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Abstract

Background: Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet
relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-
study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT
variability and activation across a range of cognitive tasks.

Methodology/Principal Findings: The relation between trial-by-trial differences in RT and brain activation was modeled in
five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were
identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs
relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial
frontal regions, activation showed a ‘‘time-on-task’’ effect, increasing linearly as a function of RT. Finally, RT variability
reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.

Conclusions/Significance: The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the
possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal.
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Introduction

Reaction time (RT) is one of the most widely used measures of

performance in experimental psychology. Many influential exper-

imental paradigms (e.g., the Stroop task) employ RT as their

primary dependent variable, and countless others measure RT in

order to ensure that differences in response accuracy are not

confounded with strategic shifts in response speed (the ‘‘speed-

accuracy tradeoff’’). Surprisingly, however, the analysis of RT has

received limited attention in the functional neuroimaging literature

(e.g., [1–4]). Although an ever-growing number of studies include

RT as a trial-by-trial regressor in their analyses [e.g., 1,5,6–9], such

studies still represent a small fraction of the literature as a whole (for

a quantitative review, see [3]). Moreover, the RT regressor is

typically not the regressor of interest in such cases, but is included to

ensure that activity differences between experimental conditions are

not confounded by corresponding differences in RT. Finally, even

in studies for which BOLD signal correlates of RT variability have

been a focus of interest [e.g., 1,4,10], analyses have been conducted

within relatively narrow, task-specific contexts.To our knowledge,

no study has investigated the association between RT and brain

activation across multiple experimental paradigms in order to

identify potential task-general relations.

There are several reasons to predict the existence of task-

independent relations between activation and RT. First, many

cognitive processes are expected to be time-locked to participants’

overt responses (e.g., initiation of the motor response, processing of

tactile or visual feedback, etc.). Consequently, the temporal onset

of the hemodynamic response (HDR) should vary as a function of

RT in sensorimotor brain regions; on trials when participants

respond more slowly, activation should initiate later than on trials

when participants respond quickly (Figure 1A). This prediction has

been confirmed in a number of previous fMRI studies [2,11] and

serves as an important validation tool in the present context,

because if a basic relation between RT and delayed HDR onset

cannot be replicated across multiple studies, other kinds of

relations are unlikely to be uncovered.

A second reason to predict a broad RT-brain activation

relationship follows from the empirical observation that the

BOLD signal measured by fMRI sums approximately linearly as

a function of stimulation duration and intensity at short intervals

[12]. If trial-by-trial differences in RT are viewed as naturally-

occurring analogues of experimentally-manipulated differences in

stimulus parameters, variation in either the amplitude or the

duration of neurocognitive processes might be expected to reliably

modulate RT. In cases where short-RT and long-RT trials are
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differentiated only by the duration over which some neurocognitive

process unfolds, with no difference in amplitude, linear summation

predicts that the BOLD response should attain a larger amplitude

for trials with longer RTs (Figure 1B). For example, if one

supposes that participants generally sustain attention to an on-

screen stimulus until a relevant response is made, activation in

brain regions that support attention (e.g., lateral frontal cortex and

posterior parietal cortex [13,14]) should increase approximately

linearly with RT, other things being equal [cf. 8]. A number of

previous fMRI studies have observed such positive relations in

isolated paradigms [3,5,8,15–17].

Third, one might predict that trial-by-trial differences in RT

would be associated with changes in the amplitude or intensity of

some cognitive processes rather than—or in addition to—their

duration. For example, it is intuitive to think that natural

fluctuations in cognitive effort or preparation level should produce

trial-by-trial differences in RT. Other things being equal (i.e.,

assuming all trials have equal difficulty), as the cognitive resources

Figure 1. Hypothetical effects of changes in RT-related physiological processes on the BOLD response. (A) changes in onset. (B)
changes in duration. (C) changes in amplitude.
doi:10.1371/journal.pone.0004257.g001
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allocated to a trial increase, the amplitude of activation in brain

regions that support those resources should increase while RTs

should decrease (Figure 1C). Thus, this view predicts that there

should be a negative correlation between RT and the BOLD

response in regions associated with deployment of task-related

resources. Such a relation is particularly likely to emerge early on

or even prior to each trial, when there is an opportunity to exercise

preparatory processing [1,18]. Limited evidence for such a

relationship has been observed in a number of studies [1,19–21];

for example, Weissman and colleagues recently found that

decreased activation in frontoparietal regions just prior to trial

onset was associated with longer RTs, a result they attributed to

momentary lapses of attention [1]. However, the generalizability

of such findings has not yet been systematically investigated.

These three possibilities (a temporal shift, a positive correlation

with duration, and a negative correlation with amplitude) are not

exhaustive, nor are they mutually exclusive. To the contrary, it is

likely that RTs on most trials reflects a mix of influences, resulting

in complex response shapes. Figure 1D illustrates the hypothetical

response for two trials that differ in their onset, amplitude, and

duration. The presence of multiple influences could potentially

make RT-related activation difficult to detect if general trade-offs

exist (e.g., if an increase in amplitude is precisely offset by a

decrease in duration, it would be difficult to detect a difference in

the resulting HDRs at short durations; Figure 1D). On the other

hand, some types of influences might be stronger than others,

resulting in easily-detectable RT effects across a variety of task

paradigms. Ultimately, the question is an empirical one.

To test for the presence of systematic relations between RT and

brain activation, the present study sought to assess the relationship

between trial-by-trial variation in RT and brain activation at a

relatively broad, task-independent level. Data from five different

fMRI experiments were reanalyzed, with datasets chosen to span a

range of experimental tasks (working memory, episodic memory,

decision-making, and affective rating tasks), fMRI designs (event-

related and mixed blocked/event-related), and stimulus modalities

(words, affective pictures, faces, and numbers). We searched for

regions that showed a consistent relationship across studies

between BOLD activation and RT. Results provided strong

evidence for two of three patterns predicted above. Specifically, we

identified (a) temporal shifts in the onset of the BOLD response on

trials with longer RTs throughout much of the brain, and (b)

positive correlations between RT and activation in a number of

frontal, parietal, and thalamic regions. Surprisingly, in addition to

these expected RT effects in gray matter regions, we identified

remarkably consistent relations between trial-by-trial changes in

RT and activation strength in white matter regions, providing the

most convincing evidence to date that it is possible to detect

BOLD signal in white matter.

Materials and Methods

Datasets
We reanalyzed data from 5 previous experiments. Detailed

methods for most studies have been previously reported, and we

therefore summarize only key aspects of each study’s methodology

here (Table 1). All experiments were approved by the Washington

University in St. Louis institutional review board.

Samples 1 and 2 were drawn from two large studies (n = 102 and

50, respectively) of healthy young adults who performed a 3-back

working memory task involving face and word stimuli during

scanning at 1.5 or 3 Tesla. A mixed blocked/event-related design

[22] was used in both studies. Detailed methods have been

previously reported [10,23,24]. Sample 3 (n = 26) was drawn from a

decision-making study involving a sample of healthy young adults.

Participants selected cards from one of two decks and were

rewarded with variable point rewards exchanged for money at the

end of the experiment [25,26]. A mixed blocked/event-related

design was used to analyze the data. Sample 4 was drawn from a

larger experimental dataset investigating emotional processing in

schizophrenia. For present purposes, only data from healthy

control participants (n = 35) were analyzed. Participants rated the

valence and arousal of affective stimuli (pictures, words, and faces)

during scanning. A rapid event-related design was used to analyze

the data. Sample 5 was drawn from a larger experimental dataset

investigating cognitive function in schizophrenia [27,28]. Only

data from healthy control participants (n = 39) were used.

Participants were scanned while they performed several different

memory encoding and working memory tasks involving word and

face stimuli. Data was analyzed with a rapid event-related design.

In total, the 5 samples comprised a sample size of n = 252.

Responses in all samples were made manually by pressing a

button, and RT was defined as the total time elapsed (in

milliseconds) between the onset of a stimulus and registration of

the participant’s manual response.

Data analysis
All analyses were conducted using a general linear model

approach [GLM; [29]]. To identify the neural correlates of trial-

by-trial differences in RT, we computed a new general linear

model for each subject in each dataset, adding parametric

regressors coding for RT on each trial. In principle, a parametric

RT effect can be modeled in the GLM using a number of

approaches. The most common approach is to use a variable

impulse model, which models RT differences by varying the

amplitude of the RT regressor across trials while holding its

duration constant (for review, see [3]). However, Grinband and

colleagues recently demonstrated that this approach incurs

considerable power loss when the underlying signal varies only

Table 1. Key characteristics of the five datasets.

Sample Population n Task(s) Stimuli Scanner fMRI design Mean RT (ms)

1 Young adults 50 3-back WM W, F 1.5T Mixed 994

2 Young adults 102 3-back WM W, F 3T Mixed 1066

3 Young adults 26 decision-making N 3T Mixed 642

4 Young adults 35 emotion ratings P, W, F 3T Event-related 1274

5 Young adults 39 memory W, F 1.5T Event-related 974

doi:10.1371/journal.pone.0004257.t001
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in duration and not in amplitude [3]. Grinband et al advocated the

use of a variable epoch model that models RT by varying the

duration and not the amplitude of the RT regressor, on the

assumption that this approach more closely reflects the dynamics

of underlying physiological processes. However, as noted above, it

is theoretically possible for differences in RT to reflect differences

in both the amplitude and the duration of underlying neurocog-

nitive processes (e.g., when an increase in effort leads to a

reduction in processing time; Figure 1D). To avoid making any

assumptions about the shape of the RT-related response, we used

an empirical estimation approach. In each data set, a Finite

Impulse Response (FIR) basis set was used to estimate the

influence of RT variability independently at 7 discrete time points

following stimulus onset. This approach allowed us to accurately

characterize the shape of the RT-related response at the cost of a

slight reduction in detection power (due to consumption of

additional degrees of freedom).

To increase power to detect RT-related activation, we

employed the simplest design matrix possible in each sample.

Thus, we collapsed across all non-essential experimental variables

in each case, and estimated the influence of RT across all available

trials. For example, the data for Samples 1 and 2 have previously

been modeled using separate effects for different stimulus types,

trial types, and/or mood induction conditions [10,23,30]. In the

present analyses, we collapsed across such variables and modeled

them all as a single effect coding for the difference between

experimental trials and the fixation baseline. However, to ensure

that putative RT effects could not be accounted for by other

intercorrelated experimental variables (e.g., response accuracy), a

subsequent validation analysis that included a broad range of

experimental covariates was conducted in the largest sample

(Sample 2). Additionally, because three of the samples used mixed

blocked/event-related designs (samples 1–3), which require

separate estimation of blocked and event-related effects [22],

samples 1–3 retained separate effects for these two different

estimates (in addition to RT).

For each subject within each dataset, RT values were

standardized across trials prior to GLM estimation (i.e., each

RT value was demeaned and divided by the standard deviation).

The resulting standardized RTs were modeled independently at

each of the 7 time points post-stimulus onset. No transformation

was applied to the RT values before or after standardization.

Thus, estimates of RT-related activation reflected a linear effect of

RT. Volumes lacking an associated RT value (i.e., those occurring

within baseline periods, or on trials in which subjects failed to

respond) were assigned the mean standardized value of 0. This

procedure ensured that response-less volumes would be assigned

no weight in the regression and therefore would not influence the

resulting first level (i.e., within-subject) estimates.

For each dataset, subjects’ data were smoothed with a 3 mm

FWHM smoothing kernel prior to GLM estimation. Regions that

showed a significant relation with trial-by-trial RT variability were

then identified by performing a whole-brain mixed-effects

repeated measures ANOVA, with time (i.e., the 7 FIR regressors)

as a fixed variable and subject as a random variable. The resulting

F-test map representing the main effect of time was corrected for

non-sphericity (i.e., autocorrelation in each participant’s time

series) and transformed to a z-map in order to weight samples of

different sizes equally. Each map was statistically corrected for

multiple comparisons using a voxel-wise (intensity) threshold of

p,.001 and a cluster-wise (extent) threshold of 8 voxels. To assess

the cross-experiment consistency of RT effects, we employed a

conjunction analysis [31]; only clusters that showed a significant

RT effect in all five samples were considered significant. Note that

this approach is extremely conservative, because any region that

failed to show an RT effect in at least one sample would be

excluded from further consideration even if strong effects were

observed in all other samples. Because the resulting map contained

several very large clusters (.10,000 mm3) that each contained

multiple anatomical structures, an automated peak-search algo-

rithm was used to delineate boundaries of smaller ROIs by

defining spherical ROIs around all peaks and repeatedly

consolidating peaks within 20 mm of each other [32].

Although an ANOVA approach provides a powerful omnibus

test for detecting RT-related brain activation that varies over time,

a significant result implies only that there is some difference in

activation over time, and provides no insight into the specific

nature of that effect. We therefore conducted post-hoc analyses in

order to characterize the pattern of activation present in the

regions identified by the ANOVA analysis. Two linear contrasts

designed to detect patterns of a priori interest were applied. First,

to identify regions that showed a linear increase or decrease in

response amplitude as a function of RT (Figure 1B–C), the

coefficients of the 7 FIR regressors were weighted to fit a gamma

hemodynamic response function (HRF [33]). Second, to identify

regions in which underlying RT-related processes varied only in

temporal onset and not in magnitude or duration (Figure 1A), the

coefficients of the 7 FIR regressors were fit to a temporal derivative

of a canonical HRF. The temporal derivative is formally

equivalent to the difference between two identical HRFs staggered

in time; thus, this contrast was optimized to detect regions in

which activation ‘‘shifted’’ as a function of RT but did not

otherwise change. Each of the two contrasts was applied at a

regional level by testing the average of all voxels within each ROI

identified by the ANOVA.

Finally, in addition to testing for specific response shapes, we

conducted a more liberal exploratory analysis intended to identify

any brain regions that showed RT-related activation in all five

samples at any point in the activation time course. This analysis

could potentially detect effects that were temporally consistent but

not strong enough to attain significance in a full repeated-measures

analysis in all five samples. At each acquisition timepoint (i.e., for

each of the 7 FIR regressors), we identified voxels in which BOLD

response magnitude was systematically correlated with trial-by-

trial RT differences (p,.05 uncorrected, one-tailed) in the same

direction in all five samples (i.e., positively correlated in all samples

or negatively correlated in all samples). Note that although the

HRF was modeled over seven acquisition volumes in all five

samples, the length of each TR (or MRI repetition time) differed

across studies, ranging from 2.36 s (Samples 1 and 2) to 3 s

(Sample 4). This difference made the analysis more conservative,

because it forced voxels to display consistent RT-related activation

over a longer duration of time in order to be identified (e.g., an

effect of RT at the fourth TR in all samples corresponded to a

temporal window between 7–12 seconds post trial onset). We

deemed this approach preferable to the less conservative and less

computationally efficient method of sub-sampling TRs or

interpolating time courses across multiple samples on a voxel-wise

basis.

Results

Consistent RT-related activation in gray and white matter
regions

An initial whole-brain repeated-measures ANOVA identified all

regions in which trial-by-trial RT variability correlated with

BOLD signal changes in all five datasets. The resulting set of

regions included large bilateral foci in medial frontal cortex,

Neural Correlates of RT
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frontal operculum, lateral PFC, anterior PFC, visual cortex,

medial cerebellum, and thalamus, as well as lateralized and/or

more circumscribed foci in the precuneus, posterior cingulate

cortex, and inferior parietal cortex (Figure 2; Table 2). Unexpect-

edly, in addition to these activations in cortical and subcortical

gray matter regions, a number of activations were found in regions

located within white matter. Specifically, RT-related activation

was identified in the right lateral genu of the corpus callosum and

in parts of the posterior corona radiata bilaterally (Table 2). The

latter finding was surprising given that the BOLD signal in white

matter is widely assumed to be considerably weaker in white

matter than gray matter, presumably due to the lower metabolic

activity of white matter [e.g., see 34]. To address potential sources

of artifact that might have generated spurious RT-related signals

in gray and/or white matter, we conducted several validation

analyses that are reported later in this section.

To characterize the pattern of RT-related activation within the

regions identified by the whole-brain ANOVA, we employed two

approaches. First, we visually inspected the empirically estimated

time course of RT-related activation in each ANOVA ROI. RT-

related timecourses for each of the five samples are presented for

several representative gray matter (Figure 3) and white matter

(Figure 4) regions. Figure 5A displays the mean timecourse

averaged over all samples for each of the 33 ANOVA ROIs. The

time courses illustrate three important points. First, RT-related

activation showed a marked degree of spatiotemporal consistency.

The shape of the response generally differed to a greater extent

across brain regions within a single sample than across samples

within a single region (Figures 3–4). Thus, regional differences in

the shape of the HDR appear to manifest reliably not only in

standard experimental contrasts [35,36] but also with respect to

functional differences in RT. Second, virtually all gray matter

regions showed both (a) an initial ‘‘dip’’ in the RT-related time

course approximately 2s post-onset, and (b) uniformly greater

activation for longer RTs thereafter (Figure 5A). This pattern is

consistent with the presence of both a temporal shift in the

response (i.e., later initiation of the response for longer RTs) and a

time-on-task effect (i.e., greater summation of the BOLD response

on long-RT trials due to increased processing duration). Finally,

strikingly different response shapes were observed in gray and

white matter regions, with the latter exhibiting a smaller amplitude

and a substantial delay in time-to-peak (approximately 10–12 s

versus 7–10 s) relative to the former (Figure 5A).

Second, for each ANOVA ROI, we applied linear contrasts

designed to identify activation that showed either (a) a temporal

shift in the hemodynamic response without a corresponding

change in magnitude (shift contrast); or (b) a linear increase or

decrease in the magnitude of activation as a function of RT

(amplitude contrast). Figure 6 (A, B) displays the results of these two

contrasts for each sample in each ROI. Each colored circle

represents the z-score obtained in a different sample. The black

squares represent the fixed-effects sum of all five z-scores (i.e., the

sum of all z-scores divided by the square root of the number of

studies [37]). The Figure supports several conclusions. First,

Figure 2. Cortical regions that showed significant RT-related activation in all five samples. Clockwise from top left: ,left lateral, right
lateral, left medial, and right medial views of the cortical surface.
doi:10.1371/journal.pone.0004257.g002
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consistent with the above qualitative interpretation of Figure 5A,

all 33 ROIs showed a positive temporal shift (i.e., a later peak for

longer RTs; all ps,.05), consistent with the notion that a general

delay in the initiation of task-related processing is one contributor

to longer RTs. Shift effects were particularly robust in visual,

cerebellar, and parietal regions that are presumably involved in

processing sensory feedback related to the motor response.

Second, highly significant positive correlations between RT and

activation were found predominantly in frontal regions, though

several regions in parietal cortex and the thalamus also showed a

positive correlation (p,.05). Negative correlations between RT

and activation were found only in the 6 white matter ROIs.

However, as noted above, the HDR in white matter ROIs

appeared to evolve much more slowly than the model HDR.

Thus, the apparent presence of negative correlations with RT may

reflect a failure of the model-based amplitude contrast to

accurately characterize the shape of the white matter response.

Visually, time courses of RT-related activation in white matter

ROIs appeared in large part to reflect delayed onset for longer

RTs rather than a change in amplitude (Figures 4,5). The

Table 2.

Region ID Description Hem. BA x y z mm3

Frontal regions

1 Medial frontal cortex M 6/8/32 1 12 48 14634

2 Medial frontal gyrus M 6/24 25 26 53 4347

3 Anterior insula L 13 232 19 5 4509

4 Anterior PFC L 10 229 48 21 918

5 Precentral gyrus L 6 251 2 32 891

6 Ventrolateral PFC/anterior insula R 45/44/13 41 22 3 11178

7 Dorsolateral PFC R 9/46 44 12 32 6561

8 Anterior PFC R 10 29 49 18 1215

Parietal/posterior cingulate regions

9 Posterior cingulate M 31 0 235 27 1593

10 Posterior cingulate M 29 3 245 6 1404

11 Precuneus M 7 1 276 36 891

12 Precuneus L 19/7 224 275 33 270

13 Inferior parietal lobule L 40 241 242 39 405

14 Postcentral gyrus L 3/40 241 230 49 1701

Temporal/insular regions

15 Posterior insula L 13/40 251 230 18 1026

16 Insula L 13 239 22 5 5130

17 Postcentral gyrus R 40 56 224 22 324

18 Middle temporal gyrus R 22 51 244 21 486

Visual/cerebellar regions

19 Cuneus M 18 3 281 29 3456

20 Cerebellum/visual cortex M 17/18 6 268 227 16443

21 Fusiform gyrus L 19 241 268 29 7209

22 Lingual gyrus L 18/17 212 262 1 9369

23 Cerebellar tonsil L 237 261 232 14499

24 Culmen (cerebellum) R 27 253 222 15336

Subcortical regions

25 Midbrain M 21 227 28 1458

26 Thalamus L 221 220 4 6291

27 Thalamus R 12 218 8 4428

White matter regions

28 White matter L 222 19 19 216

29 White matter L 224 235 22 2025

30 White matter R 233 239 21 405

31 White matter R 19 26 10 486

32 White matter R 25 245 21 594

33 White matter R 20 25 28 729

doi:10.1371/journal.pone.0004257.t002
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divergence between model-based and inspection-based interpre-

tations of RT-related activations underscores the value of

empirically estimating RT-related time courses rather than using

a strictly model-based approach.

Relation between RT-related and task-related activation
Because RT-related changes in activation were statistically

orthogonal to more general differences in task-related activation

(i.e., the contrast between task performance and a fixation

Figure 3. Time courses of RT-related activation in representative gray matter ROIs. Each line represents activation in a different sample.
Left time course column: RT-related activation; right time course column: general task-related activation (i.e., task vs. baseline). Region labels (R14, R1,
R7, R12) refer to region IDs in Table 2. Error bars reflect 95% confidence intervals.
doi:10.1371/journal.pone.0004257.g003
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baseline), we next investigated the relation between these two types

of effects. For each ROI that showed an effect of RT, we estimated

and plotted the corresponding task-related responses (Figures 3–5)

and applied the same linear contrasts testing for shift versus

amplitude differences (Figure 6C,D). Task-related responses

differed qualitatively from RT-related responses in both gray

and white matter ROIs. In gray matter ROIs, task-related changes

in the amplitude of activation were generally stronger than

Figure 4. Time courses of RT-related activation in representative white matter ROIs.
doi:10.1371/journal.pone.0004257.g004

Figure 5. Mean RT and task-related time courses in all ANOVA ROIs. Each time course represents the time course of RT-related activation (A)
or task-related activation (B) in a single region, averaged over all five samples. Blue: gray matter ROIs; green: white matter ROIs.
doi:10.1371/journal.pone.0004257.g005
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corresponding RT-related effects. That is, z-scores for the

amplitude contrast were consistently larger for task-related effects

than for RT-related effects, despite the fact that it was the RT

effect that was used to define the ROIs in the first place (compare

z-scores in Figure 6, panels A vs. C). In contrast, in white matter

ROIs, a striking discrepancy was observed between RT-related

and task-related responses. Task-related responses were much less

reliable than RT-related responses, showing little consistency

across studies and generally failing to resemble a canonical HRF

(Figures 4–5). This divergence is consistent with previous failures

to detect a reliable BOLD signal in white matter using

conventional subtractive contrasts, and suggests that it is

specifically the RT-related modulation of the BOLD signal in

white matter that is strong enough to be reliably detected.

Exploratory analysis
To complement the whole-brain ANOVA, which identified

regions that showed a highly significant effect of RT across the

entire time course (i.e., a main effect of time), we conducted a

more liberal exploratory analysis intended to identify any brain

regions that showed consistent RT-related activation across studies

at specific points in the activation time course. A separate search

was conducted at each acquisition volume for regions that

correlated with RT in the same direction in all samples. Results

were broadly consistent with the ANOVA results (Figure 7). At TR

1 (0–3 seconds post-onset), no region correlated either positively or

negatively with RT. At TR 2 (2.36–6 seconds post-onset), no

positive correlations with RT were found, but negative correla-

tions with RT were observed in somatosensory cortex, mid-

cingulate gyrus, thalamus and cerebellar cortical regions. At TR 3

(4.72–9 seconds), positive correlations with RT were found in

medial frontal cortex, lateral prefrontal cortex, and frontal

operculum. Negative correlations were found diffusely in white

matter. Thereafter, at TRs 4–6 (7.08–18 seconds post-stimulus

onset), correlations with RT were exclusively positive, and were

observed throughout much of the cortex, basal ganglia, thalamus,

and cerebellum. No correlations with RT were detected at TR 7.

Figure 6. Statistical fit of RT-related and task-related activation to a priori linear contrasts. Top (panels A–B): RT-related activation.
Bottom (C–D): task-related activation. Contrast weights for the amplitude contrast (panels A and C) and temporal shift contrast (panels B and D) are
displayed on the left. The statistical significance (z-score) of the resulting test is displayed on the right for each of the 5 samples in each of the 33
ANOVA ROIs. Each color represents a different sample; black squares represent the fixed-effects z-score sum of all studies (see text). Region numbers
correspond to IDs in Table 2 and Figures 3–5. Dashed lines represent a p,.05 cut-off (|z| = 1.96).
doi:10.1371/journal.pone.0004257.g006
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Validation analyses
The presence of consistent correlations between activation and

RT across fMRI datasets involving different samples, scanners,

experimental tasks, and analysis streams suggested that the

association was unlikely to depend on task- or study-specific factors,

e.g., stimulus modality or length of response window. However, RT

could still be confounded with other task-general experimental

factors such as response accuracy or trial difficulty, or with

systematic artifact sources such as head movement. To assess the

impact of such factors, we conducted a series of validation analyses

in the largest sample (sample 2, n = 102). First, we created new

GLMs that included additional regressors for several experimental

covariates (for full details of the experimental design, see [24]).

These included (a) response accuracy (error vs. correct), (b) stimulus

type (words vs. faces), (c) emotion condition (approach, neutral, and

withdrawal), and (d) 3-back trial type (lure, target, and novel). The

effect of RT remained highly significant in all 33 ROIs (all Fs.6.4,

ps,.0001). Note that this analysis is highly conservative, as it

removes any variance shared between RT and other variables (e.g.,

accuracy), regardless of which variable has causal primacy.

Second, we recomputed the above model with RT estimated

separately for each of the three types of 3-back trial types (lure,

Figure 7. Timepoint-specific negative and positive correlations with RT. The white digit in each panel indicates the timepoint (i.e., the
acquisition volume relative to trial onset) at which the correlation with RT occurred. Blue: negative correlations with RT in all five samples; red:
positive correlations with RT in all five samples.
doi:10.1371/journal.pone.0004257.g007
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target, and novel) in order to determine whether the relation

between RT and brain activation held not only at the overall task

level but also for different experimental conditions associated with

different cognitive demands [38]. This analysis was even more

conservative than the previous analysis, because each of the

covariates (stimulus type, emotion condition, response accuracy,

etc.) was also estimated separately for each trial type in order to

ensure consistent treatment of RT, effective tripling the degrees of

freedom consumed. Nonetheless, despite the substantial reduction

in power, the RT effect remained significant in all 33 ROIs for

target trials (p,.05), in 32/33 ROIs for novel trials (p,.05), and in

23/33 ROIs for lure trials (p,.05; note that the reduction in

number of significant effects for lure trials likely reflected

decreased estimation power, because lure trials comprised only

16% of all trials). Critically, in regions that showed a significant

RT effect for all 3 trial types, time courses were virtually

indistinguishable in shape (e.g., Figure 8). Thus, the relation

between RT and brain activation held not only at an overall task

level but also for specific experimental conditions.

Third, we assessed the impact of head movement on estimates

of RT-related activation. Although a six-parameter affine

transform was used to correct for movement during preprocessing,

it was conceivable that a residual influence might bias the GLM

estimates if movement happened to be correlated with trial-by-trial

variation in RT. This concern was particularly applicable to the

observed white matter effects, because the intensity of the BOLD

signal in white matter was weaker than in gray matter, and thus

potentially more susceptible to systematic noise. To control for

movement, we computed two separate sets of GLMs, each of

which added several movement regressors to the existing set in

each study. One set coded for directional movements using 12

separate regressors. Six regressors coded for absolute shift in head

position relative to the start of the first run, and six regressors

coded for volume-by-volume differences in movement. Of each set

of six, three regressors coded for translation in the x, y, and z

planes and three regressors coded for rotation in the same planes.

The second set of GLMs coded for absolute rather than directional

movement, and included two different regressors, one reflecting

total translational movement and one reflecting total rotational

movement (each computed as the square root of the sum of

squares of x, y, and z movements in each volume). The RT

estimate was not affected in either analysis. Effects remained

significant across all ROIs in both models (p,.05 in one ROI; all

Fs.6, ps,.0001 in all other ROIs).

Fourth, we constructed a GLM that controlled for the serial

position of each trial within the overall scan sequence (i.e., trial

number). This analysis controlled for potential confounding

influences of practice or fatigue effects. We reasoned that if RT

varied systematically as a function of task experience (e.g.,

decreasing over time as responses became more automated, or

increasing over time because of greater fatigue), and if for some

reason there was a systematic change in BOLD signal in gray or

white matter over the course of the experiment, one might expect

a spurious correlation between activation and RT to emerge (note

that this effect would have to be independent of scanner drift,

which was modeled using nuisance regressors in all GLMs).

Figure 8. RT-related activation in somatosensory cortex estimated separately by trial type in Sample 2. Each colored line represents the
time course of RT-related activation estimated for a different trial type, after controlling for a range of experimental covariates (see text). The black
line represents the original estimate (cf. Figure 4A) when collapsing across all trial types. Error bars indicate 95% C.I.
doi:10.1371/journal.pone.0004257.g008

Neural Correlates of RT

PLoS ONE | www.plosone.org 11 January 2009 | Volume 4 | Issue 1 | e4257



However, no such effect was observed. When controlling for trial

number, the RT effect remained highly significant in all ROIs (all

Fs.9.1, ps,.0001).

Finally, we systematically inspected the preprocessing stream

used in all five samples in order to identify any potential steps that

might introduce systematic artifact correlated with trial-by-trial RT

differences. No obvious candidate emerged. The most obvious

candidate step would be a correction for global intensity differences,

which has previously been shown to induce spurious white matter

deactivations [39] (i.e., if the average intensity of the entire volume

changed as a function of RT due to changes in gray matter,

normalizing all volumes to have the same mean could potentially

induce a spurious shift in white matter signal). However, such a

processing step was not used in any of the samples.

Discussion

The primary finding of the present study was the identification

of gray and white matter brain regions in which activation

correlated systematically with trial-by-trial differences in RT

across a broad range of experimental tasks. Strong evidence was

found for both temporal shifts in RT-related activation, presum-

ably reflecting delayed onset of cognitive processing, and uniform

positive correlations between RT and activation in frontal regions,

likely reflecting a ‘‘time-on-task’’ effect of sustained attention.

Additionally, strong evidence emerged for a reliable effect of RT

on BOLD signal in white matter. We now turn to discuss the

theoretical and methodological implications of these findings.

Time-on-task versus temporal shift effects of RT
Virtually all RT-related activations identified in the present

study could be characterized as either an amplitude increase (i.e.,

systematically greater activation for long RTs than short RTs) or a

temporal shift (i.e., delayed onset of the HDR for long RTs relative

to short RTs with little or no change in shape). These two patterns

showed a moderate degree of spatial segregation, with amplitude

effects restricted primarily to frontoparietal and thalamic regions,

whereas temporal shift effects were ubiquitous throughout the

brain but were strongest in somatomotor, visual, cerebellar, and

posterior midline cortical regions. This anatomical dissociation is

consistent with a division of labor between brain regions that

support cognitive processes that occur prior to the motor response

and brain regions that support response-locked processes such as

motor execution, tactile feedback processing, and processing of

visual display changes.

The fact that positive correlations between RT and BOLD

amplitude were found primarily in frontal regions is consistent with

the conventional wisdom that MFC and lateral PFC regions are

central components of a cognitive control network broadly

implicated in supporting effortful, goal-directed activity [40,41].

Of particular relevance is a recent multi-study analysis by

Dosenbach and colleagues in which the authors identified highly

consistent sustained task-related activations in MFC and frontal

operculum regions that overlapped closely with those identified in

the present study [42]. Dosenbach and colleagues suggested that

these regions are necessary for the implementation and mainte-

nance of a goal-directed task set. While they focused on temporally

extended activation that persisted throughout entire task blocks, the

present findings point to a direct analog at much shorter intervals.

Given that participants are usually free to relax their attention and

‘‘mind wander’’ for the remainder of a trial once they have

responded to the stimulus, neural activity in frontal regions

necessary for sustaining goal-directed attention should persist for

the duration over which attention is maintained [cf. 43,44]—a

duration closely indexed by RT. Because the BOLD response sums

approximately linearly overt short intervals [12], trials with long

RTs should then produce proportionally larger activations in the

same frontal regions.

It is important to note that the presence of robust time-on-task

effects does not conclusively rule out the possibility that there are

other relatively broad relations between brain activation and RT

variability. At very short intervals (e.g.,,2 seconds), changes in the

duration versus amplitude of physiological processes are likely to

exert similar effects on the BOLD response (e.g., compare panels B

and C in Figure 1). If a general tradeoff exists between the amplitude

of processes supported by frontal regions and their duration (e.g., if a

20% increase in frontal activation results in a 20% reduction in RT,

other things being equal), it may be difficult if not impossible to

detect using the present approach. Thus, the present findings should

not be taken to imply that increases in preparatory processing or

mental alertness (which presumably would be associated with

increased frontal activation [20,45]) have no effect on RT.

Considerable evidence demonstrates the existence of such effects;

for example, increased ACC and DLPFC activation predicts faster

and more accurate responses during upcoming trials [18–21,46].

What the present results do suggest is simply that the influence of

task-general preparatory or alertness-related processes on RT is

relatively negligible in comparison to the dominant time-on-task

effect. This conclusion is entirely compatible with reports of larger

preparation-related decreases in RT in studies that involve specific

kinds of experimental conditions (e.g., the presence of cue

information), or with the general notion that variability in mental

preparedness (e.g., the occurrence of attentional lapses prior to trial

onset) has an influence on RT [1,8]).

Interestingly, the present findings do provide some evidence for

a weak effect of cognitive preparation or alertness on RT. Virtually

all RT-related ROIs showed a small negative correlation with RT

very early in the activation time course (Figure 5). Moreover, the

early decreases contrasted sharply with task-related responses in

the same regions, which were strictly positive-going in most cases.

Weissman and colleagues [1] recently suggested that these early

negative correlations with RT are functionally coupled to the later

positive correlations. Specifically, they argued that deactivations in

regions associated with attentional control reflect lapses of

attention, and that the late positive increases reflect a subsequent

attempt to compensate for such lapses by reasserting additional

control. However, the present results argue against such an

interpretation, because (a) in frontal regions associated with

cognitive control, the late positive correlations with RT were

substantially larger than the early negative correlations, and (b) an

early dip in activation was observed in virtually all regions,

including sensorimotor regions that are unlikely to play a role in

asserting control. A more plausible interpretation is that the two

phenomena are largely independent. That is, lapses of attention

contribute to the ubiquitous temporal shifts we observed (i.e., task-

related processing initiates slightly later in virtually all brain

regions immediately following a lapse), whereas frontal regions

play a preferential role in sustaining controlled processing for the

duration of a trial until a response is made.

Methodological implications of a time-on-task effect
The present findings have clear and important methodological

implications for the inclusion (or lack thereof) of RT as a covariate

in functional neuroimaging studies. It is both common sense and

an axiom of experimental psychology that RT and accuracy are

inversely related under most circumstances—that is, the longer a

person takes to respond, the more likely their response is to be

accurate, assuming that experimental conditions are held constant.
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In behavioral studies that use response accuracy as the primary

dependent variable, it is standard practice to explicitly rule out the

possibility of a speed-accuracy tradeoff, e.g., by statistically

covarying out RT or demonstrating that there are no meaningful

differences in RT between conditions. This concern is equally

applicable to neuroimaging studies, where differences in activation

between two conditions could theoretically be confounded with

differences in both RT and response accuracy.

Surprisingly, while many fMRI researchers routinely take pains

to eliminate response accuracy differences as a potential confound

(e.g., by only analyzing trials with correct responses), relatively few

studies have systematically controlled for trial-by-trial RT differ-

ences [e.g., 5,7,47]; a recent survey of 170 fMRI studies found that

only 9% had explicitly modeled RT [3]. The present results suggest

that this omission may not be benign. The strength of the RT effects

we observed in frontal regions suggests that RT variability may

explain a considerable amount of variance in frontal activation in

most tasks. If two experimental conditions differ substantially in

mean RT, a corresponding difference in frontal activation is likely to

be observed irrespective of any other differences in task structure. Moreover,

given that the present study focused only on RT-related activation

that was relatively independent of task-specific demands, one might

expect similar, but more task-specific, time-on-task effects to be

present in other brain regions.

At present, there is no easy way to determine the extent to

which quantitative differences in trial-by-trial RT variability might

account for fMRI effects previously attributed to qualitative

differences between experimental conditions. Relatively few

studies have directly contrasted effects with and without RT

covariates, and these studies have reported mixed results. In some

cases, controlling for RT produces no discernible impact on

experimental effects of interest [e.g., 24,47,48,49]. In other cases,

some effects of interest may be eliminated or even reversed when

RT is explicitly modeled [e.g., 7,50]. It is important to note that

the widespread practice of including the temporal derivatives of

modeled responses in GLM analyses in order to account for

temporal differences in HDR onset will have virtually no influence

on estimates of RT-related activation in regions that show a time-

on-task effect. Including temporal derivatives in the GLMs used in

the present study would likely have reduced or eliminated the

temporal shift effects identified in somatomotor, visual, and

cerebellar regions; however, regions that show relatively uniform

positive activations as a function of RT (e.g., MFC and lateral

PFC) would be largely unaffected, because activation in the latter

regions appears to increase at virtually all timepoints. To account

for such effects, trial-by-trial differences in RT should be explicitly

modeled within the GLM—either by empirically estimating the

RT-related response, as in the present study, or by using an

alternative approach such as a variable impulse or variable epoch

model (for discussion, see [3]).

Given that the interpretation of many results might change

considerably depending on whether effects are independent of RT

or not, there is a clear incentive for researchers to include RT as a

covariate in analyses. A particularly informative approach might be

to analyze one’s data both with and without RT in the model,

enabling more precise inferences about whether the neurocognitive

processes recruited by different experimental conditions vary

quantitatively or qualitatively. Some hypotheses might be confirmed

by demonstrating that differences in frontoparietal activation are

fully explained by RT differences, and are purely quantitative in

nature; for example, one might hypothesize that increasing the load

in a Sternberg working memory task [51] from 3 to 4 items should

produce a strictly quantitative change in brain activation and RT,

and that no difference in the former should remain after controlling

for the latter. In contrast, other hypotheses might require a

demonstration that activation differences remain significant even

after controlling for RT. For example, one would expect activation

differences for word naming versus non-word naming to remain

significant even after controlling for RT, reflecting the fact that

word naming can recruit pathways that non-word naming cannot

[5]. In general, there is no reason, save perhaps expediency, not to

include RT as a covariate in parallel fMRI analyses, while the

potential benefits are considerable.

Reliable effects of RT on BOLD signal in white matter
A surprising finding of the present study was the presence of a

consistent association between trial-by-trial RT variability and

BOLD signal in white matter regions. The precise nature of this

association is somewhat unclear due to the atypical shape of the

hemodynamic response in white matter (Figure 5)—the white

matter response appears to have the same fundamental charac-

teristics as the gray matter response, but evolves much more

slowly. A parsimonious interpretation of the present findings is that

RT effects in white matter regions reflect temporal shifts similar to

those observed in gray matter regions such as somatosensory

cortex that are simply ‘‘stretched’’ in time. That is, on trials with

long RTs, the BOLD response in white matter is delayed relative

to trials with short RTs, presumably because processes supported

by white matter (e.g., conduction of action potentials along

corticospinal pathways) initiate later in time. However, an

alternative possibility is that the very late increase in RT-related

activation observed in white matter reflects an ‘‘overshoot’’ phase

of a negative-going impulse. On this view, increases in white

matter activation might be systematically associated with shorter

RTs because they serve some functional purpose, e.g., facilitating

more rapid communication between different gray matter regions

on trials with short RTs.

Interpretative issues aside, the identification of a reliable BOLD

signal in white matter has potentially important implications for

fMRI methodology and our understanding of the BOLD signal. It is

widely assumed in the functional neuroimaging community that it is

difficult if not impossible to reliably detect BOLD responses in white

matter because metabolic rates, vascular density, and cerebral

perfusion are much lower in white matter than in gray matter

[34,52]. Logothetis [53] captured this sentiment in a recent review

of mechanisms underlying the BOLD signal, noting that ‘‘activation

of the white matter has been rarely reported in the neuroimaging

literature, and a reasonable investigator may doubt the presence of a

BOLD signal in white matter altogether’’ (p. 755). While there is no

doubt that the present findings are unexpected, there are several

reasons to believe that the observed white matter activations

veridically reflect underlying physiological processes.

First, it is worth noting that the widespread assumption that

BOLD signal is undetectable in white matter is based largely on

negative evidence—that is, a failure to observe significant white

matter activations. There is no positive evidence to suggest that

such activations are impossible in principle. To the contrary, there

are good reasons to predict the presence of BOLD signal in white

matter. The BOLD signal reflects a complex interplay between

changes in cerebral blood flow (CBF), cerebral blood volume

(CBV), and oxidative metabolism [53–55]. Such factors might be

expected to operate in white matter as well as gray matter, because

(a) the balance between oxidative metabolism and blood flow is

similar in white and gray matter (as evidenced by similar oxygen

extraction fractions in white matter [56,57]), and (b) CBF and

CBV are only 2–3 times lower in white matter than in gray matter

[57–60]. Thus, in principle, white matter BOLD signal should be

detectable given a sufficiently large sample size, sensitive
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acquisition techniques, and a sufficiently sensitive analytic probe.

Moreover, recent discoveries that some types of glial cells

participate in glutamatergic signaling [61,62] and can even

generate action potentials [63] provide potential theoretical bases

for the presence of functional relationships between cognitive

processes and BOLD signal in white matter.

Second, from a statistical standpoint, the probability of jointly

observing consistent white matter activations in all five samples is

infinitesimally small (p,.0015). Moreover, as illustrated in Figure 4,

different samples produced extremely similar RT-related time

courses in virtually all regions, despite the fact that the model-free

ANOVA procedure used to identify ROIs imposed no constraint on

the shape of activation in each case. Thus, while it is conceivable

that white matter RT effects might reflect an unidentified

confounding variable, they cannot be rejected as false positives.

Third, and related to the above concern about potential

confounds, consistent white matter effects were observed in

samples obtained using different fMRI scanners, experimental

tasks, and analytic designs. Thus, any potential source of artifact

would have to be extremely general. The most obvious candidate,

namely, head movement, had no discernible influence on the RT

effect when explicitly modeled in the GLM. Similarly, controlling

for a variety of experimental factors (e.g., response accuracy, trial

number, etc.) or modeling the RT effect separately for different

types of trials did not affect the results.

Fourth, it is important to note that white matter effects were

specific to the trial-by-trial RT effect in the present datasets. We

found no consistent white matter activation across studies when

contrasting task-related activation with baseline. Thus, the present

results are entirely compatible with previous failures to detect a white

matter BOLD signal. A plausible explanation for the fact that the

RT-related signal appears to be much more reliable than the task-

related signal is that the production of an overt motor response may

require generation of highly synchronized and relatively strong

impulses in corticospinal motor axons that are conveniently time-

locked to the onset of the motor response. In contrast, when

activation during two experimental conditions is contrasted subtrac-

tively (e.g., task vs. baseline), the BOLD signal in white matter is likely

to reflect the noisy summation of many different impulses that vary in

time and strength in both conditions (e.g., continuous communication

between different cortical and subcortical regions is liable to occur

during both task periods and fixation baseline), making significant

differences much more difficult to detect.

Fifth, although reports of BOLD signal in white matter are rare,

several studies have in fact observed such effects using experimental

approaches broadly consistent with the present focus on RT

variability. Two recent studies that used visual-manual RT tasks to

investigate the neural correlates of interhemispheric transfer found

greater activation in the corpus callosum on trials that required

interhemispheric transfer of information than on trials that did not

[64,65]. Strikingly, both studies reported white matter activation in

a region of the right genu of the corpus callosum (peak coordinates:

14, 28, 16 and 10, 26, 24, respectively) that overlapped closely with

an ROI identified in all five samples in the present study (center-of-

mass coordinates: 20, 26, 9).

Finally, several diffusion tensor imaging (DTI) studies have

found correlations between individual differences in mean RTs

and white matter integrity [66–69]. These correlations are

universally negative, i.e., individuals with greater white matter

integrity have shorter RTs across a range of different cognitive

tasks. Although the individual differences results of DTI studies are

not directly comparable with the within-subjects (i.e., trial-by-trial)

BOLD effects identified in the present study, the DTI results

nevertheless provide a conceptual corroboration of the present

results inasmuch as they suggest that variability in white matter

structure has functional implications for RT variability. Future

studies could combine DTI and BOLD data to directly test for a

relationship between the two measures. For example, one might

predict that individuals with greater structural integrity in white

matter tracts should have a larger dynamic range of activation,

and might therefore show greater modulation of white matter

BOLD as a function of trial-by-trial RT differences. In sum, while

we remain open to the possibility that the white matter activations

reported here will prove to be artifactual, we believe there are

sufficient methodological and theoretical grounds to warrant

further investigation.

Conclusion
The present results provide strong support for the existence of

task-independent relationships between trial-by-trial differences in

RT and gray and white matter activation. The presence of robust

time-on-task effects in frontoparietal brain regions underscores the

importance of explicitly modeling RT in fMRI analyses, whether as

a covariate of no interest or as a variable of interest in its own right.

Although the association between white matter activation and trial-

by-trial differences was not predicted a priori, and its precise nature

remains unclear, the current study provides the strongest evidence

to date that BOLD signal can be reliably detected in white matter.

Future investigations could potentially use trial-by-trial changes in

RT to probe the integrity of white matter function as well as the

physiological basis of the BOLD signal.
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