus DD and four genes for LD versus DN passed

these filter criteria. Two differentially expressed transcripts from

two genes were selected based on probe set size consideration.

These isoforms had at least six probes per probe set. Transcript

PLMN_HUMAN of the PLG gene showed reduced expression in

DD compared to LD while transcript Q5TEH5_HUMAN of the

same gene was not altered in expression. For gene ABCA1,

transcript ABCA1_HUMAN was induced in DN compared to LD

and transcript Q5VYS0_HUMAN was not changed in DN (see

Table 3 and Figure 3).

The transcripts selected were again quantified using real-time

RT-PCR. Results are displayed in Figure 3 and confirm a

concordant differential expression compared to microarray data

for PLG for both transcripts (PLMN_HUMAN: LD 160.4; DD

0.260.2, p,0.05; Q5TEH5_HUMAN: LD 161.3; DD 0.760.4,

n.s.). The induction of the transcript ABCA1_HUMAN in DN

observed in the microarray data was also confirmed by real-time

RT-PCR (LD 160.4, DN 5.463.5, p,0.05). The signals for

Q5VYS0 in real-time RT-PCR were too low to be quantified

probably due to low mRNA expression.

Discussion

Default annotation of first and second generation Affymetrix

microarrays such as HG-U133A is not compatible with up-to-date

transcript information and does not allow the selective analysis of

specific transcripts. The latest generations of microarrays, like exon

arrays or tiling arrays, address transcript expression analysis by an

increased number of probes and respective selection of probe

sequences. However, large sets of data have been generated and are

being generated with the earlier microarray generations. Thus, re-

analysis of these data could provide more detailed information of

transcript expression using transcript-specific probe sets.

This approach was employed by aligning the probe sequences of

the Affymetrix Array HG-U133A to the Ensembl transcript

sequences and selecting transcript-specific probes to build

transcript-specific probe sets. We found that the probe sequences

on the HG-U133A were sufficient to distinguish multiple

transcript intensities for 215 genes (or 141 genes with a minimum

probe set size of 3). In our proof-of-concept application, four

selected transcripts with different expression levels in the kidney

were identified and renal expression confirmed by real-time RT-

PCR. As the intensity of a probe depends not only on the

concentration of its complementary transcript but also on its

sequence, such an approach may be problematic. Therefore,

disease-associated and transcript-specific differential expression

was also studied. Again, both predicted expression patterns were

supported by real-time RT-PCR experiments.

Figure 1. Intensity histograms of several probe categories.
Gene-specific and transcript-specific probes show more high intensity
signals as compared to non-perfect or no-match probes. a) Probe
intensities of one microarray (LD2) were RMA-background-adjusted and
logarithmized (base 2). Probes were assigned to categories shown in
the legend as defined in the results section. The normalized intensities
of each category are put into 100 evenly-spaced intervals and plotted as
histogram. The probe intensity 95%-quantile of Affymetrix-defined
negative control probe sets is plotted in yellow. b) As the number of
probes varies between the different categories it is hard to compare the
shapes of the distributions in a). Therefore, the histograms were
normalized with their number of probes in this plot. Averaging over
multiple arrays instead of analyzing one array gives similar results.
doi:10.1371/journal.pone.0004702.g001

Transcript Analysis
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Different groups reported recently their approaches to map

probe sequences of Affymetrix microarrays to transcript sequenc-

es. Some of these mention transcript-specific analysis as a possible

application, however, a confirmation of a predicted transcript

expression by independent means such as real-time RT-PCR has

not yet been reported. Dai et al. [5] aligned probe sequences of

several microarrays to transcript sequences from different

databases and derived ‘‘transcript-specific’’ probe sets. However,

as the authors noted, this implies redundancies in related probe set

definitions, such as shared probes among different transcripts from

the same gene. The intensities of the transcript-specific probes may

be lost for the intensity of the probe set. Liu et al. provided

AffyProbeMiner [6], which aligns probe sequences to RefSeq (or

RefSeq plus GenBank) complete coding sequences. It allows users

to choose parameters how probe sets are built. One allowed

combination of parameters, in their paper called ‘‘transcript-

unique probe sets’’, is similar to the probe set definition used in our

present study. However, we excluded probes having an alignment

with one mismatch and used Ensembl instead of RefSeq (plus

GenBank). AffyProbeMiner defines 10,226 (6,878 for RefSeq plus

GenBank) probe sets, whereas our approach yields 7,941 probe

sets (of these 3,412 (1,776) probe sets are identical between the two

approaches). Lu et al. [7] also reported a similar approach but

using AceView as the reference database. They could show that

cross-platform comparability is improved when the transcriptome

is analyzed by a transcript-specific approach and a minimum

probe set size of four is used. Our group recently reported a study

showing improved elucidation of biological processes by single-

probe analysis. In this study a commercially available software,

ChipInspector, was used, which also employs a re-annotation of

probe sequences but uses in house annotation and does not

employ probe set definition [12].

Beside these transcript-specific re-annotation approaches an

exon-based analysis would be a promising strategy. Such an exon-,

instead of transcript-based analysis would offer the advantage of

less transcript annotation changes. But applying this approach to

routine arrays such as the HG-U133A means fewer probes per

probe set and would subsequently reduce the statistical power for

determining expression changes. Only the latest generation of

exon-specific microarrays yield sufficient data for such an

approach.

Our study used a re-annotation approach similar to some of the

above reports. Other researchers published web-based tools for the

mapping of probe sets to known splice isoforms [13,14] or used

different databases like the International Protein Index [15] or

GeneAnnot [16].

But none of these studies supported the bioinformatics data by

additional experimental validation. In the present study we

validated the expression change of four specific transcripts by

real-time RT-PCR. These transcripts were selected as a sufficient

number of probes for each transcript showed minor overlap in

probe intensities. For PLG, the gene for plasminogen, we observed

higher overall expression of the transcript PLMN_HUMAN

compared to Q5TEH5_HUMAN in the human kidney. Further-

more, the mRNA for the transcript PLMN_HUMAN was reduced

in organs from deceased kidney donors compared to living donors.

As plasminogen is mainly synthesized in the kidney the results are

in agreement with PLMN_HUMAN being the main transcript of

the PLG gene and it seems that its expression is rapidly reduced in

a deceased organism. Although it is well-established that the

regulation of plasminogen activation plays a crucial role in kidney

disease [17], it is difficult to speculate on the biological relevance of

the transcript-specific findings for PLG as only little is known

about the functions of the two PLG transcripts. The finding of the

Table 2. Genes having transcripts with transcript-specific probes.

number of known
transcripts

genes with 1 matched
transcript

genes with 2 matched
transcripts

genes with 3 matched
transcripts

genes with 4 matched
transcripts

genes with 5 matched
transcripts

1 5447

2 1162 99

3 480 49 2

4 192 25 2 1

5 95 11 3

6 54 2 1

7 27 5

8 16 3

9 9 4

10 4 1 1 1

11 4 2

12 1

13 1

14 1

15 1

16 1

17 1

18 1

sum 7496 204 8 2 1

The fraction of transcripts that were matched by transcript-specific probes, listed by total number of known transcripts in Ensembl, are shown. For example, 99 genes
had 2 known transcripts and both had at least one transcript-specific probe, while 1,162 had a transcript-specific probe set (of size. = 1) for only one transcript.
doi:10.1371/journal.pone.0004702.t002

Transcript Analysis
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transcript-specific expression pattern of PPM1A, a protein serine/

threonine phosphatase capable of dephosphorylating Smad1 to

terminate TGFbeta signaling [18], may well have biological

relevance as Smad- and TGF beta-related biological processes are

crucial for the progression of kidney diseases [19]. But again the

knowledge about the functional differences of the specific

transcripts is still limited. With respect to the increased renal

synthesis of one transcript of ABCA1, coding for a cholesterol

efflux pump, observed in DN it is obvious that this may represent

the response of the kidney to the metabolic changes in long-

standing diabetes mellitus including hypercholesteremia, protein-

uria and lipiduria [20].

The examples on PLG, PPM1A, and ABCA1 clearly show that

for most transcripts the information about their specific biological

functions is still limited. However, employing tools like the one

defined above will help to increase our knowledge on transcript-

specific regulatory events in human disease and animal models.

Re-annotation of probe sequences of conventional microarrays

can be employed to define transcript-specific probe sets. (Re)-

analyses of established microarray data by transcript-specific probe

set definitions are feasible and can give reliable results. This was

exemplarily shown on a, although limited, number of genes and

transcripts.

Methods

Procurement of RNA Samples
Human renal biopsy specimens and HG-U133A (Affymetrix)

microarray expression data thereof were procured in an

international multicenter study, the European Renal cDNA Bank

- Kroener-Fresenius biopsy bank (ERCB-KFB). The protocol for

tissue preparation and mRNA isolation has been reported

elsewhere [21]. Diagnostic renal biopsies were obtained from

patients after informed consent and with approval of the local

ethics committees. The microarray expression data used in this

study came from individual diabetic patients with established

diabetic nephropathy and renal insufficiency (DN; n = 10) as well

as deceased allograft donors (DD; n = 4). Pre-transplantation

kidney biopsies from living donors (LD; n = 3) were used as control

renal tissue. Microdissected samples taken from the tubulo-

interstitial compartment were processed as described [9].

Figure 2. Comparison of alternative transcript abundance in microarray and real-time RT-PCR. On the left microarray signal intensities
are shown for the genes PPM1A and PLG. Confirmatory real-time RT-PCR data are shown on the right. Lowly and highly abundant transcripts of the
genes PPM1A and PLG were measured using microarrays in LD tissue. Transcript-specific probe intensities were background-adjusted and quantile-
normalized using RMA. These are shown as single probe values (triangles) and, furthermore, as summarized transcript-specific probe set values (dots).
In addition, the transcripts were quantified in the unaffected part of TN tissue using real-time RT-PCR. Real-time RT-PCR data are normalized to the
transcript with lower abundance.
doi:10.1371/journal.pone.0004702.g002

Table 3. Significance analysis of intensity differences
between alternative transcripts of two genes.

gene transcript SAM fold change
SAM
q-value

probe
set size

PLG PLMN_HUMAN 0.264 (LD vs. DD) 0.057 9

Q5TEH5_HUMAN 0.888 (LD vs. DD) 0.182 6

ABCA1 ABCA1_HUMAN 1.516 (LD vs. DN) 0.053 16

Q5VYS0_HUMAN 0.891 (LD vs. DN) 0.326 10

The microarray intensities for transcript-specific probe sets of gene PLG (ABCA1)
were compared between LD and DD (DN). Fold change indicates the induction
or repression of the respective transcript compared to the healthy LD controls.
doi:10.1371/journal.pone.0004702.t003

Transcript Analysis
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Probe and Transcript Sequences and BLAST
HG-U133A Affymetrix ‘‘perfect match probe’’ sequences and

coordinates (247,965 sequences) were downloaded from the

Affymetrix support web page [22]. Transcript sequences (44,676

sequences) were extracted from Ensembl ftp release 42 [23].

Probes were aligned to transcript sequences using BLAST version

2.2.15. Probe, transcript, alignment, probe set and array data were

stored in a MySQL 5.0 database.

Figure 3. Microarray and real-time RT-PCR transcript measurements of PLG and ABCA1 in two patient cohorts. For the gene PLG,
transcript PLMN_HUMAN was repressed in DD compared to LD controls, while Q5TEH_HUMAN showed no differential expression. Real-time RT-PCR
measurements on the same tissues were in agreement with these findings. For gene ABCA1, transcript ABCA1_HUMAN was induced in DN compared
to LD, and Q5VYS0_HUMAN was not regulated. Real-time RT-PCR measurement confirmed the induction of ABCA1_HUMAN. Q5VYS0_HUMAN was
expressed at a too low level to be measured (value 0). Real-time data are normalized to the cohort with lower abundance.
doi:10.1371/journal.pone.0004702.g003

Transcript Analysis
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Gene- and Transcript-specific Probes and Probe sets
The transcript sequences were put into a local BLAST [24] database

using the formatdb program. blastall options were ‘‘-e 1 -m 8 -p blastn -

F F’’. Low-complexity filtering of query sequences was turned off in

order to find all possible hits. Only alignments with an E-value,1.0

were returned. Blastn parameters for match/mismatch score, gap

open and gap extension cost were left at their default settings.

Finding exact alignments between probe and transcript sequences

was used to attribute signal intensities of probes to transcript (or gene)

expression. Therefore, probes were categorized as ‘‘transcript-

specific’’ if their exact hits (100% identity over 25 base pairs) were

to one transcript only and ‘‘gene-specific’’ if their exact hits were to

(possibly more than one) transcripts of a single gene only. This means

that transcript-specific probes are a subset of gene-specific probes.

Probes with any single mismatch were excluded. Overall, of the

247,965 probes, 180,403 were gene- and 95,008 were transcript-

specific. Only the Affymetrix ‘‘perfect match (PM) probes’’ were

analyzed as we found that including the ‘‘mismatch (MM) probes’’

would yield only 16 additional transcript-specific probes.

According to above definition of gene- and transcript-specific

probes, these were grouped as gene- or transcript-specific probe sets.

For example, two gene-specific probes both matching the same

transcripts of the same gene were grouped into the same gene-specific

probe set. To select transcripts for independent quantification only

the transcript-specific probe set intensities were used for this study.

To facilitate microarray analysis using the Bioconductor affy library

[25], the transcript-specific probe set definitions were stored in a

CDF file using the Bio::Affymetrix::CDF perl module [26].

Selection of Transcripts for Confirmatory Experiments
For the organ specific analysis, expression data from LD were

background corrected with the ‘‘rma’’ method and normalized

with the ‘‘quantiles’’ method using the R affy library [25]. Genes

were then ordered by an ad-hoc method (fitting the probe intensity

histogram with a mixture of two gamma distributions, representing

low and high intensities of probes, and computing the relative

probability that transcripts are from the first or second

distribution). Two genes were manually selected, each with two

known isoforms and different intensities.

To find genes that showed two transcripts with different expression

between two patient cohorts, microarray expression data were

background-corrected and quantile normalized as described above.

This was done separately for LD vs. DD and LD vs. DN. The

normalized probe intensities were summarized using the generated

transcript-specific CDF environment. These data were then

analyzed for fold changes and q-values between two different patient

cohorts using the ‘‘sam’’ function in the ‘‘siggenes’’ R library [27].

From all genes, we extracted the ones with differential expression of

specific transcripts. Only genes with at least two transcript-specific

probe sets, with at least one transcript having a q-value,0.1 and with

a quotient of the maximal/minimal transcript fold change greater

than 1.5 were considered for independent quantification. Addition-

ally, we avoided selecting genes with less than three probes per

transcript-specific probe set.

Real-Time RT-PCR Confirmatory Experiments
For validation of the microarray data, real-time RT-PCR

transcript quantification analyses were performed on cDNA used

in the microarray experiments as well as on samples from the

unaffected part of tumor nephrectomies (TN; n = 6).

Real-time RT-PCR was performed on an ABI PRISM 7700

Sequence Detection System (‘‘TaqMan’’, Applied Biosystems,

Darmstadt, Germany) using heat-activated TaqDNA polymerase

(Amplitaq Gold; Applied Biosystems). After an initial hold of two

minutes at 50uC and ten minutes at 95uC, the samples were cycled at

95uC for 15 seconds and 60uC for 60 seconds. For normalization,

commercially available pre-developed TaqMan reagents were used

for the housekeeper gene 18S rRNA (Applied Biosystems).

Oligonucleotide primers (300 nmol/L) and probe (100 nmol/L)

used are listed in Table 4. All primers, including the primers for

Table 4. Primers used for real-time RT-PCR.

gene transcript
primer
direction position

primer
length primer sequence

product
size

PPM1A P35813-2 forward 1274 24 CCTGTTTGTATAAGGGAAGTCGAG 195

reverse 1468 27 AAGTTTGATTGTGTTGAAGATTTTTCT

PP2CA_HUMAN forward 1136 24 CCTGTTTGTATAAGGGAAGTCGAG 248

reverse 1384 20 CATTCCTCTTGCTTGCCAAT

PLG Q5TEH5_HUMAN forward 1015 24 GAGTTTTAGGCCAAATCTGAGAAA 109

probe 1043 33 CAAAGATGACTATGTTTGGGACTGAAGTAAGCA

reverse 1123 20 TTGCTCCACAATTTGAGTCG

PLMN_HUMAN forward 905 20 AAAACTATCGCGGGAATGTG 110

probe 956 25 ACTGGAGTGCACAGACCCCTCACAC

reverse 1014 20 TTTGCAGGGGAAGTTTTCTG

ABCA1 ABCA1_HUMAN forward 1670 21 CTTCATGGAGAACAGCCAAGA 76

probe 1691 25 AATGGACCTTGTCCGGATGCTGTTG

reverse 1745 21 TTCCCAAAAGTGGTCATTGTC

Q5VYS0_HUMAN forward 990 21 AGCGAGTACTTCGTTCCAACA 77

probe 1018 25 CCTGAAGCCAATCCTGATGGATGTG

reverse 1066 19 CCCATGTGCAATGTCATCA

These primers were used for quantification of highly and lowly abundant renal mRNA transcripts and difference between renal mRNA transcripts. PPM1A transcripts’
intensities were measured using SYBR Green, while those of PLG and ABCA1 were measured using an internal fluorescent probe.
doi:10.1371/journal.pone.0004702.t004
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Q5VYS0, gave positive signals on whole kidney mRNA. Water and

no template controls were negative (Ct.40).

Statistics
Significance testing (one-sided t-test) results were considered to

be significant for p-values smaller than 5%. They were computed

using Gnumeric version 1.6.3 [28]. The SAM q-value can be

interpreted analogous to a p-value that is corrected for multiple

testing.

Supporting Information

Table S1 List of Ensembl transcript identifiers of the 7,941

transcripts covered by transcript-specific probe sets.

Found at: doi:10.1371/journal.pone.0004702.s001 (0.13 MB

TXT)

Table S2 List of genes with multiple transcripts covered by the

defined transcript-specific probe sets. For 215 genes, two or more

transcripts were covered by transcript-specific probe sets with a

minimal probe set size of 1. This table lists those genes along with

the covered 445 transcripts.

Found at: doi:10.1371/journal.pone.0004702.s002 (0.01 MB

TXT)

Dataset S1 CDF file describing the transcript-specific probe

sets. The transcript-specific probe set definitions were stored in a

CDF file using the Bio::Affymetrix::CDF perl module. For use in

some analysis tools it may be necessary to rename this CDF file to

the default Affymetrix file name (‘‘HG-U133A.CDF’’).

Found at: doi:10.1371/journal.pone.0004702.s003 (2.87 MB ZIP)
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Aachen; N. Braun, T. Risler, Tübingen; L. Gesualdo, F. P. Schena, Bari; J.

Gerth, G. Wolf, Jena; R. Oberbauer, D. Kerjaschki, Vienna; B. Banas, B.
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