© pLos one

OPEN 8 ACCESS Freely available online

Metabolic Consequences and Vulnerability to Diet-
Induced Obesity in Male Mice under Chronic Social Stress

Alessandro Bartolomucci'*, Aderville Cabassi?, Paolo Govoni®, Graziano Ceresini*, Cheryl Cero', Daniela
Berra', Harold Dadomo’', Paolo Franceschini', Giacomo Del’lOmo®, Stefano Parmigiani'®, Paola
Palanza'®

1 Department of Evolutionary and Functional Biology, University of Parma, Parma, Italy, 2 Department of Internal Medicine, Nephrology and Health Sciences, University of
Parma, Parma, Italy, 3 Department of Experimental Medicine, University of Parma, Parma, Italy, 4 Department of Internal Medicine and Biomedical Sciences, University of
Parma, Parma, Italy, 5 Ornis Italica, Rome, Italy

Abstract

Social and psychological factors interact with genetic predisposition and dietary habit in determining obesity. However,
relatively few pre-clinical studies address the role of psychosocial factors in metabolic disorders. Previous studies from our
laboratory demonstrated in male mice: 1) opposite status-dependent effect on body weight gain under chronic
psychosocial stress; 2) a reduction in body weight in individually housed (Ind) male mice. In the present study these
observations were extended to provide a comprehensive characterization of the metabolic consequences of chronic
psychosocial stress and individual housing in adult CD-1 male mice. Results confirmed that in mice fed standard diet,
dominant (Dom) and Ind had a negative energy balance while subordinate (Sub) had a positive energy balance. Locomotor
activity was depressed in Sub and enhanced in Dom. Hyperphagia emerged for Dom and Sub and hypophagia for Ind. Dom
also showed a consistent decrease of visceral fat pads weight as well as increased norepinephrine concentration and smaller
adipocytes diameter in the perigonadal fat pad. On the contrary, under high fat diet Sub and, surprisingly, Ind showed
higher while Dom showed lower vulnerability to obesity associated with hyperphagia. In conclusion, we demonstrated that
social status under chronic stress and individual housing deeply affect mice metabolic functions in different, sometime
opposite, directions. Food intake, the hedonic response to palatable food as well as the locomotor activity and the
sympathetic activation within the adipose fat pads all represent causal factors explaining the different metabolic alterations
observed. Overall this study demonstrates that pre-clinical animal models offer a suitable tool for the investigation of the
metabolic consequences of chronic stress exposure and associated psychopathologies.
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Introduction direction of changes in energy balance determined by job stress
[11]. Finally, in a cohort of Finnish twins discordant for adult
BMI, the obese co-twins showed the highest index of psychosocial
stress perception when compared to the lean co-twins [12].
Differently from humans, experimental models in animals offer
the advantage to allow an easier manipulation of key experimental
variables for the investigation of psychosocial factors affecting

vulnerability to stress exposure [7,13-16]. In particular, animal

The chronic activation of the stress response has been associated
with metabolic disorders and altered energy homeostasis [1,2].
Acute increase of stress hormones, such as glucocorticoids (GCs),
catecholamines, etc. may determine the mobilization of fuel
molecules, stimulate or inhibit feeding, and oppose insulin action
[3-6]. However, sustained concentrations of GCs as observed

under chronic stress can also increase the salience of pleasurable or
compulsive activities (ingesting sucrose, fat, and drugs, or wheel-
running). This, in synergy with insulin, may increase ingestion of
“comfort food” and systemically increase abdominal fat depots
[1,6,7]. Experimental studies in humans have demonstrated that
perturbations of the hypothalamus-pituitary-adrencortical (HPA)
axis function relate with abdominal obesity [8] and that stress
perception strongly associates with a higher waist-to-hype-ratio
and body mass index (BMI) [9,10]. In addition, in patients
depression has also been associated with the metabolic syndrome
and obesity [1], with pre-existing differences in BMI predicting the
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models of social stress appear to have a high validity as models of
human psychopathologies [13-18]. Unfortunately, until recently
there was a paucity of animal models in which stress exposure was
associated with body weight gain. Indeed, animal models of
chronic stress, including chronic subordination, have repeatedly
been associated with a reduction in body weight and a generalized
catabolic state [19-24]. This clear-cut effect is not present in the
human literature and the DSM-IV defines weight gain or loss as a
diagnostic criterion for major depression [25]. Recently, our and
other laboratories described animal models for chronic stress-
induced increase in body weight and adiposity [26-29] and
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vulnerability to diet induced obesity [28,30,31]. In addition, recent
studies have showed neuroendocrine evidences of metabolic
syndrome in defeated rats fed high fat diet but not a standard
diet [32]. Furthermore, there is evidence that social status in
models of chronic stress might differentially affect stress-induced
metabolic effects: Bartolomucci et al [26], Moles et al [28] and
Solomon et al [29] using similar experimental models in mice and
hamsters, reported that subordination can be reliably associated
with increased weight gain, whereas dominance is associated with
lower weight gain or weight loss. However, there are currently no
studies comparing different models of social stress that simulta-
neously determine behavioral, metabolic, biochemical and ana-
tomical alterations in the experimental animals. Thus, the aims of
the present study were: 1) to clarify the metabolic consequences of
social stress using two models, i.e. chronic psychosocial stress
distinguishing between dominants (Dom) and subordinates (Sub)
[26,33], and individual housing (Ind) [34]; 2) to characterize for
the first time sympathetic system related parameters within visceral
adipose fat pads in animals under chronic stress; 3) to determine
morphological changes in the adipose tissue; and finally 4) to
determine if the metabolic consequences of stress-exposure might
translate into altered vulnerability to high fat diet (HFD)-induced
obesity.

Results

Behavioral and endocrine consequences of chronic

psychosocial stress

According to our standard protocol [26], after a few days each
dyad was clearly biased into a stable dominant/subordinate
relationship, with Dom being the only mice showing aggressive
behavior (Figure 1A). Individual locomotor activity was scored in
the home cage by means of infrared sensors. The analysis revealed
that in the dark phase (the active period for mice), Dom showed an
increase in locomotor activity, while Sub showed a depression of
locomotor activity when compared with baseline values
(Figure 1B). A separate analysis of locomotor activity during the
light phase revealed that Dom showed a strong stress-associated
increase both before and after interaction. On the contrary, Sub
showed increased activity only before, but not after, the daily fight
which can be interpreted as an anticipation of the agonistic
interaction [35] and imply a disturbance of the normal sleep
pattern, i.e. reduced sleep during the early light phase (the normal
inactive period for mice). In Sub the post-interaction light phase
activity remained unaffected when compared with baseline but
was clearly lower when compared with Dom (Figure 1C). Finally,
both Dom and Sub showed increased basal corticosterone plasma
level after 21 days of chronic stress exposure (Figure 2).

Metabolic consequences of chronic psychosocial stress:
social status effects

In agreement with our previous report [26], the growing curves
of Dom and Sub mice (Figure 3A) started to diverge soon after the
beginning of stress procedure with Dom gaining less weight and
Sub gaining more weight than control (Con) mice. The growing
curve of both Dom and Sub was reduced in the week preceding
the stress procedure onset and this might be attributed to
individual housing [34 and see below]. Importantly, stress-induced
hyperphagia emerged with both Dom and Sub mice that
significantly increased the kcal ingested when compared to
baseline (Figure 3C). As a result, both Dom and Sub ingested
more kcal than Con and Ind mice during the stress phase
(Figure 3C).
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Body Weight under Stress

We dissected and weighted major visceral fat pads to determine
the metabolic consequences of chronic stress and associated
hyperphagia. Results proved that Dom but not Sub showed a
marked decrease in the weight of perigonadal and perirenal fat
pads while only a trend emerged for a lower retroperitoneal fat
pad (Figure 3D). The mesenteric and the mediastinic fat pads
remained unaffected. Overall Dom showed a lower content of
visceral fat than Con (Figure 3E).

At the cellular level, Dom showed lower mean perigonadal
adipocytes diameter when compared to both Sub and Con
(Figure 4A,B). Furthermore, a quantitative analysis of individual
adipocytes demonstrated that in Dom larger adipocytes (i.e. larger
than 71 pm) were almost completely absent while they represented
20-30% of the adipocytes population in the other groups (a
significant increase in 30-50 Um and a decrease in 71-90 um sized
adipocytes was observed, Ujg 0= 15, p<0.0001 and U, o= 16,
p<<0.010 when compared to Con. Figure 4C). Furthermore,
although the effect is quantitatively small, Sub showed an increase
(from 0.5 to 1% in all groups to 5% in Sub) in very large adipocytes
(ie. larger than 91 um. Figure 4C). This analysis revealed that
dominant mice under chronic stress showed a clear adipocytes
remodeling thus suggesting that the reduction in body weight may
be due to sympathetic-driven lipolysis leading to overall reduction of
adipocytes size and adipose tissue weight. To shed light on this
hypothesis, we determined the enzymatic activity of tyrosine
hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of
catecholamines, as well as norepinephrine (NE) concentration in
perigonadal fat pads. Dom showed high NE concentration and a
slight but not significant increase in TH activity while Sub showed
no change in the same parameters (Figure 5). Furthermore negative
correlations were found between final body weight gain and TH
activity (r=—0.48, p<<0.05) and NE concentration (r=—0.43,
p=0.05) as well as between NE concentration and perigonadal fat
pad weight (r = —0.45, p=0.05).

Opverall, data from the present experiment proved that despite
similar stress-induced hyperphagia Dom and Sub showed opposite
metabolic consequences, i.e. Dom showed negative energy balance
associated with increased sympathetic tone and locomotor activity
which apparently were able to counteract hyperphagia, while Sub
showed positive energy balance driven by hyperphagia and lower
activity and being, thus, at risk for weight gain and obesity.

Metabolic consequences of chronic individual housing

Ind mice showed a clear inhibition of weight gain when
compared to Con under standard diet (Figure 3B). In addition
when comparing the growing curve after the first seven days of
individual housing (Figure 3A) (in analogy with Dom and Sub
under chronic psychosocial stress), Ind mice only differed from
Sub (lower weight gain) but not from Dom or Con. Ind mice
ingested less kcal than Con mice for the duration of the whole
experimental phase with values reaching significance in the last
week (Figure 3C).

The weight of adipose tissue fat pads was generally reduced in
Ind mice when compared to Con, though this effect was significant
only for the perigonadal pad, while a trend emerged for the
perirenal pad and no overall reduction of visceral fat pad was
observed (Figure 3D and E). It must be noted, however, that in Ind
mice neither changes in perigonadal adipocytes diameter nor any
major change in the frequency of differentially sized adipocytes
was noticed (Figure 4). Similarly, no change in TH activity or NE
concentration in perigonadal fat pad was detected (Figure 5).

Therefore, in mice fed a standard diet, the effect of individual
housing on weight gain were similar to those observed in mice that
were maintaining dominance under chronic psychosocial stress.
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Figure 1. Behavioral consequences of chronic psychosocial social stress in mice. A) Aggressive behavior assessed on days 1 to 4, 10 and 20
of the stress phase. Graph clearly shows how dominants (Dom) and subordinates (Sub) are non-overlapping behavioral categories. B) Locomotor
activity measured during baseline (4 days) and the stress phase (20 days). Dom showed increased and Sub showed decreased locomotor activity
(F(1,18)=21.9, p<<0.01). C) Locomotor activity measured before and after the daily agonistic interaction. Dom showed increased activity both before
and after the agonistic interaction while Sub showed increased activity before but not after the agonistic interaction (F(1,18)=4.1, p=0.054). *

p<<0.05 and ** p<<0.001 vs. basal, # p<<0.05 vs. Dom.
doi:10.1371/journal.pone.0004331.g001

However, at variance with Dom, Ind mice showed a reduction in
food intake, which seems to be largely responsible for the
metabolic effects observed in absence of a hyperactivity of
sympathetic-markers such as TH enzymatic activity and NE
concentration.

Finally, in agreement with our previous report [34], Ind mice
showed increased basal blood corticosterone concentration
(Figure 2).

High fat diet exposure

The observed status-dependent (Dom vs. Sub) and stress model-
dependent (psychosocial stress vs. individual housing) metabolic
consequences of stress suggest a possible differential vulnerability
of Dom, Sub and Ind mice to diet-induced obesity (DIO) [28,31].
To test this hypothesis, mice were challenged with a HFD that
provides 45% kcal from fat and 5.2 kcal per gram (compared to
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the 6.5% and 3.9 values respectively of the standard chow)
beginning on the first day of stress procedure or after 7 days of
baseline (for Con and Ind). Based on the data obtained under
standard diet conditions, we predicted that Dom and Ind should
be less vulnerable, and Sub more vulnerable, to HFD-induced
obesity when compared to Con.

Indeed, results proved that Sub were more vulnerable and Dom
more resistant to DIO than Con (Figure 6). Interestingly, this
occurred despite Dom showing a 3 weeks-long hyperphagia while
Sub being hyperphagic only in the last 2 weeks (Sub clearly
ingested more kcal when compared to baseline throughout the 3
weeks period. Figure 6B). Contrary to our prediction, individual
housing also determined an increased vulnerability to DIO.
Indeed, Ind showed increased weight gain, hyperphagia and food
efficiency when compared to Con (Figure 6). Therefore, despite
Dom and Ind showing similar hyperphagia, the metabolic cost of
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Figure 2. Hormonal consequences of social stress in mice. Basal plasma corticosterone collected in the early light phase, was increased in
subordinates (Sub, Ug 13 =23, p<<0.016), dominants (Dom, Uy 1, =12, p<0.016) and individually housed (Ind, Ug 5 =3, p<<0.005) mice when compared

to Controls (Con). * p<<0.016.
doi:10.1371/journal.pone.0004331.9002

dominance (as described in the previous section), was able to
restrain food efficiency and avoid HFD-induced weight gain.

HFD resulted in a massive overall increase in adipose tissue
weight when compared with mice fed a standard diet (see
Figure 3E and Figure 6E). In particular, Dom showed lower
perigonadal, retroperitoneal and mesenteric fat mass weight as
well as overall visceral adipose tissue when compared with Sub.
However, while a trend for Dom showing lower and for Sub
showing higher fat mass than Con emerged, such effects did not
reach statistical significance. In Ind mice, the adipose tissue was
greatly enlarged, with perigonadal, retroperitoneal and mesenteric
fat pads showing a greater increase than Con (Figure 6D), which
also resulted in an overall increase in visceral fat mass (Figure 6E).
Finally, Dom but not Sub showed lower adipose fat mass weight
when compared with Ind (Figure 6E).

Opverall, the data of Dom and Sub mice largely agreed with the
prediction that Sub would have been more, and Dom less,
vulnerable to HFD-induced obesity when compared to Con. In
particular, HFD exposure increased the difference in adiposity
between Dom and Sub, with Sub also showing slightly greater
adipose mass than Con.

Data also proved that Ind mice were remarkably vulnerable to
HFD-induced obesity and that exposure to hypercaloric and
highly palatable diet was able to reverse the effects observed under
standard diet, i.e. lower food intake and weight loss. The more
likely explanation is that individual housing determined an
increased hedonic response to high fat food and that: 1) the
compensatory inhibition of initial hyperphagia (observed in
controls) is disrupted in Ind mice (mechanism to be identified);
2) Ind mice are faced with a smaller metabolic cost than mice
subjected to chronic psychosocial stress.

Discussion

Social and psychological factors [36,37] interact with genetic
predisposition [38] and dietary habit [39] to determine the current
obesity pandemia, and a possible link between chronic social
stress, hedonism and vulnerability to obesity has been suggested
[7]. However, up to now few pre-clinical studies directly addressed
the role played by psychosocial factors and provided validated
experimental models for human stress-induced metabolic disor-
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ders, which are very common, for example, in several psychiatric
conditions [1,4,6-12]. In the present study we provided a
comprehensive characterization of the metabolic consequences
of social status under chronic psychosocial stress and social
deprivation in male mice. Overall, our findings showed that in
mice fed standard diet: 1) psychosocial stress determined opposite
effects on energy balance, with Dom showing a negative and Sub a
positive effect; 2) individual housing determined a reduction in
weight gain; 3) hyperphagia emerged for Dom and Sub and
hypophagia for Ind; 4) Dom showed increased NE concentration
in fat tissue, lower perigonadal fat pad weight and smaller
adipocytes diameter than Con. On the contrary, under high fat
diet, Sub and, surprisingly, Ind showed higher, while Dom lower,
vulnerability to obesity than Con.

Given the remarkable difference among the different experi-
mental groups, data will be first discussed separately and then a
general perspective on social modulation of metabolic functions
will be provided.

Chronic psychosocial stress: subordinate mice show
positive energy balance and increased vulnerability to

diet-induced obesity

Subordination-induced weight gain is not a common observation
in animal models of chronic social stress [19-24]. Indeed, we were
the first to describe a subordination-induced weight gain in mice
during the chronic psychosocial stress procedure [26], a finding that
has now been replicated by other groups using similar preclinical
animal models of social stress [27-30,40]. This discrepancy in
subordination-stress induced positive o negative weight changes
does not have a clear explanation at the moment. However, when
assessing the literature there are a number of factors that should be
taken into account. Firstly, changes in body weight are often the sole
metabolic parameter presented and it is difficult to interpret a
decrease in body weight without a control for feeding, locomotion
or energy expenditure. Secondly, it appears that the species and the
strain investigated may play a role, since most of the data showing
weight loss have been obtained with subordinate rats or tree shrews
and only a few with mice [41-43]. Among the mouse studies none
was performed with the CD-1 strain. Thus the results presented
here raise the possibility of a strain-associated vulnerability to stress-
induced weight gain. However, we recently obtained very similar
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doi:10.1371/journal.pone.0004331.g003

subordination-induced metabolic effects on inbred strains of mice
(Bartolomucci et al., unpublished observations) thus suggesting that
positive vs negative changes in energy balance is probably primarily
dependent on the model of stress used rather than on the strain.
Thirdly, the experimental animals are generally faced with an
unstable aversive environment with the experimental procedure
often requiring a brief daily move into the dominant home cage with
individual housing for the rest of the day [21,22]. In other studies
the subordinate is moved daily, or every second day, into different
dominant cages [20,41-43]. Thus other models of social stress may
determine a mixed subordination/individual housing/instability
effect with major inhibitory effects on feeding (see also below).
Finally, when data on feeding have been collected, weight loss in
subordinate rats was associated with a reduction in feeding
[24,44,45], while post-stress hyperphagia and weight gain has been
reported for subordinate rats in the visible burrow system [46].

In our experimental setup, body weight changes were associated
with hyperphagia in Sub mice, similarly to what has been previously
reported [27-29,40]. In addition, we have previously shown similar
food consumption in Dom and Sub under stress [26]. In agreement
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with our previous report [47] Sub also showed a reduction in
locomotor activity during stress exposure, which is reminiscent of the
psychomotor impairments and reduced willingness to engage in daily
activities observed in depressed patient [15,44]. Therefore, results
from the present and previous studies, prove that positive energy
balance in Sub is associated with increased feeding and lower activity.
Surprisingly, increased body weight gain in Sub did not translate into
higher fat pad weight. This finding is in agreement with our previous
report [26] and suggests that alterations in subcutaneous adipose
tissue, water content or lean mass might be responsible for the
increased weight gain, but rules out a primary role for visceral adipose
tissue in explaining increased body weight. This lack of effect on
visceral adiposity is also surprising because Sub showed increased
circulating corticosterone which is know to be associated with
increased visceral adiposity [1,4,5]. However, it is of interest to note
that Sub mice showed an increased number (although not significant)
of very large sized adipocytes (Le. larger than 91 pum in diameter) in
the perigonadal pad, which can be considered as an incipient
hypertrophic obesity [48,49] possibly leading to increased vulnera-
bility to cell death [50]. Finally, in our model Sub show a similar up-
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Figure 4. Effect of chronic stress on the histology of the perigonadal adipose tissue. A) Representative sections of perigonadal adipose
tissue from individually housed (Ind), Control (Con), subordinate (Sub) and dominant (Dom) mice. B) Dom mice showed a significant smaller mean
adipocytes diameter when compared to Con (Uqg10=17, p<0.016), while all other groups remained unaffected. C) Categorized distribution of
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doi:10.1371/journal.pone.0004331.g004

regulation of HPA axis as well as tachycardia than Dom [reviewed in
14,16; present data]. Accordingly, the adipose tissue is probably
exposed to opposing stimuli that may result in the lack of a net effect
on adipose fat pad weight.

On the contrary, when subordinate mice were fed HFD, the
result was an increase in weight gain in the late phase of the stress
procedure and a consistent increase in adiposity. HFD determined
a generalized hyperphagia in the second and third week of stress
likely explaining the delayed effect of HFD on weight gain.
Therefore, subordination under chronic stress may represent a
vulnerability factor for diet-induced obesity.

@ PLoS ONE | www.plosone.org

Overall, our data indicate that subordinate male mice under
chronic stress represent a valid model of stress-induced depression-
related disorders [15,16]. As well, our data also validate the
conclusion that chronic psychosocial stress represents a model of
stress induced weight gain and vulnerability to obesity. These data
find a parallel also in primate and human literature. In a recent
study with rhesus macaque, Wilson and coworkers [51] showed
that subordinates gained more weight and dominants gained less
weight than controls under both low and high fat dietary regimen
and that subordinates were hyperphagic. Finally, in the human
literature it has been repeatedly reported that psychosocial and
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socio-economic challenges such as low income, low education and
divorce have been associated with perturbed cortisol secretion,
over-cating, metabolic syndrome and type 2 diabetes [1,52-54].

Chronic psychosocial stress: dominant mice show
negative energy balance, sustained sympathetic activity
in the visceral adipose tissue and resistance to diet-

induced obesity

In the present experimental context, Dom mice showed a
negative energy balance associated with hyperphagia. Evidence for
a high cost of dominance in our experimental protocol comes from
both behavioral and biochemical results. Indeed, Dom showed a
marked behavioral hyperactivity in the stress phase both in the
light and in the dark period. Previous studies also demonstrated
that Dom showed a strong increase of sympathetic function as
indicated by tachycardia, hyperthermia, and increased energy
expenditure [26,28] as well as hyperphagia [28]. In addition, Sakai
and co-workers [23,24], reported that dominant rats housed in the
visible burrow system model of chronic stress showed a slight
decrease in body weight and a reduction in adiposity, which was
assoclated with higher feeding than subordinate rats [46].

No study had previously investigated sympathetic system related
parameters in the adipose tissue of mice under chronic stress. The
white adipose tissue (WAT) is innervated by the sympathetic
nervous system and a direct role for WAT sympathetic
noradrenergic nerves in lipid mobilization has been demonstrated
[46,55-57]. Here we showed that perigonadal WAT NE
concentration and, to a lesser extent, also the activity of the rate
limiting catecholamine-synthesizing enzyme TH [58], were
increased in Dom. Increased sympathetic markers in the adipose
tissue have previously been associated with catabolic processes and
weight loss [48,56,59,60]. In agreement with a direct role of NE in
regulating the adipose organ, here we demonstrated that Dom
showed a decrease in perigonadal, perirenal and retroperitoneal,
but not in mesenteric and mediastinic fat pads, thus supporting a
strong regional difference in sympathetic nervous system activity
on adipose tissue [56,61]. In addition Dom also showed lower
mean adipocytes diameter, and a classification of perigonadal
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adipocytes based on their diameter revealed that Dom showed an
apparent disappearance of large adipocytes (greater than 71 pm).
These findings, in addition to increased NE concentration in the
same fat pad, suggests that a sympathetic mediated lipolysis is the
primary cause of the reduction of fat mass in dominant mice under
chronic stress. In this respect, it is of interest to note that NE was
negatively correlated with final body weight gain and with
perigonadal fat mass. Finally, the sustained metabolic cost
assoclated with maintaining dominance under stressful conditions
also translated in a resistance to HFD-induced obesity. Dom
showed lower weight gain, and lower adipose weight associated
with remarkable hyperphagia, thus supporting the conclusion that
sustained behavioral and sympathetic activity might limit diet-
induced obesity.

In conclusion, present data further strengthen the conclusion
that maintaining dominance in stressful conditions is strongly
associated with a physiological cost [16,62-64]. Central pathways
determining sustained sympathetic stimulation have not been
determined in the present study but increased CRH/AVP
signaling and hyperactivity of the melanocortin system [65,66] is
fully compatible with both high aggressive level/dominance and
negative energy balance leading to lipolysis [67].

Individual housing: opposite feeding response and

metabolic consequences with standard or high-fat diet
Individual housing is often considered a model of social stress in
rodents because of the factual deprivation of social contacts
[34,68-70]. Previous reports from our [34] and other groups [71-
73] proved that individual housing is associated with a negative
energy balance with animals loosing weight or maintaining a lower
weight gain than group housed siblings. In this study, we provided
a detailed investigation of metabolic functions associated with
individual housing and proved that: 1) in mice fed a standard diet,
isolation is associated with a reduction in food intake and a
decrease in perigonadal fat pad. Reduced feeding, lack of social
facilitation of feeding [74], and unbalanced thermoregulatory
functions associated with lack of social contact [75,76] are the
likely factors responsible for the decrease in body weight; 2) Ind
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Figure 6. Vulnerability to high fat diet-induced obesity. A) Body weight changes in the baseline and in stress phase. At baseline, when mice
were fed standard diet, all experimental groups showed a decrease in body weight, while controls (Con) showed a slight increase (F(3,23)=3.2,
p<<0.05). In the stress phase subordinates (Sub) and individually housed (Ind) mice were more, and dominant (Dom) were less, vulnerable to weight
gain than Con (F(3,23) =5.3, p<<0.01). In the graph only statistical comparison with Con are shown. In addition, both Sub and Ind mice differed from
Dom (p<<0.001) and Sub differed from Ind on day 14 only (p<<0.05). B) Food intake. When animals were fed a high fat diet they showed a marked
increase in kcal ingested. However a clear difference emerged between experimental groups (F(6,32) =2.9, p<<0.05) with Dom and Ind showing
sustained hyperphagia when compared to Con along the entire experiment. Sub were hyperphagic only in the third week while showing a trend in
the second week of the stress phase. Finally Sub also differed from Ind and Dom in the first week of the stress phase (p<<0.01). C) Food efficiency
analysis revealed that while Con were able to maintain a balance trough the changing dietary environment, Sub and Ind but not Dom significantly
increased food efficiency with HFD (F(9,69)=5.1, p<<0.0001). D) Visceral fat pad weight. Dom showed an overall lower amount of perigonadal
(F(3,23)=9.2, p<0.001), perirenal (F(3,23)=2.5, p<0.08), retroperitoneal (F(3,23)=3.7, p<<0.05) and mesenteric (F(3,23)=7.2, p<<0.005) but not
mediastinic fat pad weight when compared to Sub. Ind showed a robust increase in perigonadal, retroperitoneal and mesenteric adipose fat pads
which was significant versus Con and Dom but not versus Sub. E) Cumulative weight of visceral fat mass. Dom showed lower overall visceral adipose
tissue than Sub. On the contrary Ind differed from Con and Dom but not from Sub (F(3,23) =8.4, p<<0.001). * p<<0.05 and **p<<0.01 vs. Controls, §
p<<0.07 vs. Controls, ¢ p<<0.01 vs. Con and Dom. #p<<0.05 and ## p<0.01 vs. Basal level for each group. Arrows describe the change from standard
to high fat diet.

doi:10.1371/journal.pone.0004331.9g006

mice fed HFD responded with sustained hyperphagia and
increased vulnerability to diet-induced obesity resulting in 16%
weight gain and a massive increase in adipose fat pad weight.
Therefore, it is apparent that reduced food intake under standard
feeding regimen can be due to lower social facilitation to initiate the
feeding [74] rather than to an overall negative motivation to feed
[77]. Indeed, when mice were provided with a highly palatable diet
they responded with conspicuous overfeeding as previously
observed with cafeteria diet [78]. There are very few investigations
on the metabolic consequences of individual housing [34,71-73,78].
In a recent important study Nonogaki and coworkers [31] reported
an impressive strain difference in the vulnerability to weight gain
induced by social isolation. Indeed, the authors proved that: 1)
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individual housing was associated with increased weight gain and
overfeeding in the KK strain and in KK mice carrying the ectopic
overexpression of agouti (KKAY); 2) the C57BL6/J strain showed no
effect of individual housing; 3) individually housed diabetic db/db
mice, carrying a mutated leptin receptor gene, showed lower body
weight and hypophagia when compared with group housed db/db.
Our model using an outbred strain may recapitulate the variability
described by Nonogaki and coworkers and suggests that at the
“population” level, male mice are vulnerable to obesity only when
faced with HFD. This model also complements recent evidence [79]
showing that epigenetic mechanisms might be more important than
genomic differences in explaining a large proportion of individual
vulnerability to obesity.
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An overall view: social stress affects metabolic function in
male mice

In the present study we directly compared different models of
social stress and described major metabolic alterations associated
with dominance, subordination and individual housing (Figure 7).
Overall data proved that: 1) subordinate mice under chronic stress
showed increased weight gain without increased visceral adiposity
under standard diet and increased vulnerability to obesity with
HFD; 2) dominant mice under chronic stress showed lower weight
gain and reduced adipose tissue independently from the feeding
regimen; 3) individual housing resulted in lower weight gain and
adiposity with standard chow and massive vulnerability to obesity
with HFD; 4) group housed sibling mice (our control group)
showed large fat mass under standard diet but lower vulnerability
to HFD-induced obesity when compared to Sub and Ind. The
latter result is important because it demonstrates that although
CD-1 are among the heavier laboratory strain of mice,
psychosocial stress exposure is sufficient to increase vulnerability
to HFD-induced obesity.

Our data also provide direct confirmation to a model linking
allostatic load to metabolic disorders recently proposed by Van
Dijk and Buwalda [32]. This model states that metabolic
syndrome and obesity can develop in presence of a high fat
regimen only when an environmental threat prevents active
coping (fight/flight) but permits only a passive strategy. Indeed, in
our experimental model both Dom and Sub are faced with a
threatening situation, and show similar overactive HPA axis and
cardiac hyperactivity as well as hyperphagia, while: a) dominants
responded with an active coping style associated with sympathetic
overactivity in metabolic tissues that limited the development of
obesity despite overfeeding; b) subordinates instead responded
with a passive helplessness strategy and, particularly when faced
with a high fat diet, developed weight gain and obesity. Indirect
confirmation comes from the profile of Ind mice (considered a
model of mild depression [34,69-72]) which showed lower feeding
and body weight gain in the absence of any sympathetic
hyperactivation when fed chow diet while becoming hyperphagic
and obese in the presence of HFD.

A B

Final body weight gain

1,08 12
1,06 1,15
(= c
3 S
o 1,04 o 11
> =
8 g
& 1,02 & 1,05
=
[} o
=y ¥ =
] 1 o 1
= =
2 pel
0.98 [l 0.95
0,96 09
Ind Stress Dom  Stress Sub Ind

Total food intake

Stress Dom

Body Weight under Stress

Although the molecular and endocrine mechanisms responsible
for metabolic disorders are currently unknown, present data clarify
the role of social factors in modulating the individual vulnerability
to weight gain and offer an important experimental tool for the
investigation of the mechanisms linking stress and psychological
disorders to metabolic dysfunctions.

Methods

Overview of the experimental procedure

Adult male mice were individually housed (Ind), group housed
in groups of 3 siblings (here considered as the control group, (Con)
[33,80]) or were submitted to chronic psychosocial stress [26,32]
and identified as dominant (Dom) or subordinates (Sub) by
behavioral observations. The experimental phase consisted in a
baseline phase and in a stress phase (were animals were fed
standard or high fat diet). Body weight, food intake and locomotor
activity (in Sub and Dom only) were determined (see below).
Subsequently on day 20 mice were behaviorally tested in the
modified open-field test and the following morning sacrificed.
After termination, adipose fat pad weight, tyrosine hydroxylase
(TH) activity and norepinephrine (NE) concentration in the
perigonadal fat pad along with histological determination of
adipocytes diameter were obtained. Finally, plasma level of
corticosterone was determined.

Animals

Subjects were adult male Swiss CD-1 mice from an outbreed
stock originally obtained from Charles River Italia (Calco, Italy).
Mice were born and reared in a colony room at the University of
Parma at 22+2°C in a 12-hr light-dark cycle (lights on 0700-
1900). After weaning (25-28 days of age) they were housed in
same-sex- groups of siblings (47 per cage) in Plexiglas cages
(38x20x18 cm) with wood shaving bedding changed weekly. All
animal experimentation was conducted in accordance with the
European Communities Council Directive of 24 November 1986
(86/EEC) and approved by the Ethical committees of the
University of Parma and the Italian Institute of Health.
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Figure 7. Overview of the metabolic effects induced by chronic psychosocial stress and individual housing. The graph shows variation
(versus the mean value of the control group-housed mice) for body weight changes, food intake and total visceral adipose fat mass weight, under
standard or high fat diet. Individual housing (Ind) determined negative or positive energy balance depending on the diet being standard or high fat
diet respectively. Dominance (Dom) determined a similar negative energy balance with both standard and high fat diet. Subordination (Sub)
determined similar positive energy balance with both diets. However, body weight gain and feeding were similarly affected under standard and high

fat diets while visceral fat pad mass increased with high fat diet only.
doi:10.1371/journal.pone.0004331.g007
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Chronic Psychosocial stress

The procedure has been originally described by Bartolomucci et
al. [33] and was used here with minor changes to adapt to specific
requirement of metabolic studies. Three-months old male mice to
be used as residents or intruders, were individually housed in
Plexiglas cages (38 x20x18 cm) for a 7 days baseline phase. To
allow recording of baseline individual locomotor activity, after day
1 a wire-mesh partition bisecting the cage longitudinally was
introduced. This restricts the access to only half the cage to mimic
the conditions of the stress phase (detailed below). On day 6 of the
baseline phase, the wire-mesh partition was removed to give the
animal access to the entire cage thus allowing re-establishing of
individual territory in the whole cage. Baseline, body weight and
food intake were monitored at the beginning and the end of the 7
days. On day 7 the 21 days stress phase begun and each resident
mouse received an unfamiliar same-sex weight-matched intruder
mouse and the two animals were allowed to freely interact for
10 minutes. In order to prevent injuries, the social interaction was
interrupted if fighting escalated (when the dominant persistently
bit the opponent). After the interaction, the two animals were
separated by means of a wire-mesh partition, which allowed
continuous sensory contact but no physical interaction. The
partition bisected the cage longitudinally in two symmetrical
compartments. Between 10:00 and 12:00 hours the partition was
removed daily for 10 min. Throughout the stress phase body
weight was monitored weekly, food intake was monitored daily
and locomotor activity was monitored continuously except during
the aggressive interaction. Throughout the study food and water
were available ad libitum to all experimental mice.

During the social interaction offensive behaviors of the animals
were manually recorded and mice social status was determined as
follows: the chasing and biting animal was defined as ‘Dominant’,
while the mouse displaying upright posture flight behavior and
squeaking vocalization was the ‘Subordinate’. The numbers of
attack bouts performed by each animal were quantified during the
first four days than again at day 10 and 20 by direct observation.
When the fight has to be interrupted before the 10 min, the number
of attacks was computed proportionally. Four behavioral categories
were distinguished within the stress group: (i) resident dominant, (ii)
resident subordinate (RS), (i) intruder dominant, (iv) intruder
subordinate (InS). Previous studies showed minor differences in the
metabolic functions of RS and InS mice and no difference between
the two dominant categories [16]. Although RS had the largest
effects in terms of body weight gain and adiposity [26], there was no
statistical difference between the two groups (which on the contrary
largely differ in immune function [16]). In addition, the present
study confirms no significant difference between RS and InS (data
not shown). Therefore RS and InS were pooled in the group “Sub”
and the two dominant categories in the group “Dom”.

Age-matched mice, housed in groups of 3 siblings, were
included as the non-stressed control group (Con). This choice
was based on previous observations showing no metabolic,
immune-endocrine and behavioral evidence of stress activation
or anxiety in group-housed siblings (see [33,34,80] for details).
Within each control group, the hierarchical status of the animals
was determined according to [33], and then the dominant and one
of the two subordinate mice (randomly chosen) were used for
experimental measurements. Data from this experiment confirmed
absence of status-associated effects between dominant and
subordinate mice in groups of siblings (data not shown).

Individual housing

Three-months old male mice were individually housed in
Plexiglas cages (38x20x18 cm). Body weight was monitored
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weekly and food intake daily. Controls were the same age-matched
mice housed in groups of 3 siblings described above.

Home cage locomotor activity

The assessment of individual daily activity was carried out by
means of an automated system that use small passive infrared
sensors positioned on the top of each cage (TechnoSmart, Rome,
Italy). To avoid interference between the movement of a resident
and an intruder mouse in the same cage the two individual sensors
were separated by a Plexiglas partition which completely blocks
infrared waves. The system was set-up prior to the beginning of
the experimental procedure to verify absence of false signals across
adjacent sensors (data not shown). Locomotor activity was
continuously monitored throughout the whole experiment includ-
ing 4 days of baseline phase and 20 days of stress phase. Recording
was interrupted only during the daily agonistic interaction.

Modified open field test

The test was performed between 16:00 and 19:00 of day 20, in
agreement with Berton et al [81] with minor changes. Each
experimental mouse was introduced into a squared open field
(54 x54 cm) for two consecutive sessions of 2.5 min. During the
first session (T'1, “target cage empty”) the open field contained an
empty wire mesh target cage (10 cm diameter) located at one end
of the field. During the second session (12, “intruder mouse
present”), the conditions were identical except that a social target
animal (a same age unfamiliar CD-1 male mouse) had been
introduced into the cage. Between the 2 sessions, the experimental
mouse was removed from the arena, and was placed back into its
home cage for approximately one minute. Mouse behavior was
scored with Ethovision (Noldus, the Netherlands). Within the
arena the following area were identified and time, frequency and
latency determined: ‘“target zone” (an 8 cm wide corridor
surrounding the target cage); the “far corners” of the open field
opposite to the location of the cage; the four corners. All CD-1
mice independently from the experimental treatment spent around
70-80% of the time in the target zone (data not shown) with no
group difference in avoidance/approach time ratio spent in the
target area between T1 and T2. On the contrary, using C57BL6/]
mice the procedure determined similar response as described by
Berton et al [81] (Bartolomucci et al., unpublished). This finding
highlights a major strain difference (C57BL6/] vs. CD-1) in the
behavioral response to an object located within the arena. Thus, a
procedural modification is needed to investigate the behavior of
CD-1 mice in this behavioral test. Because of this limitation data
from this test are not presented. Nevertheless, the test is discussed
here because previous data from our group revealed that
corticosterone level in Ind mice are particularly sensitive to the
acute exposure to an open field [33].

Diet

Mice were fed a standard (6.55% kcal from fat and 3.9 kcal/g;
4RF21, Mucedola, Italy) or a custom pelletted high fat diet (45%
kcal from fat and 5.2 kcal/g manufactured by Mucedola)
modifying the formula of the standard diet 4RF21.

Adipose organ parameters

Adipose fat pads (perigonadal, perirenal, retroperitoneal,
mesenteric and mediastinic [82]) were manually dissected and
weighted. Perigonadal pads were split in two parts and one half
was snap frozen in liquid nitrogen and stored at —80°C for later
measurement of sympathetic related parameters (see below). The
second half was immerged in a ice-cold solution of 4%
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paraformaldeyd, stored at —4°C overnight and processed for
histological analyses (see below).

Norepinephrine concentration and tyrosine hydroxylase
activity

TH activity in adipose tissue was analyzed by the method of
Naoi et al [83]. Biopsies were homogenized and incubated at 37°C
for 10 minutes with 140 umol/L L-tyrosine in 880 UL of sodium
acetate-acetic acid buffer (100 mmol/L, pH=6.0) containing
1.4 mmol/L (6R)-5,6,7,8-tetrahydrobiopterin, 10 pg of catalase,
and 0.7 mmol/L 4-bromo-3-hydroxybenzyloxyamine (NSD1055,
an inhibitor of aromatic L-amino acid decarboxylase). The
incubation was stopped by the addition of 0.1 mmol/L perchloric
acid containing 0.4 mmol/L  sodium metabisulphite and
0.1 mmol/L disodium EDTA. After vortexing, the sample was
allowed to stand in an ice bath for 10 minutes and then
centrifuged at 1000 g for 10 minutes. The supernatant was
injected in a HPLC-ECD system for L-3,4-dihydroxyphenylala-
nine (L-DOPA) analysis. TH activity was calculated as the amount
of L-DOPA generated from L-tyrosine per minute per milligram
of tissue. NE was measured by HPLC using electrochemical
detection, as previously described [84].

Histological analysis

Specimens of perigonadal adipose tissue from different mice
were carefully removed, weighted and immersed in 4% parafor-
maldehyde, dehydrated in ethanol, transitioned in xylene, and
embedded in paraffin. Five-micrometer-thick sections cut with a
cryostat were stained with hematoxylin and eosin. Optical
microscopy images (Nikon Microscope Eclipse 80i) were digitally
captured with NIS-Elements imaging software I 2.20, and the
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diameter of 200 adipocytes for each mouse was measured with
Image] software (Image Processing and Analysis in Java).

Analysis of Corticosterone

Trunk blood was collected in heparinized tubes, centrifuged at
4,000 RPM for 10 min and plasma was frozen at —20°C for later
analysis. Level of circulating corticosterone was measured in
duplicate with a commercially available RIA kit (Diagnostic
Systems Laboratories, Inc., USA) with a sensitivity of 0.06 ng/ml.
The intraassay variability was 3.4%. To avoid the interassay
variability, all samples were run in a single assay.

Statistical analysis

Data were checked for agreement with parametric assumption
and analyzed with ANOVA followed by Tukey’s HSD post hoc or
Mann-Whitney U test with the Bonferroni correction when
appropriate. Correlations were performed with parametric
Pearson test.
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