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Abstract

Background: The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with
contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is
involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on
selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the
functional and regulatory network of PIP co-modulated genes.

Principal Findings: Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations
resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+]
and [PIP2] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a
master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of
which were detected as differentially expressed through high-precision measurements. The network identified appears
associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in
breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters.

Conclusions: Our global exploratory approach identified biological pathways modulated along with PIP expression,
providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed
to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential
transcriptional regulator.
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Introduction

Breast cancer is one of the most common malignancies in

Western countries and is associated with a high mortality rate

[1,2]. Aside from a small subset of patients (,5%) with inherited

genetic alterations, sporadic breast cancer accounts for the

majority of all breast cancers and limited knowledge is available

about the underlying process of carcinogenesis. It is widely

accepted that breast cancer, like most other cancers, develops

through the accumulation of genetic aberrations [3]. Some of

these changes involve specific genetic loci, determining the

activation of oncogenes or the inactivation of tumor-suppressor

genes, while others confer genetic instability, which increases the

possibility of acquiring additional genetic lesions relevant to

tumorigenesis. In the last decades, PIP protein expression has been

proposed as a specific and sensitive marker for breast cancer [4–7]

and further used to support breast origin in metastatic carcinoma

of unknown primary origin [8–12]. A PIP over-expression was

shown in primary and metastatic breast cancers [13,14], as well as

in some breast carcinoma cell lines. However, the exact functions

of that protein in mammary tumor progression remain unclear.

In previous work, we reported preliminary conclusions on the

PIP properties showing that the protein, a secreted factor known as

prolactin-inducible protein (PIP) [13] or as gross cystic disease

fluid protein-15 (GCDFP-15)[15], binds to CD4 [16–18], exerts a

potent inhibition on T lymphocyte apoptosis mediated by CD4/

T-cell receptor (TCR) activation [19] and carries a fibronectin-

specific aspartyl protease activity [20]. In addition, the PIP gene

localized on the long arm of chromosome 7 at 7q34 [21] was

found to display a variety of rearrangements in numerous solid

tumors [22,23]. Interestingly, we found that the T47D cell line,

that constitutively overexpresses PIP, exhibits an inverted

duplication of the 7q34–q35 region containing the PIP gene

resulting from a breakage-fusion-bridge (BFB) cycle mechanism

initiated within the common fragile site FRA7I [24].

Here, we report an in-depth exploration of the functional and

regulatory networks associated with PIP gene expression in breast

carcinoma cell lines using DNA microarray-based gene expression
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profiling techniques. Taking advantage of the presence of androgen-

responsive elements in the PIP gene promoter, breast carcinoma cell

lines were analyzed before and after treatment with dihydrotestos-

terone to modulate PIP expression, allowing comparison between

the PIP-expressing [PIP+] and –non expressing [PIP2] cell profiles.

Thus, we identified a series of 205 genes that display significant

expression changes between the [PIP+] and [PIP2] subgroups of

samples. A representative part of these genes exhibited a good

concordance of expression changes when assessed using tailored Q-

PCR. A network analysis allowed us to propose that PIP gene

expression is mainly associated with a decrease of the cell

proliferation and migration potential, as well as with an increase

of the apoptotic pathway. In addition, the identification of specific

STAT5 (Signal Transducer and Activator of Transcription 5) motifs

found within promoters of a significant part of the differentially

expressed genes suggests that STAT5 could play an important role

in the regulatory network associated with PIP expression. We also

point to other novel modulated pathways that warrant further

biological and clinical investigations.

Results and Discussion

Characterization of the cellular models
Four breast cancer cell lines presenting different features

especially concerning PIP expression, hormonal receptor status

and invasiveness potential were selected: MDA-MB231, a poorly

differentiated and highly invasive cell line, MCF7, T47D and

VHB1, which are known to be differentiated and non-invasive

breast cancer cell lines [25].

As PIP expression was shown to be increased by androgens [26],

we first analyzed the expression of the androgen receptor (AR).

Moreover, as the estrogen receptor (ER) expression is currently

used as a potential marker to classify breast cancer samples, and

the ER-positive tumors are often found associated with a better

outcome than the ER-negative ones [27,28], we also analyzed the

status of this hormonal receptor in the four cell lines. RT-PCR

analysis of AR expression in the four cell lines indicated that MDA-

MB231 is AR-negative and MCF7 AR-positive (data not shown).

As expected both T47D and VHB1 cells were AR-positive.

Similarly, the expression of ER was found positive in MCF7,

T47D and VHB1 and negative in MDA-MB231. The phenotype

of the cell lines further used for DNA microarray-based gene

expression profile studies is summarized in Table 1.

Androgen treatments were used to induce PIP expression.

Breast cancer cell lines were grown in presence or absence of

10 nM of dihydrotestosterone (DHT) for various periods, and PIP

gene expression was analyzed by northern blot (Figure 1). No

detectable PIP expression was found in MCF7 despite the

expression of AR; similar results were obtained in MDA-MB231

even after 10 days of androgen treatment (data not shown). In

contrast, in T47D which constitutively expresses PIP, DHT

treatment for 6, 8 and 10 days increased PIP expression about 2.5,

4 and 4.9 times, respectively, whereas in VHB1 that did not

exhibit detectable endogenous expression, DHT treatment

induced a consistent PIP expression. A low PIP expression level

was observed in mammary gland samples (MG) taken from

healthy women (Figure 1). Identical phenotypes were observed by

RT-PCR (data not shown). In the present study, our strategy was

to take advantage of the differences in hormonal receptor

expression level and invasiveness potential of the distinct cell lines

in order to predominantly focus on the gene expression

modulations associated with PIP expression, but independently

of the possible influence of particular genetic backgrounds. Thus,

the samples were categorized in either a [PIP+] or a [PIP2]

subgroup and used for subsequent analyses.

Experimental design and statistical power simulations
Gene expression profiles were collected in duplicate from a total

of 32 RNA samples derived from 4 independent cultures and RNA

preparations of the 4 breast carcinoma cell lines cultured without

(J0) and with DHT for 7 days (J7).

The a priori statistical power of the gene expression dataset was

measured as the probability of obtaining statistical significance

when true biological differences exist between the compared

groups of samples (1 - b; true positive rate). A conventional power

analysis requires the designation of parameters such as the

anticipated variability of individual measurements for all genes

within each biological group (s), the total sample size (n, n1 & n2),

the magnitude of the effect to be detected (W) and the acceptable

false positive rate (significance level a). It allows verifying which

subgroups of samples are likely to provide the most comprehensive

relevant information and that enough samples are compared to

meet the objectives of the study.

Thus, samples were divided in 2 subgroups according to their

PIP expression level (Table 1). MDA-MB231 (J0 and J7), MCF7

(J0 and J7) and VHB1 (J0) samples were considered as [PIP2] and

all others as [PIP+] samples. Some additional analyses were

Table 1. PIP and hormonal receptor status in breast cancer
cell lines.

PIP without DHT PIP with DHT AR ER

T47D ++ ++ + +

VHB1 2 + + +

MCF7 2 2 + +

MDA-MB231 2 2 2 2

Relative expression of PIP, androgen receptor (AR) and estrogen receptor (ER)
assessed by RT-PCR in each cell line. The PIP expression was determined with or
without DHT treatment. The cell lines were classified in 3 distinct categories,
corresponding to no (2) expression or a basal (+) or a high (++) level of
expression for each gene, respectively.
doi:10.1371/journal.pone.0004696.t001

Figure 1. PIP expression analysis after DHT treatment in breast
carcinoma cell lines and normal mammary gland. Relative
abundance of PIP mRNA was assessed by Northern Blot analysis (upper
panels). Total RNAs were extracted from normal mammary gland (MG,
15 mg) and from three breast carcinoma cell lines (MCF7, T47D and
VHB1, 50 mg), at several days (0, 6, 8 and 10 days) after DHT treatment.
The relative b-actin expression levels in each sample are shown (lower
panels).
doi:10.1371/journal.pone.0004696.g001
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conducted using 3 phenotype classes [PIP2], [PIP+] and [PIP++]

instead of 2. In this case, the [PIP++] subgroup contained T47D

(J0 and J7) samples as the PIP expression level is significantly

higher than in VHB1 (J7) and can influence differently the gene

expression profiles (Figure 1).

Statistical power (1-b) was computed for a two-class compar-

ison, detecting a true 1.5-fold mean difference between either the

[PIP+] or [PIP++] group of samples and the [PIP2] group of

samples at a significance level (a) of 0.01, considering a total

sample size of 64 or 56 respectively with n2/n1 = 0.6 or 0.4

(Table 2), and an expected variability within each biological

sample group smedian, = 0.30. The statistical power was estimat-

ed to be satisfactory, with a limited proportion of false negatives

(b= 0.01 to 0.03, Table 2), while consistent with a small number of

spurious discoveries (cf. Table 3).

The simulations thus suggested that only a negligible proportion

of the information relevant to the question addressed would be

missed in the class comparisons, and provided a high confidence

toward the differentially expressed genes identified.

Measure of the range of biological variability in samples
As the cell line intrinsic properties may obscure expression

patterns related to PIP gene expression, we appreciated the range

of biological variability through unsupervised clustering of the

entire gene expression profiles (Figure 2). Similarity measures

between genes were computed using a Pearson correlation.

Clusters were defined by an average linkage clustering method.

No clear cluster was observed according to either the PIP gene

expression level or the ER status, the resulting dendrograms of the

samples probably reflecting predictable biological variability

between cell lines. As shown in Figure 2, samples were clustered

in two distinct groups, one containing DHT-untreated (J0) or -

treated (J7) MDA-MB231 and VHB1 J7 samples, the other MCF7

(J0 and J7), VHB1 J0, T47D (J0 and J7) and normal mammary

gland samples. Except for the VHB1 samples, serially treated cell

line samples tended mainly to cluster together, independently from

DHT treatment or PIP expression. This indicates that the genome-

wide expression profile changes induced by the hormonal

treatment may be less prominent than the inherent observed cell

line differences. The transcriptome data analysis strategy was

therefore designed to assess the likelihood of detecting reliably

significant gene expression differences linked to variations in PIP

expression.

Identification of the genes co-modulated with PIP
expression

Beforehand, several statistical differential comparisons were

performed to first highlight gene expression modulation that may

be unrelated to the PIP gene influence, but potentially resulting

from the cell line heterogeneity itself. The analysis was done

comparing the expression profiles of the 3 cell lines associated with

a [PIP2] phenotype (i.e. MCF7, VHB1 and MDA-MB231)

without DHT treatment in order to identify specific unique gene

expression. This analysis pointed out 85% of the genes (7,996

clones) that were found not significantly differentially expressed

between the 3 cell lines (p = 0.01). The corresponding gene list was

used as a reference for subsequent statistical analyses with the

drawback that a fraction of them will escape detection of

differential expression in relation with PIP in subsequent analyses,

being confounded by differences in the genetic background of the

individual cell lines, but ensuring that the gene modulations

identified are strictly related to PIP expression. Two- and three-

class comparisons of mean relative expression levels were then

performed gene-by-gene between [PIP++], [PIP+] and [PIP2]

Table 2. Statistical power simulations of the gene expression
dataset.

[PIP++] vs [PIP2]
n = 16 vs n = 40

[PIP+] vs [PIP2]
n = 24 vs n = 40 Ratio

0.29 0.41 1.2

0.78 0.90 1.35

0.97 0.99 1.5

1 1 1.8

The statistical power (Z; 1- ß) is the probability of obtaining statistical
significance in comparing gene expression. Simulations for unpaired two-class
comparison statistics are described in the Materials & Methods. Calculation
includes the following parameters:
- a significance level (a) of 0.01.
- the observed biological variability (s).
- a sample size (n) from individual [PIP++], [PIP+] and [PIP2] samples.
- a true difference (i.e. 1.2, 1.35, 1.5 or 1.8) in mean expression ratios between
the respective classes.
doi:10.1371/journal.pone.0004696.t002

Table 3. False discovery rate of the gene expression dataset.

[PIP++] n = 16 [PIP+] n = 24 [PIP2] n = 40 Ratio

3.95e202 1.57e202 2.74e203 1.2

1.92e203 1.99e204 2.42e206 1.35

8.58e207 8.58e207 3.28e210 1.5

Expected False discovery rates (FDR) that may be anticipated from a gene
expression comparisons from the [PIP++], [PIP+] and [PIP2] subgroups of
samples.
doi:10.1371/journal.pone.0004696.t003

Figure 2. Range of biological variability of the gene expression
dataset. Similarity dendrograms (Pearson correlation) resulting from
unsupervised hierarchical clustering of DHT-treated (J7) or -untreated
(J0) breast carcinoma cells based on the global gene expression matrix.
[PIP+] and [PIP2] cells are indicated in red and blue, respectively.
doi:10.1371/journal.pone.0004696.g002
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subgroups using a combination of t- and F- statistic approaches

and yielded complementary lists (See Table S1), including a list of

606 clones (L606, two-class, data not shown) and a list of 235

clones (L235, three-class, see Table S2). The 3-class comparison

was privileged to take into account the additional modulations of

expression that could occur between samples with a moderate

[PIP+] or a high [PIP++] expression and to focus our exploration

on genes that may be found co-regulated in relation to the PIP

expression level changes. The split of PIP-expressing samples in

two separate subgroups of samples raised the strength of the

statistical analysis and led to the identification of a more extensive

and explicit list of modulated genes, as 44% of the clones in L235

were not detected in two-class comparison and therefore not

included in L606. In addition, these genes are unlikely to

correspond to genes modulated by DHT treatment independently

from PIP expression, since both [PIP+] and [PIP++] subgroups of

samples consist of treated samples and the [PIP++] subgroup

contains a balanced number of treated and untreated samples.

The genes represented in L235 were annotated using the Unigene

Cluster Ids identifiers [29]. L235 corresponds to 205 unique genes

(193 unique named genes) (L235; see Table S2), including 92 up-

regulated named genes (64%) and 51 down-regulated named genes in

the [PIP+] group when compared with the [PIP2] group, with a fold-

change over 1.35. More than one third of the selected genes were

associated with a fold-change ranging from 1.35 to 1.5; thus, the

effective statistical power was computed to evaluate the reliability of

detection of such slight gene modulations for both two- and three-

class comparisons. We found the computed power to be satisfactory,

being over 90% and 78%, thereby ensuring the reliable detection of

these small variations in gene expression between [PIP+] and [PIP2]

samples and between [PIP++] and [PIP2] samples, respectively

(Table 1 & Table 2). The false positive rate associated with this

threshold ratio was estimated to be lower than 0.2% in all subgroup

comparisons (Table 3), confirming that these slightly modulated genes

could be taken into account confidently.

To further probe the ability of different subsets of the genes

represented in L235 to discriminate between [PIP+] and [PIP2]

phenotypes, supervised hierarchical clustering of the expression

profiles was performed (Figure 3). Gene clusters with related

expression patterns were clearly discernable, consistently pointing

out differences between the PIP–expressing and non-expressing

samples. Precisely, the samples are divided in two main groups

according to their PIP expression phenotype. This observation

contrasts with the sample similarity dendrogram previously

obtained using the whole gene expression matrix (Figure 2).

Clusters of gene modules that appeared the most relevant to

differentiate [PIP+] and [PIP2] subgroups were identified using t-

statistics with a permutation-based adjustment of the gene

expression matrix (n = 10,000 and a= 0.05). The top-ranked

clusters were NODE222X of 60 clones (50 named genes and 7 not

assigned to any Unigene cluster Id) found up-regulated in the

[PIP+] subgroup (t-stat = 24.57; p = 2.561024) and NODE196X

and NODE167X containing 26 and 11 clones (23 and 8 named

genes, respectively, and 3 not assigned to any Unigene cluster Id in

each node), which conversely represent clusters of genes up-

regulated in the [PIP2] subgroup (t-stat = 4.16 and 2.89 and ;

p = 8.761024 and 261022) (Figure 3).

Validation of the microarray gene expression data
The accuracy and reliability of the results obtained with

microarrays was tested by quantitative RT-PCR (Q-PCR) using a

tailored TaqMan Low Density Array (LDA). The relative gene

expression levels (RQ = 22DDCt, [30]) in [PIP+] and [PIP2]

samples were normalized to that of the peptidylprolyl isomerase A

(PPIA) housekeeping gene and relative to the median value of all

samples taken as calibrator reference. The data are expressed as

the RQ ratios in [PIP+] versus [PIP2] samples.

Thirty-two genes (28 from list L235, 4 from lists L578 and

L2231, see Table S1) were chosen for validation of microarray

data. Nine additional genes were selected among those found not

significantly differentially expressed (Table 4). Comparison of

microarray and Q-PCR results after z-statistics with FDR

adjustments indicated a good agreement: 28 of the 32 (87%)

differentially expressed genes detected with microarrays were fully

validated by Q-PCR (Table 5). The remaining differentially

expressed genes were considered as false positive results: two of

them were associated with an inverted Q-PCR expression ratio

compared to that obtained with microarrays and the 2 others were

not found significantly differentially expressed when analyzed by

Q-PCR. Finally, four of the nine genes not detected as

differentially expressed with microarrays and found discordant

when analyzed by Q-PCR are likely to represent microarray false

negative results or false positive results of one or the other

technology (Table 5).

Taken together, these results show that most of the genes

identified by microarrays were validated and only few genes were

found to be false positive results. Thus, expression of the genes in

L235 derived from the three-class comparison correlates directly

or inversely with PIP modulations. It provides a faithful

representation of the breast cancer cellular model and therefore

a solid basis for further functional exploration of the results.

Functional annotation of the differentially expressed
genes

Functional analysis was performed using the Ingenuity Pathway

Analysis (IPA, version 4.0) tool which relies on a knowledge

database of curated functional and regulatory interactions

extracted from the literature and provides integrated graphical

representation of the biological relationships between genes and

gene products. Two distinct analyses were performed based on

Locuslink ID gene identifiers, considering separately up- and

down-regulated genes from list L235 (Table 6). The p-values

relative to the most enriched functions appeared highly significant

(a= 0.05, Fisher’s exact test). A total of 48 and 43 significantly

over-represented biological functions were identified in the up-

and down-regulated gene lists, respectively. Among them, 37 are

overlapping. The significance was higher for functions associated

with down-regulated genes. The 20 most relevant functions

identified with down-regulated genes and the corresponding p-

values for both analyses are reported in Table 6.

Thus, cancer, cell cycle, cellular growth and proliferation

related functions appeared to be in the top five of highest-level

functions highlighted in both analyses according to the assigned p-

value. Cell death was also associated with significant expression

changes in genes co-modulated with PIP (1.33e210 to 9.72e25

for up-regulated genes and 1.96e212 to 3.58e27 for down-

regulated genes). Taken together, these results suggest that tumor

proliferation might be deeply impacted by modulations of gene

expression levels between the [PIP+] and the [PIP2] samples.

Moreover, significantly enriched gene classes related to down-

regulated genes in [PIP+] versus [PIP2] samples are highly

indicative of processes involving cell morphology and movement.

The prominent functions associated with theses classes are cell

morphology, tissue morphology, tumor morphology, cellular

movement, cell to cell signalling and interaction, and cellular

assembly and organization (Table 6). These biological functions

are also found significantly over-represented in the up-regulated

gene list even though the associated p-values are slightly smaller

A PIP Regulatory Network
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but statistically relevant (p-value lower limit#1e26). A large

number of genes involved in cellular movement partly overlapped

with cancer-related genes. Altogether these gene expression

modulations might influence cell death or tumor invasiveness.

Identification of molecular networks associated with PIP
gene expression modulations

We next investigated biological relationships between genes and

gene products by performing a network analysis for the genes

represented in L235. A total of 126 unique genes in L235, called

focus genes, were mapped to genetic networks as defined by the

IPA tool. Nine networks were found significantly enriched with

scores ranging from 9 to 19 (data not shown), the probability for a

network to be selected by chance (score,3) decreasing when its

corresponding score value increases. As network identification

using the IPA tool may be strongly dependent upon size and

content of the input gene list used, further analyses were

conducted using independent gene lists for the up- and down-

regulated genes in L235. This analysis led to the identification of

ten and eleven networks for up- and down-regulated genes,

respectively (data not shown). These networks were associated with

the same biological functions (i.e. cancer, cell death, cell cycle,

cellular growth, gene expression, proliferation and tissue mor-

phology) exhibiting higher scores (15–23 and 8–23 for the top 6

up- and 4 down-regulated gene networks, respectively) as those

previously identified using the whole gene list L235 (Table 7).

Among the selected networks, several up-regulated genes are

found associated with a pro-apoptotic function (BAD, CDKN2A,

PRAME) [31–33] and an inhibition of cell growth and proliferation

(CCND3, CDKN2A, EFNA1, HRASL3 and PRAME)[34–39]. These

results are concordant with the down-regulation of ARD1, CTPS,

EEF1B2, LOXL2, NRAS and PTN known to promote cell

proliferation [40–47]. Only two over-expressed genes, MMP14

and HDAC3, could result in possible conflicting functions leading to

enhanced cell proliferation. For instance, MMP14 was previously

shown to enhance proliferation in many types of tumors [48] and

Figure 3. Hierarchical clustering of the differentially expressed genes. Unsupervised hierarchical clustering of all samples for the genes
found significantly differentially expressed (L235) between [PIP+] and [PIP2] phenotypes, and modulated in relation with the PIP expression. Genes
(row) and samples (columns) are clustered independently using uncentered Pearson correlation metrics. [PIP+] and [PIP2] cell lines are indicated in
red and green, respectively. The top-ranked relevant gene clusters (NODE 167X, NODE 196X and NODE 222X) selected using t-statistics with
permutation-based adjustment (n = 10,000; a= 0.05) are indicated by color bars. The presence of the PIP gene is pointed.
doi:10.1371/journal.pone.0004696.g003
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HDAC3 silencing demonstrated to induce cell cycle arrest and

apoptosis [49,50]. Conversely, most down-regulated genes involved

in the cell death pathway are linked to anti-apoptotic functions

(BAG1, CTSL, CTPS, PTN, LOXL2) [44,51–54]. Nevertheless,

decrease of expression of the pro-apoptotic BNIP2 gene could

support an opposite effect on cell survival [55].

Table 4. Descriptive list of the genes selected for biological validation by quantitative RT-PCR (Q-PCR).

Nu Symbol Clone ID Intensity [PIP+] Intensity [PIP2] Ratio PIP+/PIP Min p-value Max p -value

1 PIP 4295801 23801 1753 13.83 0.00E+00 0.00E+00

2 CDKN2A 2988668 2549 526 2.64 6.79E208 0.00E+00

3 CD82 2959683 3164 1178 1.62 8.55E209 0.00E+00

4 DSCR1 3944959 4559 2731 1.92 2.66E208 0.00E+00

5 RERG 3357341 4483 1466 5.35 8.01E211 0.00E+00

6 ACAT1 4278329 4558 1844 1.89 1.05E204 0.00E+00

7 HRASLS3 3051149 9275 3243 1.88 7.46E206 0.00E+00

8 BDH1 2822178 3874 1526 1.55 1.94E204 2.54E213

9 MPHOSPH6 3997566 6085 4122 1.67 8.52E207 1.24E213

10 PEA15 3346270 2949 2013 1.60 2.88E206 7.32E210

11 RFC4 3537752 6569 3081 1.45 6.57E207 2.22E216

12 TFRC 587896 4484 2724 1.48 2.35E207 6.55E212

13 NDUFB5 3997377 9508 6340 1.51 2.94E207 0.00E+00

14 NDUFS2 3138814 6354 2818 1.60 1.44E208 6.66E216

15 MRPL45 3951804 3712 2989 1.36 3.45E204 4.85E208

16 BAD 345703 2652 1954 1.34 8.91E204 1.67E208

17 NFRKB 131626 1489 1065 1.49 6.04E208 0.00E+00

18 BCL2* 232714 955 1989 22.08 1.26E202 5.23E208

19 TGFBI 2958878 659 1316 21.96 2.99E206 0.00E+00

20 NRAS 3826638 2308 3126 21.72 8.07E206 2.74E210

21 CTSL 4295635 2847 4049 21.64 6.25E210 2.22E216

22 CD44 3638681 4176 5002 21.52 1.66E206 2.71E213

23 COL6A2* 3347413 882 2151 22.43 6.30E205 0.00E+00

24 CDKN1A* 2821049 1429 1177 21.22 7.04E201 1.53E201

25 MYC* 417226 3419 7352 22.17 1.90E203 1.61E203

26 NBN 3997534 1283 1843 21.32 1.54E203 2.28E204

27 CTPS 3507350 3905 4637 21.54 4.83E208 1.09E214

28 IDH3A 2989636 2026 3468 21.47 8.65E207 1.69E213

29 BAG1 2823774 1195 1022 21.41 1.38E203 8.09E206

30 EEF1B2 3353094 7955 15656 21.82 1.06E210 0.00E+00

31 IQGAP1 770999 1544 2469 21.37 1.97E203 2.76E207

32 ITGB6 759142 852 444 2.17 4.54E211 0.00E+00

33 CCNE1 3637746 5487 6216 n.d not significant

34 RB1 668108 2685 2349 1.01 not significant

35 SERPINF1 2961120 867 862 n.d not significant

36 COL6A1 3506644 786 820 21.25 not significant

37 MAD2L1 2964388 4329 5068 21.25 not significant

38 LAMA3 298718 1814 1705 1.06 not significant

39 EGFR 151475 903 761 1.19 not significant

40 TGFB1 3356605 3396 3463 21.02 not significant

41 TP53 3544714 3027 3351 21.18 not significant

Thirty-two genes found differentially expressed (displayed in bold) and 9 additional genes with no significant differential expression (displayed in italics) using
microarrays (a= 0.01) were selected for further biological validation. For each gene symbol, clone ID and median intensity values (displayed in arbitrary unit) of [PIP+]
and [PIP2] cell lines are indicated. The relative expression levels recorded with microarrays are displayed as the ratio between [PIP+] and [PIP2] samples, and the values
specified as negative (down-regulated) or positive (up-regulated). Adjusted p values were computed using z statistics with false discovery rate corrections (a= 0.05). Min
p value and Max p value refer to lower and upper bound p values, respectively.
*Differentially expressed genes from lists L578 (BCL2, MYC) (Table S1) and L2231 (BCL2, CDKN1A, COL6A2, MYC) (See Table S1).
doi:10.1371/journal.pone.0004696.t004
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The expression level of genes implicated in cellular adhesion

(CD82, EFNA1, ITGB6, LGALS8) is found increased in samples

overexpressing PIP [56–61]. In addition, an overexpression of the

PEA-15 gene is observed in the [PIP+] versus the [PIP2] samples.

The PEA-15 function was recently related to cell invasion via its

ability to bind to ERK1/2 [62]. It has also been shown that PEA-

15 is expressed in normal mammary gland and exhibits a

decreased expression in pathologically invasive cancer, suggesting

Table 5. Q-PCR validation of the expression of the 41 selected genes in cell lines.

Symbol Assay ID Ct [PIP+] Ct [PIP2] Ratio PIP+/PIP2 p-value

Fully validated genes PIP Hs00160082_m1 18.09 34.94 33905 0.00E+00

CDKN2A Hs00233365_m1 23.79 40.00 1862 8.22E215

CD82 Hs00174463_m1 22.52 29.71 101.36 0.00E+00

DSCR1 Hs00231766_m1 23.83 26.70 5.68 0.00E+00

RERG Hs00262869_m1 24.30 26.29 4.37 5.02E211

ACAT1 Hs00608002_m1 22.34 25.03 4.01 0.00E+00

HRASLS3 Hs00272992_m1 21.76 23.97 3.43 6.44E215

BDH1 Hs00366292_m1 25.02 26.52 2.81 3.36E211

MPHOSPH6 Hs00757922_g1 22.86 24.59 2.66 3.37E208

PEA15 Hs00269428_m1 22.16 23.84 2.58 6.60E210

RFC4 Hs00427469_m1 23.42 24.82 2.46 2.52E209

TFRC Hs99999911_m1 20.03 22.03 2,40 6.41E209

NDUFB5 Hs00159582_m1 20.99 22.22 2.31 3.53E208

NDUFS2 Hs00190020_m1 22.24 23.76 2.28 4.54E208

MRPL45 Hs00260597_m1 24.32 25.71 2.18 7.73E207

BAD Hs00188930_m1 24.16 25.21 2.05 4.17E206

NFRKB Hs00196269_m1 25.02 25.94 1.96 8.75E206

BCL2* Hs00608023_m1 35.06 26.81 21437 0.00E+00

TGFBI Hs00165908_m1 29.53 26.42 212.50 2.22E216

NRAS Hs00180035_m1 23.07 20.77 23.31 1.69E207

CTSL Hs00377632_m1 25.65 23.37 23.00 6.25E205

CD44 Hs00174139_m1 26.34 25.07 22.90 5.34E205

COL6A2* Hs00365167_m1 28.91 27.23 22.79 3.22E205

CDKN1A* Hs00355782_m1 24.20 22.63 22.01 1.21E202

MYC* Hs00153408_m1 25.21 23.32 21.99 9.55E204

NBN Hs00159537_m1 24.02 23.33 21.73 9.02E203

CTPS Hs00157163_m1 25.03 23.91 21.60 2.06E202

IDH3A Hs00194253_m1 23.53 23.39 21.55 2.65E202

CCNE1 Hs00233356_m1 26.19 26.36 1.11 5.26E201

RB1 Hs00153108_m1 24.94 25.24 1.11 5.58E201

SERPINF1 Hs00171467_m1 29.96 29.45 21.23 2.53E201

COL6A1 Hs00242448_m1 27.83 27.44 21.20 3.14E201

MAD2L1 Hs00829154_g1 25.60 25.61 21.01 9.65E201

False discoveries BAG1 Hs00185390_m1 23.82 23.75 21.04 8.21E201

EEF1B2 Hs00253438_m1 25.34 24.78 21.33 1.28E201

IQGAP1 Hs00182622_m1 23.13 23.02 21,10 5.79E201

ITGB6 Hs00168458_m1 29.91 27.25 25.75 1.00E202

LAMA3 Hs00165042_m1 26.54 28.47 3.08 5.05E212

EGFR Hs00193306_m1 28.12 29.40 2.50 4.22E208

TGFB1 Hs00171257_m1 27.32 23.70 25.83 9.18E213

TP53 Hs00153340_m1 23.22 21.83 22.23 1.89E204

Q-PCR analysis was done according to the Material&Methods on the same samples set used in microarray analysis. Gene symbol and TaqMan assay (assay ID) are
indicated. The genes that were found differentially expressed (L235) or not significantly modulated using microarray are displayed in bold and italics, respectively, and
classified as fully validated genes or potential false discoveries considering the Q-PCR results. The Ct values correspond to the median of threshold cycles of [PIP+] and
[PIP2] samples. The expression changes (ratio) between the [PIP+] and the [PIP2] samples are specified as negative (down-regulated) or positive (up-regulated) values.
Adjusted p-values were computed using z statistics with false discovery rate corrections (a= 0.05).
doi:10.1371/journal.pone.0004696.t005
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an inverse relationship between PEA-15 expression and tumor

invasion. All considered, observed up-regulations could reinforce

cell adhesion and consequently exert a preventive effect on cell

motility and metastasis development. Conversely, FXYD5, ICAM1

and MMP14 overexpression might enhance tumor invasion [63–

66]. In fact, several studies on breast cancer samples have shown a

major role of the protease MMP14 in the invasion process

occurring mainly via extracellular matrix remodelling. These

discordant observations may reflect differences in gene expression

observed between tumor and cell line models resulting from the

environmental specificities of tumor cells in vivo and the

heterogeneous mixture of cells in tumor samples, including

immune cells as well as tissue-specific cells, which cannot be

reproduced with cells grown in culture plates [67].

The down-regulated gene analysis also highlighted a network

linked to cell to cell signalling and cellular movement function,

reflecting an impact of these gene modulations on cell motility and

invasiveness (network 8, down-regulated genes, Table 7). Within

this network, several genes had a function promoting migration

and cell invasiveness (IQGAP1, TGFBI, CD44, CTSL, PTN) [68–

71]. Accordingly, their down-regulation in [PIP+] versus [PIP2]

samples could have a suppressive effect on cell invasion. Similarly,

the down-regulated expression of LOXL2 might prevent tumor

progression, as shown by the induction of the epithelial-to-

mesenchymal transition process in epithelial cells overexpressing

these genes [44].

In summary, this pathway analysis strongly suggests that the

majority of gene modulations, occurring in [PIP+] versus [PIP2]

Table 7. Global network analysis of differentially expressed genes.

id Genes Score Focus genes Top functions

Up-regulated
gene analysis

1 ACHE, BCL2L1, BCL2L11, CCL17, CCRN4L, CD14, CD82, COMMD9, CP,
DHRS3, DSCR1, DUSP14, EFNA1, FOXO1A, GAS6, HSD11B1, LGALS8,
LTBR, LTF, MAP3K7IP2, NFKB1, NFRKB, NOTCH4, NR1H3, PDGFA, PPP4C,
PSEN2, PTX3, SOD2, TAP1, TCF3, TNF, TNNT1, UCP3, VDAC3

23 15 Tissue Morphology, Cell Death

2 ATP6AP2, BAD, BDH1, BMYO, CCND3, EIF4A1, EIF4A2, EIF4B, EIF4E,
EIF4G1, EIF4G2, EIF4G3, FGB, FGF2, FGG, GH1, GLUD1, GLUL, GOLGA2,
GORASP2, HMGA2, ICAM1, IGFBP2, ITM2B, KRAS, LAMA5, MCAM, MKNK1,
MMP14, PDCD4, PRDX4, REN, S100A4, TEAD4, TMED2

17 12 Protein Synthesis, RNA Post-
Transcriptional Modification, Gene
Expression

3 ACAT1, ACVRL1, ALG3, CAP1, CAP2, EPB41L1, FDFT1, FN1, GCNT1,
IGFBP7, ITGB6, ITGB8, LEP, LTBP1, ND1, ND2, ND4, ND6, ND4L, NDUFS1,
NDUFS2, NDUFS3, NDUFS4, NDUFS5, NDUFS6, NDUFS8, NDUFV2, PTEN,
RB1, RPN2, RRM1, SC5DL, SPI1, SRPR, TGFB1

17 12 Energy Production, Molecular
Transport, Genetic Disorder

4 AMD1, CBX5, CCND3, CDKN2A, CITED2, CLDN6, DCTN4, DHFR, DMTF1,
E2F6, EED, EPC1, ESRRA, EZH2, GOT1, HIST3, HMGB2, KLF4, MTCH2,
NFE2L2, PCGF4, PDHX, PMF1, PRAME, RAD51AP1, RECQL4, REEP5, RFC3,
RFC4, SAT, SLC19A1, SLC1A4, SP1, SUZ12, ZNF655

17 12 Cellular Growth and Proliferation,
Cancer, Cell Cycle

5 ABCB1, AKT1, APPL, BCL2L11, CA12, CCL21, CCR5, CD4, CD36, CD82,
CD1D, DIO1, FXYD5, GLRX,H2-D1, HARS, HAX1, HDAC3, HDAC9,
HIF1AN, HLA-DMB,HLA-E, HRASLS3, HSP90AA2, HTRA2, IFNG, JDP2,
MAP3K7IP2, MAPK8, MECP2, PEA15, PPP4C, TAPBP, TCL1A, VHL

15 11 Infectious Disease, Cancer

6 ACTB, CCNA2, CCND3, CD14, CDC25A, CEBPB, CEBPE, CSF3R, EDN1,
EGR2, EIF4EBP1, EPPB9, EXOSC10, FOXRED1, IFNA1, KITLG, MID1IP1,
MPHOSPH6, MSN, MYC, N-PAC, NFYC, NPM1, ODC1, PHACTR1, PIP,
PLCB4, PLD2, RPL7, RPS20, SLC2A1, SNRPN, SPI1, TCF3, TRIM28

15 11 Cellular Development, Immune
and Lymphatic System
Development and Function

Down-regulated
gene analysis

7 ACTR2, ARHGAP1, ARL4A, ARL6IP, ARPC1B, ASGR2, BNIP2, CDC42,
CDC42EP5, CTNNB1, CTPS, ERBB2, HOXA5, HTRA1, IGFBP6, IQGAP1,
ITSN2, LOXL2, NBN, NNMT, PFN2, PTN, SEC61A1, SEC61B, SEPT2,
SEPT6, SEPT7, SEPT9, SLC6A2, TGFB1, TP53, TRIP10, TSC22D1, WAS, WASPIP

23 14 Cellular Assembly and
Organization, Cellular Function
and Maintenance, Cancer

8 ACP5, ARD1A, BET1,CD44, CMA1, CST7, CTSL, DEFB103A, DEFB4, FN1,
GDF5, GUSB, HIF1A, HIF1AN, HIST1H1C, IER2, IL4, IQGAP1, MADCAM1,
MST1R, NASP, NPHS1, NRG1, PIK3CB, PPM1G, SEC22L1, SERPINB3,
SLC2A1, TFPI2, TGFBI, TGOLN2, TNF, TNFAIP6, TSTA3, ZAP70

21 13 Cell-To-Cell Signaling and
Interaction, Tissue Development,
Cellular Movement

9 ADM, AKT1, BAG1, BCL2L1, BMP7, CALCR, CDK7, CPB2, CRI1, EEF1A1,
EEF1B2, GABPB2, GALNT10, GNAQ, GNB5, HPRT1, IL1B, OXTR,
PCGF6, PROCR, PSMA1, PSMA3, PSMA4, PSMA6, PSMB2, PSMB3, PSMB6,
PSMB9, PSMB10, RAMP1, RB1, SPARC, THBD, TPT1, YAF2

21 13 Cellular Growth and Proliferation,
Molecular Transport

10 AR, ATP1A3, BCL2, CCND1, CCNE1, CDK2, CDKN1A, CHMP4A, CHMP4C,
EGF, EGFR, EPO, GH1, HEXA, INS, INS1, MAPK3, ME1, NCOR2, NR3C1,
NRAS, PDCD6IP, PPARA, PTK2B, RXRB, SRC, STAT5B, THRB, TP53, TSG101,
VPS28, VPS37B, VPS37C

8 6 Gene Expression, Cell Cycle, Cancer

Up- and down-regulated genes from L235 analyzed using the IPA tool (version 4.0). Among them 74 up- and 52 down-regulated genes were eligible for generating
networks and led to the identification respectively of 10 and 11 distinct networks containing both direct and indirect interactions scored by significance. The six up and
four down-regulated networks considered as relevant (i.e. score.3) are reported. Genes selected as differentially expressed in [PIP+] versus [PIP2] samples (i.e. Focus
genes) are shown in bold. Underlined genes indicate those belonging to multiple networks. The other genes are either absent from the microarray or found not
significantly regulated.
doi:10.1371/journal.pone.0004696.t007
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cells, may contribute to a reduction of cell proliferation

concomitantly with an increase of apoptosis and cell adhesion.

Visualization of relevant modulations in a master
molecular interaction network

In order to visualize comprehensive interactions between the

modulated genes within breast cancer cells and place them in the

context of molecular interaction network, the most significant up-

and down-regulated gene networks were merged (Figure 4).

Networks 1, 4 and 6 of up-regulated genes were chosen according

to the highest score value (23), the corresponding functions in

tumorigenesis (proliferation, cancer and cell cycle) and the

presence of the PIP gene, respectively (Table 7). These networks

were merged through the overlapping genes (CD14 and TCF3 for

networks 1 & 6; CCND3 for networks 4 & 6). About 45% of the

focus genes of those up-regulated gene networks are found to take

part in one of the most relevant clusters identified by t-statistics in

L235 hierarchical clustering. More specifically, 67% of the focus

genes from network 1 are included in NODE 222X. Networks 7, 8

and 10 of down-regulated genes were selected upon the presence

of overlapping genes between networks: TP53 for networks 7&10

and IQGAP1 for networks 7 & 8 (Table 7). An important fraction

of the focus genes from those down-regulated gene networks are

localized within NODE 167X or NODE 196X from L235

hierarchical clustering.

A 231-member master molecular network has been assembled

with 1,262 edges corresponding to a global view of gene expression

modulations occurring together with PIP gene expression. This

master network was constructed by merging the selected up- and

down-regulated networks. The nodes and edges for each

individual network were added to the merged network together

with any new edges that connect these networks, resulting in

incorporation of 29 additional genes. Nineteen nodes appeared to

be highly connected in the network as demonstrated by the

important number of edges emerging from or pointing to them.

These nodes were considered as ‘hub genes’ and were moved to

the periphery of the network, together with the PIP gene, in order

to highlight them [72]. Their high connectivity is likely to reflect

their ability to regulate an important number of genes within the

master network and potentially to control the gene expression

modulations identified between cells overexpressing PIP or not

(Figure 4)[73]. Unexpectedly, of the 15 oncogenes and tumor

suppressor genes included in the master network, 10 end up

among the 19 hub genes, and 8 of them have been detected as

differentially expressed through microarray and/or Q-PCR

analyses. Such genes are usually not detected through analysis of

differential expression, and are incorporated in predictive network

modules only through integration of curated protein-protein

interactions [74]. This highlights their central interconnecting

role in the master network, and the value of using high-precision

expression measurements with careful assessment of statistical

power as performed in this study. All 19 hub genes except AR,

IFNG, SPL1 and TNF were present on the array. Among them,

CDKN2A and HDAC3 were identified as significantly over-

expressed, and NRAS and CD44 as significantly decreased in

[PIP+] versus [PIP2] samples, as detected by both microarray

analysis (list L235) and Q-PCR (Figure 4, grey shaded symbols and

underlined names). Four hub-genes (EGFR, CCNA2, and TGFB1,

TP53 for up- and down-regulated genes, respectively; Figure 4,

open symbols and underlined names) were not present in L235 but

were found significantly differentially expressed by Q-PCR

analysis only; three hub genes (MYC, BCL2, CDKN1A; Figure 4,

asterisks) were found significantly differentially expressed by both

Q-PCR and microarray analysis, belonging to other relevant

computed gene lists. The remaining 4 hub genes (FN1, CCNE1,

ERBB2, SP1) were not assayed by Q-PCR nor identified as

differentially expressed by microarrays except ERBB2 and SP1

which were selected in lists L578 and L1114 (See Table S1). As

molecular relationships represented on the network include not

only induction or inhibition of expression, but also protein-protein

interactions, DNA-protein interactions and activation, localiza-

tion, inhibition of the corresponding proteins, it is not surprising

that microarrays and Q-PCR may fail to identify some of the hub

genes as being significantly modulated among the [PIP+] and

[PIP2] subgroups of samples. These genes might play a major role

through protein activation for instance. Alternatively, their

modulations may be very subtle and below the threshold for

reliable detection of differences of our microarray platform despite

its high sensitivity. Distinguishing between these different possi-

bilities will require targeted validation experiments.

The PIP gene was also moved to the periphery of the network,

even though it is connected to only two other genes, CD4 and

EGR2 (Figure 4). The edge connecting PIP to EGR2 was previously

reported by a microarray study in rat Schwann cells, which

demonstrated an up-regulation of PIP in cells overexpressing

EGR2 [75]. EGR2 cDNA clones are represented on the array but

no significant modulation of its expression was observed in parallel

with the PIP gene. The edge connecting PIP to CD4 is based on

the reported interaction between these proteins leading to T

lymphocyte programmed cell death inhibition induced by CD4

cross-linking and subsequent TCR activation [19]. In our in vitro

models of breast cancer cell lines, the interaction between the

secreted glycoprotein PIP and CD4 cannot take place since CD4 is

not expressed in these cells.

In addition, previous studies reported that the PIP protein may

exert an aspartyl proteinase activity able to specifically cleave

fibronectin (encoded by FN1)[20], supporting a link between PIP

and FN1 at the protein level. This interaction between PIP and

FN1 is actually missing in the IPA database. In spite of this lack,

FN1 appears as a hub gene in our study (Figure 4), thus supporting

the strength of the genes identified as involved in the master

network associated with PIP expression. This indicates that even

though more than one million of functional, regulatory and

physical interactions are included in the IPA knowledge database,

its content is far from being exhaustive. Consequently, other

interactions can be missed in the network of the PIP co-modulated

genes represented in Figure 4.

Promoter analysis of differentially expressed genes
Co-regulation of mammalian genes usually depends on sets of

transcription factors rather than on one individual factor.

Therefore an analysis of the promoter regions of the genes from

list L235 was conducted in order to identify potential common

transcriptional regulators.

Using the cluster ElDoradoe/Gene2promotor/GEMS Launch-

er for promoter analysis [76], three families of transcription factor

binding sites (TFBS) were identified to be common to at least 40%

of the genes from L235. They correspond to the glucocorticoid

responsive and related elements (GREF), LEF1/TCF (LEFF) and

the signal transducer and activator of transcription (STAT). The

FrameWorker allowed the identification of a specific promoter

framework constituted by all 3 TFBS and shared by 24 gene

promoter regions (ACOT2, CEP250, GABARAPL1, NFRKB,

NNMT, PHACTR1, PIP, PLCB4, PRAME, PSEN2, PSPH, RPN2,

SAT, SC5DL, SEPT2, SLC1A4, SNRPA1, SNRPN, SNURF, SPARC,

SRPR, TCF25, TEAD4, TGFBI, TMED2). Another set of 26 genes

containing only a framework of 2 of the TFBS (GREF-STAT) was

identified (ALG3, ANXA9, ATP6AP2, B4GALT4, DHRS3, GDF5,
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Figure 4. Master molecular network of genes co-modulated with PIP. Master network assembled by merging networks 1, 4 & 6 and networks
7, 8 & 10 identified by the IPA tool (version 4.0) from up- and down-regulated gene analysis using overlapping genes (cf. Table 7). The network is
displayed graphically as nodes (genes/gene products) and edges (the biological relationship between the nodes). The [PIP+] relative to[PIP2] over-
expressed genes are shaded in light red and down-regulated genes in green. The genes connected with PIP (EGR2 and CD4) and STAT5B, which was
identified by a promoter analysis as a potential key regulator of the master network, are shaded in yellow. The nodes are represented using various
shapes that represent the functional class of the gene products. Highly interconnected nodes (‘hub genes’) are moved to the network periphery
together with the PIP gene. The hub genes belonging to L235 are shaded in gray and those, which were detected by quantitative PCR, are
underlined. The gene names are written in green (down-regulated) or in red (up-regulated) relative to a [PIP+] versus [PIP2] modulation. An asterisk
refers to a gene that was not selected in L235, but was identified at another level of the statistical analysis (* for L578&L2231 and ** for L1114 & L2231,
Table S1).
doi:10.1371/journal.pone.0004696.g004
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HAX1, HDAC3, IQGAP1, MPHOSPH6, NR1H3, PEA-15, PFN2,

RAB13, REEP5, RFC4, SCAMP2, SEC22B, SLC2A1, SUCLA2,

TFPI2, THBD, TNNT1, TSPAN1, TSTA3, TULP1). Specifically,

STAT5 transcription factor binding sites were implicated in this

GREF-STAT motif. Additionally, a TFBS from the STAT motif

family only was identified in the promoter region of several other

genes from L235 (data not shown).

In the master network of the differentially expressed genes

(Figure 4),a high number of interactions with STAT5B is observed

(BCL2, CCND1, CCR5, CDKN1A, EGF, EPO, ERBB2, GH1, HEXA,

IFNA1, IFNG, INS1, KITLG, NOTCH4, PPARA, PTK2B, TGFB1

and THRB). Several of these genes appear to be upstream

regulators of STAT5B: EGF, EPO, IFNA1, IFNG and PYK2 have

been shown to increase the activation of STAT5B [77–81]

whereas TGFB1 was shown to increase its expression [82]. In

contrast to STAT5B, STAT5A is not represented in the assembled

master network (Figure 4). Analysis of known interactions between

STAT5A and the genes from the master network showed that

STAT5A share almost the same interactions as STAT5B except for

CCND1, CCR5, ERBB2, HEXA, PPARA, PTK2B, TGFB1 and

THRB (data not shown). Moreover additional interactions have

been reported with BCL2L1, EGFR, MYC, NFKB1, NR3C1 and

TNF. In particular, TNF and NFKB1 have been shown to increase

expression of STAT5A [83,84].

Previous studies described that STAT5 may exhibit opposite

functions in mammary oncogenesis, either increasing tumor

development in several murine models [85–87] or inhibiting

tumor progression in human breast cancer cells [88,89]. More

recently, it has been proposed that STAT5 may act as a suppressor

of invasion, epithelial mesenchymal transition and dispersal of

breast cancer cells from the primary tumor [89–91]. This was

novel in light of the previous tumor-promoting role attributed to

STAT5 [89]. The suppressive role of STAT5 on cell invasion was

confirmed in vitro in the well-differentiated ER-positive breast

cancer cells T47D [88]. It was also shown that PRL may suppress

human breast cancer cell invasion through multiple mechanisms,

such as activation of STAT5 [90]. Indeed, STAT5, one of the

main downstream effector molecules of PRL [90], has been shown

to directly modulate transcriptional activity through interaction

with the promoter region of the target genes [92]. Moreover, high

levels of activated STAT5 have been found in a substantial

proportion of human breast tumors, which interestingly exhibited

a better prognosis [88,93].

Interestingly, PIP gene expression was previously reported to be

synergistically induced by prolactin (PRL)-activated STAT5 and

DHT-activated AR. More precisely PRL-induced phosphorylation

on Tyr694 of STAT5A and Tyr699 of STAT5B was demonstrat-

ed to be required for the synergistic effect of DHT and PRL on

transcriptional activation of the PIP/GCDFP-15 gene [94].

Altogether, our results suggest the potential involvement of

STAT5 in the transcriptional regulation of several genes from the

master network identified (Figure 4) associated with PIP. The

failure to detect significant expression changes of STAT5A and

STAT5B genes in PIP expressing versus non expressing breast

carcinoma cells using microarray analysis suggests that the

protective effects of these transcription factors on breast carcinoma

development could be mainly due to their activation rather than to

modifications of their gene expression levels. This hypothesis,

supported by the suppression of cell invasion through STAT5

activation [90], will have to be further investigated in future

studies.

In summary, we report here a comprehensive characterization

of the gene expression modulations occurring in PIP-expressing

versus non-expressing breast cancer cell lines. Using rigorous

unsupervised and supervised analyses, we identified differentially

expressed genes, which were found strictly co-modulated in

relation to the PIP expression level changes and allowed us to

discriminate [PIP+] and [PIP2] subgroups of samples. This study

provides useful information in term of pathway modulations that

occur within breast cells expressing PIP. The combination of a

high-precision expression profiling with an extensive functional

and regulatory network analysis has emphasized a central

interconnecting role of a number of oncogenes and tumor

suppressor genes in the network associated with PIP expression

modulation. Many oncogenes and tumor suppressor genes,

previously reported to exhibit particular breast cancer mutations,

e.g. ERBB2 and TP53, are typically not detected through analysis

of differential expression but can play a central role in signalling

networks by interconnecting many expression-responsive genes

[74]. Interestingly, half of them were found significantly

differentially expressed with an increase level of PIP transcript.

Consequently, our data allowed determination of a global view of

the regulatory network resulting from PIP overexpression based on

the aggregate behaviour of genes connected in a functional

network rather than on unique genes found differentially

expressed.

Functionally, the gene expression modulations associated with

an increase of levels of PIP transcript appear associated with an

inhibition of proliferation coupled with an enhancement of the

apoptosis and the cell adhesion in breast cancer cell lines. These

results provide additional and contextual support for the good

prognostic value of PIP gene expression in breast cancer, as

recently demonstrated by immunohistochemistry on a large cohort

of tumor samples in which significantly longer disease-free survival

times were associated with PIP positive tumors [95]. In addition,

STAT5 was identified through in silico promoter analyses of the

genes co-modulated with PIP suggesting that it might be a

transcriptional regulator accounting for the observed altered

functions. This unexpected result supports the view that an

important part of the modulated genes act as upstream or

downstream effectors of STAT5. For some of them, there is no

experimental evidence of a relationship with STAT5 and

additional experiments would be required to confirm this point.

Finally, STAT5 is known to inhibit cell invasion and is considered

as a good prognostic factor in breast cancer [88,89].

Many of the groups of genes (Table 7) that form the basis of the

master network reported here (Figure 4), including those discussed

above, represent novel combinations of factors that may impact on

important cancer-initiating biological processes or that may be

modulated consequentially. Further biological and clinical inves-

tigations using a large cohort of patients will be necessary to

identify those which contribute directly to breast cancer

development and progression, have prognostic value and are

possible targets for therapeutic intervention.

Materials and Methods

Cell lines and culture conditions
T47D, MCF7, MDA-MB231 breast carcinoma cell lines were

obtained from the American Type Culture Collection. VHB1 cells

[96] were a gift from J. Soudon (Hopital Saint-Louis, Paris,

France). Cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) with GlutaMAX (Invitrogen Ltd., Paisley, UK),

supplemented with 10% foetal calf serum (Perbio Sciences,

Helsingborg, Sweden), 100 U/ml penicillin, 100 mg/ml strepto-

mycin in a 5% CO2 incubator. Cells were treated with 10 nM

Dihydrotestosterone (DHT; Sigma #A8380, St Louis, MO) for 6,

7, 8 or 10 days before RNA extraction.
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RNA extraction
Total RNA was extracted from monolayer cells in culture at 2/3

confluency using the RNeasy Mini Kit (Qiagen, Hilden,

Germany). RNA purity and quantity was assessed by UV

measurement. Healthy mammary gland RNA from three distinct

healthy donors and a universal human reference RNA were

obtained from commercial sources (Stratagene Europe, Amster-

dam, Netherlands). RNA integrity was judged using RNA 6000

nano chips and the Agilent 2100 Bioanalyzer (Agilent Technol-

ogies, Palo Alto, CA) according to the manufacturer’s instructions.

RNA quality-control was performed using user-independent

classifiers as described [97,98].

Northern blot analysis
Total RNAs (15–50 mg) from breast carcinoma cell lines were

electrophoresed in a 1.6% formaldehyde agarose gel and

transferred onto Hybond-N nylon membranes (Amersham

Biosciences, Buckinghamshire, UK) according to standard tech-

niques [99]. Probes labeled with [a-32P] dCTP (3000 Ci/mmol;

Amersham Biosciences) were full-length PIP and ß-actin cDNAs

[100,101]. Northern blots were hybridized at 68uC for 16 h with
32P-labeled probes (1.56106 cpm/ml) in ExpressHyb Hybridiza-

tion solution (BD Biosciences Clontech), washed twice in 26SSC/

0.05% SDS at room temperature for 30 min and twice in 0.16
SSC/0.1% SDS at 50uC for 45 min. Membranes were then

autoradiographed at 280uC on Kodak X-Omat AR X-ray films

(Kodak, Rochester, NY).

Microarray design and manufacture
The human cDNA microarrays used contained 11,520

sequences derived from various sequence-verified clone collections

as previously described [102]. The array set provides a genome-

wide coverage of functional pathways, such as cell cycle and

checkpoints, cell growth and/or maintenance, cell adhesion and

proliferation, development, extracellular matrix, apoptosis, re-

sponse to DNA damage and DNA repair, DNA replication,

transcription and RNA processing. High confidence qualifications

and annotations of the clone collections have been previously

described [102] and are available through our web site (The

Genexpress - Array s/IMAGE web site,[103]). All arrays were

printed in the laboratory on amino-modified mirrored glass slides

using the Lucidea array spotter (Amersham Biosciences) as

described [102]. The suite of amplified cDNAs was printed as a

group in two spatially separated replicates.

Hybridization experimental design and analysis
To reduce potential experimental biases, four independent

RNA preparations were collected for each DHT-treated and -

untreated cell lines. To assess data reproducibility and minimize

dye bias effects, each of the samples was measured twice, once with

Cy3 and once with Cy5. To ensure robustness and flexibility in

data analysis, a reference design was used with a universal

reference sample (Stratagene) serving as a baseline for the

comparisons of cell line samples. Such a design does not require

pre-definition of the subgroups for comparison, allows robust

discovery of non-anticipated classes among the samples and is

compatible with subsequent additional sampling [102].

Thirty mg of total RNA from each cell line and human universal

reference RNA (Stratagene) were supplemented with known

sequences (spikes, Universal ScoreCard), reverse transcribed using

an oligo-dT primer and labeled alternatively with Cy-5-dCTP and

Cy-3-dCTP (Amersham Biosciences). Samples were purified using

the Qiagen’s QIAquick PCR Purification kit procedure and

submitted to a vigilant quality control procedure as previously

described [102]. Hybridizations to the arrays were performed as

described [102]. Array images and raw data were obtained using

the GenIII array scanner (Amersham Biosciences) and ArrayVi-

sion 7.0 software (Imaging Research Inc., Amersham Biosciences,

Palo Alto, CA, USA). Raw data were first imported into a

Genetraffic duo database (Iobion Informatics, Toronto, Canada),

local background-subtracted and normalized using a Lowess

(locally weighted linear regression) transformation. The following

selection criteria were applied: all spots having a mean signal (after

background subtraction) less than that of the background and

below that of the negative controls in both Cy3 and Cy5 channels

were systematically excluded; the data were also filtered to exclude

spots flagged as missing or corrupted in one array. For arrays

considered as partially exploitable based on several quality criteria

additional hybridizations were done and considered as technical

replicates. We next calculated the average expression ratios (test/

reference) in all analyses. Log2 values of lowess-transformed data

were used for all subsequent statistical analyses. For reporting

genes by name, IMAGE Clone IDs corresponding to the

microarray probe sequences were used to extract UniGene Cluster

IDs and names (Build 199 Homo sapiens; Jan 16 2007)[104]. For

genes represented by multiple probes (that is, different clones

corresponding to the same gene) on the array, each probe and the

related expression ratios were considered and reported separately.

MIAME-compliant data [105] have been deposited in the Gene

Expression Omnibus (GEO) at NCBI [106] and are accessible

through GEO Series accession number GSE11627.

Modeling of experimental power
For statistical confidence and power analyses related to this

specific program, power (z-score) for an unpaired t-test (two-

sample analyses) was computed as previously described [102] for

estimation of false discoveries (FDR) [107] and using the

GPower3.0.3 program [108,109] for estimation of false negatives

(FNR), taking into account the standard deviation of expression

measurements, the size of the distinct sample groups, a significance

threshold and the fold ratio to be detected.

A priori power analyses were used to choose the appropriate

number of replicates before the study was conducted. Conversely,

post hoc power calculations were done to evaluate the actual power

reached in our study.

Hierarchical clustering
For discriminant analysis of overall variation in samples/genes,

median centering and normalization of the genes and samples

were applied to the entire dataset. Genes which had missing values

in more than 20% of the samples were removed from subsequent

analysis. An unsupervised average-linkage hierarchical clustering

algorithm using a centered Pearson correlation as similarity metric

was applied to investigate relationships between samples and

relationships between genes. This method leads to an expression

matrix such that genes and samples with similar expression

patterns are adjacent to each other. This analysis was performed

using Cluster [110] and the resulting expression map was

visualized with TreeView [110].

For discriminant analysis of differentially expressed genes, an

average-linkage hierarchical clustering with uncentered Pearson

correlation was applied to the dataset extracted from the list of the

genes selected to be differentially expressed. Mean sample profiles

and gene profiles were ranked based on a discrimination score,

which is equivalent to the t-statistics z-score, using the Cluster

Identification Tool (CIT), based on supervised t-statistics with

permutation [111]. Discriminant analysis of the [PIP+] and
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[PIP2] samples was performed, providing a list of gene nodes that

exhibit statistically significant differential expression between the

two groups (a#0.05).

Statistical analysis
The statistical significance of measured intensity differences was

tested using ArrayStat 1.0 software (Imaging Research Inc.). The

whole data sets were adjusted using additive statistical models

considering samples with homogeneous phenotypes ([PIP++],

[PIP+] or [PIP2]) as replicates measures from one condition, with

a minimum of 67–75% registered measures per gene. Offset

corrections were applied to compensate any potential systematic

errors that may exist within data for each condition across arrays.

Random error was estimated using a curve-fit method; outliers

were automatically detected and then excluded from subsequent

analysis, based on thresholds computed over the entire dataset (in

median absolute deviation (MAD) and standard deviation (sd)

units). For [PIP+] vs [PIP2], [PIP+] J = 0 vs [PIP2] J = 0, [PIP+]

J = 7 vs [PIP2] J = 7 and J = 0 vs J = 7 comparisons, data sets were

centered for each condition and t-, Z-statistics and F-statistics were

applied with false discovery rate (FDR) corrections to compensate

for multiple testing effects [112]. Data from genes with significant

differential expression levels between the two compared subgroups

were displayed, together with a two-tailed p-value adjusted with

a= 0.01.

Independent statistical analysis was achieved using SAM

(Significant Analysis of Microarrays, Standford University)[113].

This class comparison method uses a modified t-test to identify

genes that discriminate, for example, [PIP+] samples from [PIP2]

samples. The modified t-test involves carrying out typical t-tests for

each gene using the original data and a user-specified number of

permuted datasets generated by randomly shuffling of the class

labels. We conducted SAM analysis based on the microarray

intensity level (in arbitrary units, A.U.) of the PIP gene in samples

(T47D J = 0:20 000 A.U.; T47D J = 7:30 000 A.U.; VHB1

J = 0:800 A.U.; VHB1 J = 7:7 000 A.U.; MCF7 J = 0 and

J = 7:800 A.U.; MDA-MB231 J = 0:1 000 A.U.; MDA-MB231

J = 7:1 500 A.U.) using a false positive rate of 0.01 and a number

of permutations of 2 000.

Real-time Quantitative RT-PCR (Q-PCR) analysis using
Taqman Low Density Arrays

Pre-defined TaqMan probe and primer sets for target genes

were chosen from an on-line database (Applied Biosystems, Foster

City, CA,[114]). The sets were factory-loaded into 384 well

microfluidic cards (Applied Biosystems) as customized with two

replicates per target gene. Single-stranded cDNA was prepared

from 1 mg of total RNA from breast carcinoma cell lines using the

high capacity cDNA archive kit (Applied Biosystems), according to

the manufacturer’s instructions. Breast carcinoma cell line RNA

samples derived from identical preparations for both cDNA

microarray and Q-PCR analysis.

Two ml of single-stranded cDNA (equivalent to 100 ng of total

RNA) were mixed with 48 ml of nuclease-free water and 50 ml of

TaqMan Universal PCR Master Mix (Applied Biosystems). The

sample-specific PCR mixture (100 ml) was loaded into one sample

port, the cards were centrifuged twice for 1 min at 280 g and

sealed to prevent well-to-well contamination. The cards were

placed in the Micro Fluidic Card Sample Block of an ABI Prism

7900 HT Sequence Detection System (Applied Biosystems). The

thermal cycling conditions were 2 min at 50 uC and 10 min at 95

uC, followed by 40 cycles of 30 s at 97 uC and 1 min at 59.7 uC. 96

genes were tested by quantitative PCR, using the TaqMan low

density micro fluidic card (Applied Biosystems, USA). Raw data

are available upon request.

Network and Gene Ontology analysis
The differentially expressed genes were used for pathway and

Gene Ontology analyses. Locuslink ID gene accession numbers

and their corresponding fold changes in our experiment were

imported into the Ingenuity Pathway Analysis (IPA) tool and

mapped to its corresponding gene object in the Ingenuity

Pathways Knowledge Base (Ingenuity Systems,[115]). Genes were

categorized based on their molecular functions using the software,

mapped onto genetic networks in the IPA database and then

ranked by score. The score associated with a particular network is

the likehood (i.e. negative log of a p-value) of the genes identified as

differentially expressed in a network being found together due to

chance. The score is thus indicative of the proportion of genes

identified as differentially expressed in our analysis among all the

genes belonging to a particular network. A score of 3 reflects the

likelihood that the presence of the focus genes in a network is solely

due to chance is 1/1000. Therefore, scores of 3 or higher represent

a .99.9% confidence level. Genes and gene products are

represented as nodes and the biological relationship between two

nodes is represented as an edge (line).

In functional analyses, the biological functions that were most

significant to the dataset were identified. The significance value

assigned to the functions is calculated using the one-side right-

tailed Fisher’s Exact Test (a= 0.05) of the IPA tool. In this

statistical test, the chances that the genes-of-interest participate in

the biological functions are examined. A p-value is calculated by

comparing the number of genes-of-interest in a particular function

with their occurrences in all the functions in the IPA knowledge

database.

Promoter sequence analysis
The human promoter sequences for all genes from L235 were

extracted with the ElDoradoe/Gene2promotor system ([76];

default 500-bp upstream of the transcription start site and 100-

bp downstream). The GEMS Launcher software was used to

search for common transcription factor binding sites (TFBSs) in

multiple sequences. The quorum constraint which determines the

lower limit of loci within the input set that has to contain the

common framework was set to 40% (core similarity 1). The

selection of matrices associated with specific tissue was restricted to

breast tissue.

The FrameWorker task of GEMS Launcher package [116] was

then used to retrieve common motifs (frameworks) of transcription

factor binding sites in the promoter region of the input genes.

Supporting Information

Table S1 Origins of gene lists derived from class comparison

and class prediction of relative expression levels. Differential

expression analyses were conducted to identify genes co-modulat-

ed with PIP using several statistical t-, z- and F-tests and an Î6 of

0.01. These analyses were conducted initially with a two-

phenotype sample classification [PIP2] and [PIP+] and further

partitioning the [PIP+] group in two subgroups, in order to

anticipate potential genes co-regulation in relation with the PIP

expression. The list L219 represents the intersection (>) of several

gene lists (L606, L964, L1114 and L1184) whereas L2231

correspond to the union (<) of these lists. * Quantitative analysis

was based on the microarray intensity level (in arbitrary units,

A.U.) of the PIP gene in samples: T47D J = 0:20 000 A.U.; T47D

J = 7:30 000 A.U.; VHB1 J = 0:800 A.U.; VHB1 J = 7:7 000 A.U.;
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MCF7 J = 0 and J = 7:800 A.U.; MDA-MB231 J = 0:1 000 A.U.;

MDA-MB231 J = 7:1 500 A.U.

Found at: doi:10.1371/journal.pone.0004696.s001 (0.02 MB

XLS)

Table S2 Descriptive statistics and annotation of differentially

expressed genes from L235.

Found at: doi:10.1371/journal.pone.0004696.s002 (0.21 MB

XLS)
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