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Abstract

DTNBP1 has been recognized as a schizophrenia susceptible gene, and its protein product, dysbindin-1, is down-regulated
in the brains of schizophrenic patients. However, little is known about the physiological role of dysbindin-1 in the central
nervous system. We hypothesized that disruption of dysbindin-1 with unidentified proteins could contribute to
pathogenesis and the symptoms of schizophrenia. GST pull-down from human neuroblastoma lysates showed an
association of dysbindin-1 with the DNA-dependent protein kinase (DNA-PK) complex. The DNA-PK complex interacts only
with splice isoforms A and B, but not with C. We found that isoforms A and B localized in nucleus, where the kinase complex
exist, whereas the isoform C was found exclusively in cytosol. Furthermore, results of phosphorylation assay suggest that
the DNA-PK complex phosphorylated dysbindin-1 isoforms A and B in cells. These observations suggest that DNA-PK
regulates the dysbindin-1 isoforms A and B by phosphorylation in nucleus. Isoform C does not contain exons from 1 to 6.
Since schizophrenia-related single nucleotide polymorphisms (SNPs) occur in these introns between exon 1 and exon 6, we
suggest that these SNPs might affect splicing of DTNBP1, which leads to impairment of the functional interaction between
dysbindin-1 and DNA-PK in schizophrenic patients.
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Introduction

Dystrobrevin binding protein 1 (DTNBP1, dysbindin-1) consists of

approximately 350 amino acids and was originally identified by

Benson et al. [1] as a dystrobrevin-binding protein in a yeast two-

hybrid screen. Dysbindin-1 attracted interest in 2002 when

variations in the gene encoding it at chromosomal locus 6p22.3

were reported to be associated with schizophrenia [2], suggesting a

susceptibility locus for schizophrenia. Since then, many groups have

reported data that collectively support a link between schizophrenia

and DTNBP1 [3–16]. Hence, genetic variations in the dysbindin-1

gene might be a major risk factor for schizophrenia.

Previous reports have shown that diverse high-risk single

nucleotide polymorphisms (SNPs) and haplotypes could influence

dysbindin-1 mRNA expression [17–19]. Moreover, schizophrenics

demonstrate reduced dysbindin-1 mRNA expression in the frontal

cortex and hippocampus [19,20], and lower protein expression

levels of dysbindin-1 have been observed post-mortem in the

hippocampus of schizophrenics compared to age-matched controls

[21]. Interestingly, dysbindin-1 is involved in glutamatergic [9,21]

and dopaminergic neurotransmission [22–24]. Collectively, this

suggests that the physiological function of dysbindin-1 might be

impaired in schizophrenia patients. Nevertheless, the functions of

dysbindin-1 in the central nervous system (CNS) remain unclear.

To identify the proteins that interact with dysbindin-1, we

examined dysbindin-1 binding proteins in lysates from human

neuroblastoma cells by glutathione-S-transferase (GST) pull-down

assay. We found that the DNA-dependent protein kinase (DNA-PK)

complex bound to dysbindin-1 and phosphorylated dysbindin-1 in

vitro. Interestingly, the functional complex interacted with dysbindin-1

in an isoform-selective manner. Dysbindin-1 isoforms A and B

interacted with DNA-PK and localized in the nuclei where DNA-PK

complex functions. DNA-PK phosphorylated these isoforms in cells,

implying that DNA-PK regulates them by phosphorylations in

nucleus. Isoform C does not interact with DNA-PK, not phosphor-

ylated, nor localized in nucleus. These observations suggest a novel

function and differences among isoforms of dysbindin-1 in mamma-

lian cells, which could shed new light on the etiology of schizophrenia.

Results

Identification of dysbindin-1-associated proteins
To identify proteins that interact with dysbindin-1 in neuronal

cells, GST and GST-dysbindin-1 were purified and used to

perform pull-down assays in lysates from human neuroblastoma

cells (SH-SY5Y), mouse brain, and skeletal muscle. The purities of

GST and GST-dysbindin-1 are shown in Fig. 1A. Sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used

to separate the purified proteins, and the gel was then stained with

Coomassie Brilliant Blue (CBB). As shown in Fig. 1A, the apparent

molecular weights (MW) of GST and GST-dysbindin-1 were 30

and 70 kDa, respectively.
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Proteins that were captured by GST or GST-dysbindin-1 were

separated by SDS-PAGE and detected by CBB staining. Five

proteins, which were ,80, 115, 120, 157, and 470 kDa,

respectively, were co-purified from SH-SY5Y cell lysates with

GST-dysbindin-1, but not with GST alone (Fig. 1B). These

protein bands were excised from the gel, subjected to in-gel trypsin

digestion, and analyzed by mass assisted laser desorption

ionization-time of flight-mass spectrometry (MALDI-TOF-MS).

They were reproducibly identified as ATP-dependent DNA

helicase 2 (Ku80), poly (ADP-ribose) polymerase family, member

1 (PARP1), adaptor-related protein complex 3, beta 2 subunit

(AP3b2), leucine-rich PPR-motif containing protein (LRPPRC),

and DNA-dependent protein kinase catalytic subunit (DNA-PKcs)

by peptide mass fingerprinting (PMF). Interestingly, three of these

proteins, Ku80, PARP1, and DNA-PKcs, are components of the

DNA-PK functional complex [25,26]. This suggests that dysbin-

din-1 might possibly interact with the DNA-PK complex and

influence its function. In addition, we also identified several mouse

dysbindin-1-associated proteins from mouse brain or skeletal

muscle homogenates (Table 1). Previous studies have demonstrat-

ed an interaction of AP3b2 with dysbindin-1, which we also

identified in screenings of both mouse brain and SH-SY5Y cells.

Therefore, we focused on the three components of the DNA-PK

complex and investigated their interactions with dysbindin-1

because they revealed the highest PMF score, they are known to

physiologically function as a complex, and their interactions with

dysbindin-1 have not been defined.

Endogenous dysbindin-1 interacts with Ku70/80 in SH-
SY5Y cells

According to previous studies, it is known that Ku70 forms a

heterodimer with Ku80 and is also a component of the DNA-PK

complex[27–30]. All members of the DNA-PK complex except for

Ku70 were identified as binding partners of dysbindin-1, which led

us to examine the binding of Ku70/80 to dysbindin-1. To confirm

the interaction between endogenous dysbindin-1 and Ku70/80,

we generated a polyclonal anti-dysbindin-1 antibody by immu-

nizing rabbits with GST-dysbindin-1 as described in the

‘‘Materials and Methods.’’ Three isoforms of human dysbindin-1

Figure 1. Identification of dysbindin-1-associated proteins. A) Expression of the GST and GST-dysbindin-1 in E. coli (asterisk). Purified GST and
GST-dysbindin-1 were separated by 10% SDS-PAGE and visualized by Coomassie Brilliant Blue (CBB) staining. B) Proteins identified as dysbindin-1-
associated proteins. The purification of GST-dysbindin-1, isolation of lysates from the human neuroblastoma cell line SH-SY5Y, and the pull-down
assays were performed as described in the ‘‘Materials and Methods.’’ Eluates of the GST- or GST-dysbindin-1 associated proteins were separated by
SDS-PAGE and stained with CBB. Lanes 1 and 2 represent GST and GST-dysbindin-1 alone without cell extract, and lanes 3 and 4 show the associated
proteins pulled down by incubating whole-cell extracts from SH-SY5Y cells with GST-dysbindin-1 or GST, respectively. The appropriate portions of the
polyacrylamide gel containing the specific protein bands in lane 3 were analyzed by MALDI-TOF-MS as described in the ‘‘Materials and Methods.’’ The
arrows indicate the proteins identified by MALDI-TOF-MS with a high score.
doi:10.1371/journal.pone.0004199.g001

Table 1. Proteins identified as dysbindin-1-associated
proteins by mass spectrometry.

Bait Prey
Identified
Proteins NCBI No.

Human dysbindin-1
(isoform A)

SH-SY5Y cells DNA-PKcs NP_008835

LRPPRC NP_573566

AP3b2 NP_004635

PARP1 NP_001609

Ku80 NP_066964

Mouse dysbindin-1 Brain Ap3b2 NP_067467

Skeletal Muscle Atp2a2 NP_033852

Atp5a1 NP_031531

Arfgef2 NP_001078964

Hadha AAH37009

Hadhb NP_663533

Dapk1 NP_083929

Slc25a4 AAH26925

For protein mass spectrometric analysis, GST fusion human dysbindin-1A and
mouse dysbindin-1 were used to perform pull-down screening of SH-SY5Y cells,
mouse brain, or skeletal muscle. The specific bands from the GST-dysbindin-1
lane were excised and identified by mass spectrometry and peptide mass
fingerprinting. The identified proteins from respective bait and preys and their
NCBI numbers are shown. These proteins were reproducibly identified by
MALDI-TOF-MS with a high score.
doi:10.1371/journal.pone.0004199.t001
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exist in the NCBI database. Hence, the specificity of the

dysbindin-1 antibody was evaluated by immunoblotting using

lysates from COS-7 cells transfected with myc-dysbindin-1s

(isoforms A–C). As shown in Fig. 2A, all three isoforms of

dysbindin-1 were detected by the dysbindin-1 antibody (center

panel) but not by the antigen-absorbed antibody (left panel). In the

absence of myc-dysbindin-1, this antibody reacted weakly with a

protein band near the estimated MW of dysbindin-1. The antigen-

absorbed antibody did not show immunoreactivity with proteins at

this MW. Therefore, we conclude that this band was endogenous

dysbindin-1 and used the dysbindin-1 antibody to detect

endogenous dysbindin-1 in subsequent experiments.

To ascertain whether endogenous dysbindin-1 interacts with

Ku70/80 in neuronal cells, immunoprecipitation assays were

performed in SH-SY5Y cells with the anti-dysbindin-1 antibody or

with non-specific rabbit IgG (Fig. 2B). The proteins immunopre-

cipitated by the anti-dysbindin-1 antibody or control IgG were

sequentially eluted into three fractions (E1 to E3) and resolved by

SDS-PAGE. As shown in Fig. 2B, the anti-dysbindin-1 antibody

immunoprecipitated dysbindin-1 and co-immunoprecipitated

Ku70 and Ku80; control IgG did not immunoprecipitate

dysbindin-1, Ku70, or Ku80. These data suggest that dysbindin-

1 might interact with Ku70 and Ku80 in neuronal cells under

physiological conditions. However, Ku70 was not identified as a

dysbindin-1 binding partner in our pull-down screening. We infer

that Ku70 was obscured by the robust dysbindin-1 band because

the molecular weight of Ku70 is nearly equal to that of GST-

dysbindin-1.

Localization of endogenous dysbindin-1 in SH-SY5Y cells
The DNA-PK complex is mainly localized to and functions in

nuclei; hence, we examined whether endogenous dysbindin-1 also

localized to nuclei in SH-SY5Y cells by immunocytochemistry

using the anti-dysbindin-1 antibody. As shown in Fig. 3A,

dysbindin-1 appeared to localize primarily to the cytoplasm, but

also showed some diffuse localization in the nucleus (Fig. 3A a-2).

Phase-contrast imaging showed that these cells were normal, and

pre-absorption of the antibodies with antigen GST-dysbindin-1

completely abolished immunoreactivity (data not shown), con-

firming that endogenous dysbindin-1 exists in SH-SY5Y cells

under the physiological condition.

Since this immunocytochemical approach could not clearly

show the nuclear localization of dysbindin-1, we performed

subcellular fractionation of SH-SY5Y cells followed by immuno-

blotting. Cytosolic and nuclear fractions were confirmed by

immunoblotting using the marker protein antibodies anti-a-

tubulin and anti-lamin B, respectively. As shown in Fig. 3B,

endogenous dysbindin-1 was unambiguously localized to both the

nuclear and cytosolic fractions, which is in accord with our

immunocytochemical staining data. We also investigated the

subcellular distribution of Ku70/80. Consistent with previous

reports [31–37], Ku70/80 also localized to both the nucleus and

cytosol, supporting the notion that Ku70/80 interacts with

dysbindin-1 in neuronal cells. Furthermore, we identified three

bands in whole-cell lysates and cytosolic fractions and a single

band in the nuclear fraction. The upper, middle, and lower bands

are consistent in MW with isoforms A, C, and B, respectively;

hence, we hypothesize that isoform A can localize to the nucleus

but not isoform C and that it might have a specific biological

purpose there.

Subcellular localizations and interactions with Ku70/80 of
three isoforms of dysbindin-1

The subcellular localizations of endogenous dysbindin-1 were

different among three isoforms (Fig. 3B). Therefore, to determine

the localizations of the isoforms more clearly, we performed

subcellular fractionation of COS-7 cells transfected with V5-

dysbindin-1A, B and C. The reason why we used COS-7 cells in

this overexpression experiment was that the cells were most

efficiently transfected. As shown in Fig. 4A, isoforms A and B

localized in both cytosol and nucleus, whereas the isoform C was

exclusively found in cytosol.

Next, to examine whether Ku70/80 bound to dysbindin-1 in an

isoform-selective manner, we performed immunoprecipitation

assays in COS-7 cells doubly transfected with respective

dysbindin-1 isoforms and Ku70 or Ku80. Both of Ku70-V5 and

Ku80-V5 were co-immunoprecipitated with myc-tagged isoforms

A and B using the anti-myc antibody, but not with isoform C

(Fig. 4B, lanes 14–16, and 4C, lanes 12–14,), suggesting that

Ku70/80 bound to isoform-selectively dysbindin-1 in cells.

Together with the results of subcellular fractionation (Fig. 4A),

these data suggest that only isoforms of dysbindin-1 localized in

the nucleus interacted with Ku70/80 there.

Figure 2. Evaluation of the anti-dysbindin-1 antibody and co-
immunoprecipitation of endogenous dysbindin-1 and Ku70/
80. A) The anti-dysbindin-1 antibody recognizes all isoforms of human
dysbindin-1. The lysates of COS-7 cells overexpressing each isoform
were detected by Western blotting using the anti-dysbindin-1 antibody
(center panel), the antigen-absorbed antibody (left panel), or the anti-
myc antibody (right panel). In the lanes 8 and 12, there were two bands,
lower one of which was thought to be the degraded form of isoform C.
B) Endogenous Ku70/80 co-immunoprecipitated with endogenous
dysbindin-1. Immunoprecipitation was performed using SH-SY5Y cells
with the anti-dysbindin-1 antibody or normal rabbit IgG (negative
control). As indicated by the arrowheads, Ku70 and Ku80 immunopre-
cipitated with dysbindin-1 (indicated by arrows), which was pulled
down with the anti-dysbindin-1 antibody (lanes 5–7). In the over-
exposured immunoblot, two more bands corresponding to isoforms C
and B were detected, indicating that the protein levels of these isofoms
were much lower than that of isoform A.
doi:10.1371/journal.pone.0004199.g002
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In vitro phosphorylation of dysbindin-1 by the DNA-PK
complex

We next investigated the functional meaning of binding between

dysbindin-1 and DNA-PK complex. As DNA-PK complex is known

to be a serine/threonine kinase, we examined whether dysbindin-1

influences DNA-PK kinase activity by comparing the intrinsic kinase

activity of the DNA-PK complex in SH-SY5Y cells transfected with

myc-dysbindin-1 or empty vector. DNA-PK activities were deter-

mined by measuring incorporation of [c-32P] into a synthetic peptide

from [c-32P]-ATP by liquid scintillation counting. The intrinsic

kinase activity of the DNA-PK complex was not affected by the

expression of dysbindin-1 (isoforms A, B, and C) in SH-SY5Y cells

(data not shown).

Next, we investigated whether dysbindin-1 was a substrate for

phosphorylation by DNA-PK. We performed in vitro kinase assays

by mixing the purified DNA-PK complex with GST or GST-

dysbindin-1. After the reaction, the samples were subjected to 10%

SDS-PAGE, and phosphorylated proteins were detected by

incorporation of [c-32P]. As shown in Fig. 5A, all three isoforms

of dysbindin-1 were phosphorylated by DNA-PK, whereas BSA,

GST, and dysbindin-1 isoform A in the absence of DNA-PK were

not phosphorylated. Because DNA-PK activity is influenced by

double-stranded DNA (dsDNA) [38–41], we next examined DNA-

PK activity in the presence or absence of fragmented dsDNA

(indicated by + or 2). The dsDNA did not affect the

phosphorylation level of dysbindin-1 (all isoforms; Fig. 5A),

suggesting that phosphorylation of dysbindin-1 might be depen-

dent on the constitutive kinase activity of DNA-PK.

Phosphorylation of dysbindin-1 in mammalian cells
To examine whether dysbindin-1 is phosphorylated physiolog-

ically in cells, we analyzed three isoforms of dysbindin-1

Figure 3. Localization of endogenous dysbindin-1. A) Localization of endogenous dysbindin-1 in SH-SY5Y cells. SH-SY5Y cells were grown on
collagen-coated glass coverslips and immunostained using the anti-dysbindin-1 antibody and the secondary antibody conjugated with Alexa 488 (a-
1). Nuclei were visualized by incubating with TOPRO3 (b). Nuclei and dysbindin-1 were merged in c. The boxed area is enlarged in the bottom row (a-
2), which indicates existence of endogenous dysbindin-1 in nuclei. Green: dysbindin-1; Blue: TOPRO3; White: phase-contrast. Scale bar, 20 mm except
for a-2, 5 mm. B) Subcellular distribution of endogenous dysbindin-1 in SH-SY5Y cells. Cytosolic and nuclear fractions were obtained from SH-SY5Y
cells and identified with anti-a-tubulin and anti-lamin B antibodies. Lys: whole lysate; Cyt: cytosolic fraction; Nuc: nuclear fraction. Endogenous
dysbindin-1 and Ku localized to both the nuclear and cytosolic fractions.
doi:10.1371/journal.pone.0004199.g003

Dysbindin Interacts with DNAPK

PLoS ONE | www.plosone.org 4 January 2009 | Volume 4 | Issue 1 | e4199



immunopurified from Hela cells transfected with them, using

Mn2+-Phos-tag SDS-PAGE. The reason why we used Hela cells in

this experiment was that the kinase activity of DNA-PK was

known to be very high in these cells and most of studies for the

DNA-PK function were performed using the cells. As shown in

Fig. 5B (lanes 4 and 6), the bands of isoforms A and B up-shifted

compared to those of them treated with alkaline phosphatase (AP),

indicating that isoforms A and B were predominantly phosphor-

ylated in cells. On the other hand, isoform C were not influenced

by the treatment with AP significantly, suggesting that isoform C

was phosphorylated at the very low level under the physiological

condition. We also observed the same phosphorylation pattern of

dysbindin-1 isoforms in COS-7 cells (data not shown). This

isoform selectivity of phosphorylation in cells was identical to that

of binding to DNA-PK complex and nuclear localization.

Combined with in vitro phosphorylation data, these observations

suggested that DNA-PK complex selectively bound to and

phosphorylated isoforms A and B of dysbindin-1, but not isoform

C in mammalian cells.

Discussion

In this study, we identified interaction partners of dysbindin-1 in

neuronal cells, mouse brain, and muscle by GST pull-down

Figure 4. Subcellular localization and interaction with Ku70/80 of three isoforms of dysbindin-1. Protein extracts were prepared from
COS-7 cells transfected with the plasmids as indicated. A) Subcellular distribution of three isoforms of dysbindin-1 in transfected COS-7 cells. Cytosolic
and nuclear fractions were obtained from COS-7 cells and identified with anti-a-tubulin and anti-lamin B antibodies. Lys: whole lysate; Cyt: cytosolic
fraction; Nuc: nuclear fraction. Isoform A and B were localized to both the nuclear and cytosolic fractions but isoform C was not. B) and C) Differences
in binding specificities among dysbindin-1 isoforms. Proteins were immunoprecipitated with the anti-myc antibody and detected with the anti-V5
(upper panels) and anti-myc antibodies (lower panels). Ku70/80 were co-immunoprecipitated with isoforms A and B of dysbindin-1 but not with
isoform C, indicating that Ku70/80 formed complex with dysbindin-1 in an isoform selective manner.
doi:10.1371/journal.pone.0004199.g004
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screening. Dysbindin-1 is a member of biogenesis of lysosome-

related organelles complex-1 (BLOC-1) [42] and is thought to be

involved in intracellular vesicular trafficking (i.e., protein sorting

and vesicle docking and fusion), because genetic deletion of each

component of BLOC-1 leads to disruption of intracellular

vesicular trafficking in the biogenesis of lysosome-related organ-

elles. All BLOC-1 knockout mice have phenotypes characteristic

of Hermansky-pudlack syndrome (HPS), i.e., hypopigmentation of

both coat and eyes due to melanosome defects and prolonged

bleeding times resulting from platelet dense body defects [42–51].

Sandy mice in which dysbindin-1 genes are disrupted also

demonstrate such phenotypes and have often been used as HPS

model mice [42]. In this study, one of the novel dysbindin-1

binding partners identified was a component of the AP-3 complex,

AP3b2 (Table 1). This complex appears to be functionally similar

to BLOC-1 because genetic disruption of AP-3 components also

results in HPS-like symptoms in mice [48,52–63]. Moreover,

physical and functional interactions between BLOC-1 components

and AP-3 components were reported recently [64,65]. Accord-

ingly, we detected the binding of AP3b2 to dysbindin-1, implying

Figure 5. Phosphorylation of dysbindin-1 by DNA-PK complex. A) In vitro phosphorylation of dysbindin-1 by DNA-PK complex. The purified
DNA-PK complex and GST-dysbindin-1 were incubated with [c-32P]-labeled ATP as described in the ‘‘Materials and Methods.’’ These samples were
subjected to 10% SDS-PAGE and stained with CBB (left panel). The right panel shows the uptake of [c-32P] ATP by phosphorylation of dysbindin-1. As
shown in the left panel, the amount of BSA (lanes 1, 2), GST (lanes 3, 4), GST-dysbindin-1A (lanes 5–8), B (lanes 9, 10), and C (lanes 11, 12) were equal.
Lanes 7–12 in the right panel show that the three isoforms of dysbindin-1 were phosphorylated by the DNA-PK complex. B) Phosphorylation of
dysbindin-1 isoforms A and B in mammalian cells. Protein extracts were prepared as described in ‘‘Materials and Methods’’. These samples were
separated by Phos-tag SDS-PAGE and detected with the anti-dysbindin antibody. The phosphorylation levels of V5-dysbindin-1A and B were higher
than that of C. Lanes 1 and 2: empty vector; lanes 3 and 4: V5-dysbindin-1A; lanes 5 and 6: V5-dysbindin-1B; lanes 7 and 8: V5-dysbindin-1C. The
immunoblot after the normal SDS-PAGE showed that the amounts of dysbindin-1 were not altered after the dephosphorylation procedure by AP.
doi:10.1371/journal.pone.0004199.g005
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that our GST pull-down screening worked well. However,

dystrobrevin-1, which was reported to bind to dysbindin-1 in a

yeast two-hybrid system [1], was not identified as a dysbindin-1

binding partner. Lack of detection of dystrobrevin-1 in these pull-

down assays could be due to the inability to separate dystrobrevin-

1 from GST-dysbindin-1 by one-dimensional SDS-PAGE.

Nonetheless, we were interested in the interaction between

dysbindin-1 and the DNA-PK complex, which is involved in

transcription [66,67], DNA recombination [68], and DNA repair

[38,40,69,70] in many kinds of cells. The physiological role of

dysbindin-1 in the nucleus remains to be elucidated, although

dysbindin-1 was also reported to localize to nuclei of hippocampal

neurons in vivo [21]. We demonstrated that both endogenous and

exogenous dysbindin-1 bound to components of DNA-PK, Ku70,

and Ku80 in neuronal cells by immunoprecipitation, immunocy-

tochemical staining, and subcellular fractionation. Interestingly,

dysbindin-1 was also phosphorylated by DNA-PK, suggesting a

functional consequence of the interaction. Although phosphory-

lation of some substrates by DNA-PK is activated by dsDNA [38–

41], dysbindin-1 phosphorylation by DNA-PK was not affected by

the addition of dsDNA, indicating that phosphorylation of

dysbindin-1 might not be involved in DNA repair. This is

consistent with the idea that DNA-independent DNA-PK activity

might also play an important role in transcriptional regulation

besides recombination and double-stranded DNA repair as

previously described[71–73].

Moreover, we found that three isoforms (A, B, and C) of

dysbindin-1 interacted with Ku70/80 in different manners in the

cells (Fig. 4). Functional differences between these isoforms have

not been reported, and the isoform-dependent binding of

dybindin-1 to DNA-PK may be of importance. Interestingly, the

same isoform-dependency was observed in subcellular localization

and phosphorylation in cells. The consistency suggested that

DNA-PK complex bound to and phosphorylated dysbindin-1 in

mammalian cells as well as in vitro. However, our in vitro kinase

assay data showed that all three isoforms were phosphorylated by

DNA-PK (Fig. 5A), implying that all purified isoforms of

dysbindin-1 can bind to purified DNA-PK. We hypothesized that

the distribution of dysbindin-1 in cells might be different among

the isoforms and that localization differences could be the basis of

their isoform-dependent interaction properties. Correspondingly,

isoforms A and B were detected in considerable amounts in the

nuclear fraction (Fig. 3 and 4). Hence, nuclear localization of

isoforms A and B might facilitate their binding to Ku70/80. In

contrast, isoform C, although abundant in total cell lysates, was

not detected in the nuclear fraction. As isoform B appeared to be a

minor dysbindin-1 according to its very low expression level in

neuronal cells, the functional difference between isoform A and C

might be of importance in terms of the physiological roles of

dysbindin-1 in CNS.

What is the difference between dysbindin-1 isoforms A and C?

Figure 6 shows the amino acid sequences of the spliced isoforms of

dysbindin-1. It appears that isoform C is an N-terminally

truncated form of isoform A. Hence, the N-terminal region of

isoform A could possibly localize to nuclei and bind Ku70/80. To

our surprise, almost all of the schizophrenia-related SNPs are

found in the introns between exon 1 and exon 6, which are in

isoforms A and B but not in C (Fig. 5B) [2–8,10,12–14,17,18].

This led us to hypothesize that the schizophrenia-related SNPs in

the coding region of the dysbindin-1 gene might affect its splicing

variations and lead to a reduction in isoform A and an increase in

the content of isoform C, which could be defective with regard to

interaction with the DNA-PK complex.

In conclusion, in this study we describe for the first time a

functional interaction between dysbindin-1 and the DNA-PK

complex and show a functional difference in dysbindin-1 isoforms.

This newly acquired information provides a basis for the novel

hypothesis that alternative splicing of dysbindin-1 due to

schizophrenia-related SNPs may underlie the etiology of schizo-

phrenia. Further studies that focus on the relationship between

schizophrenia-related SNPs and dysbindin-1 splice variants and

the expression levels of the three isoforms in the brains of post-

mortem schizophrenic patients would be helpful in understanding

the role of dysbindin-1 in schizophrenia.

Materials and Methods

Plasmid Construction
Three isoforms of human dysbindin-1 cDNA and mouse

dysbindin-1 cDNA were cloned from a human fetal brain cDNA

Figure 6. Schematic representation of the human dysbindin-1 gene and its three isoform structures. The gene encoding dysbindin-1
located at chromosomal locus 6p22.3, and its several genetic variations are associated with schizophrenia. These variations (SNPs and haplotypes) are
located in intron or promoter regions, and almost all are located in the N-terminus of the gene. Red asterisks indicate major SNPs. Three isoforms (A,
B, and C) of human dysbindin-1 were reported by NCBI. Isoform A encodes the longest isoform, and isoform B contains an additional segment in the
coding region compared to isoform A. Isoform C contains an alternate splice site in the 59 coding region and uses a downstream start codon,
compared to isoform A; this isoform has a shorter N-terminus compared to isoform A.
doi:10.1371/journal.pone.0004199.g006
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library (BD Biosciences) and a mouse brain cDNA library by

polymerase chain reaction (PCR), respectively. These cDNAs were

subcloned into pcDNA3.1 (Invitrogen) or pGEX-4T-3 (GE

Healthcare), which contained His-tag66 at the C-terminus. The

myc-dysbindin-1 contained myc-tag66 at the N-terminus of

dysbindin-1, and V5-dysbindin-1 contained a V5-tag at the C-

terminus of 21. GST-dysbindin-1 was able to express GST

protein at the N-terminus and His-tag63 at the C-terminus of

dysbindin-1. The full-length human Ku80 and Ku70 were cloned

from a human fetal brain cDNA library by PCR. The cDNAs of

Ku80 and Ku70 were subcloned into a pcDNA3.1 expression

vector that contained a V5-tag in the C-terminus of the cDNA. All

constructs were confirmed by sequencing using a fully automated

DNA sequencer (Beckman Coulter).

Cell Culture and Transient Transfection
The cell lines SH-SY5Y and COS-7 were cultured in Dulbecco’s

modified Eagle’s medium (Sigma-Aldrich) supplemented with 10%

fetal bovine serum (Invitrogen) in a 5% CO2 atmosphere at 37uC.

SH-SY5Y cells were plated in collagen-coated dishes and were

harvested at 100% confluency for GST pull-down assay and

immunoprecipitation analysis. COS-7 cells were transiently trans-

fected with plasmid constructs using FuGENE 6 transfection

reagents (Roche Applied Science). After 48 h of transfection, the

cells were harvested for immunoprecipitation.

Expression and Purification of GST and GST-dysbindin-1
A pGEX expression vector containing human (isoform A) or

mouse dysbindin-1 was transformed into BL21 (DE3) strain. An

overnight culture of the transformant in Luria Broth (LB) medium

was diluted and shaken at 37uC until the OD600 reached 0.3–0.5;

0.1 mM isopropyl-b-D-thiogalactopyranoside (IPTG) was then

added. During induction by IPTG, the culture was shaken at 27uC
for 3 h. The bacterial cells were collected by centrifugation

(1,6006g for 20 min), washed with phosphate-buffered saline

(PBS), and suspended in sonication buffer [50 mM Tris-HCl

(pH 7.0), 200 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.2 mM

PMSF, and 1/1000 volume of protease inhibitor cocktail (Sigma-

Aldrich)]. The suspended Escherichia coli were fractured four times

by a FRENCHH pressure cell press (Ohtake Works, Co.), and

Triton-X 100 was added to a final concentration of 1%. The

suspension was then incubated for 30 min on ice. The lysates were

centrifuged (16,0006g for 30 min), and the supernatant was

subjected to affinity purification using glutathione Sepharose 4B

beads (GE Healthcare) and Talon Metal Affinity Resin (BD

Biosciences), according to the manufacturer’s protocol. All

subsequent steps were performed at 4uC. The quantity and purity

of the proteins was assessed by SDS-PAGE; Coomassie Brilliant

Blue (CBB) was used to stain the separated proteins.

GST Pull-Down Assay
The SH-SY5Y cells were homogenized in lysis buffer [50 mM

Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% (w/v)

Triton-X 100, 0.2 mM PMSF, and 1/1000 volume of protease

inhibitor cocktail] and incubated for 30 min on ice. Mouse brain

or skeletal muscle (2 g each) was homogenized in lysis buffer using

a Hitachi homogenizer and incubated for 30 min on ice. The

lysate was centrifuged (16,0006g for 30 min), and the supernatant

was precleared with glutathione Sepharose 4B beads for 1 h. The

precleared lysate was incubated with equivalent amounts of GST

and GST-dysbindin-1, respectively, for 3 h at 4uC. After

incubation, the beads were washed four times with lysis buffer,

and the bead-bound proteins were eluted by boiling for 5 min in

26SDS sample buffer. The precipitated proteins were separated

by SDS–PAGE, and the specific bands in the GST-dysbindin-1

lane were analyzed by MALDI-TOF-MS.

Protein Identification by Mass Spectrometry
Following electrophoresis, proteins were stained with colloidal

CBB. The protein bands of interest were excised from the gel, cut

into small pieces, dehydrated with acetonitrile (ACN) for 10 min,

and dried completely in a vacuum centrifuge. DTT-containing

buffer (10 mM DTT in 100 mM NH4HCO3) was added to the gel

pieces, and the gel pieces were incubated for 1 h at 56uC. After the

samples had cooled to room temperature, the DTT-containing

buffer was replaced with iodoacetamide-containing buffer (55 mM

iodoacetamide 100 mM NH4HCO3), and the gel pieces were

vortexed for 45 min at room temperature. The gel pieces were

then washed with 100 mM NH4HCO3 buffer and dehydrated by

ACN several times repeatedly and dried in a vacuum centrifuge.

The gel pieces were then incubated in trypsin (Promega)-

containing buffer (12.5 ng/mL trypsin in 50 mM NH4HCO3

and 5 mM CaCl2) in an ice-cold bath. After 45 min, the protein

digestion was performed overnight at 37uC. Digestion was stopped

by the addition of 0.1% TFA in 50% (v/v) ACN/water. Peptides

were extracted by the addition of 50 mM NH4HCO3 in 50%

ACN, with three changes (20 min per extraction) at room

temperature, and concentrated. The peptides in the extract were

purified from the supernatant by absorption onto ZipTipC18

(Millipore) according to the manufacturer’s instructions. After five

washes with 0.1% TFA in water (v/v), bound peptides were eluted

with 10 mL of saturated matrix-solution (R-cyano-4-hydroxy-

cinnamic acid, Sigma-Aldrich) in 0.1% TFA (v/v) in 75% (v/v)

ACN/water. Then, 0.3 ml of each eluted sample were spotted on

the target plate repeatedly and dried at room temperature.

MALDI-TOF-MS was performed on an AXIMA-CFR mass

spectrometer (Shimadzu). MALDI peptide spectra were calibrated

using several peaks of self-digested trypsin and matrix ion as

internal standards. The data were analyzed using the MASCOT

search program (Matrix Science, London, UK). The peptide

masses were compared to the NCBI database for identification of

the intact proteins.

Antibodies
The rabbit polyclonal antibody to dysbindin-1 was generated by

injecting rabbits subcutaneously with 1.8 mg of purified GST-

dysbindin-1 (mouse) protein from E. coli using the standard

immunization protocol. The antiserum was immunoaffinity-

purified using a column in which MBP (maltose binding

protein)-dysbindin-1 (mouse) proteins were coupled using Affi-

GelH 15 (Bio-Rad) according to the manufacturer’s protocol.

Cyclic incubation of the IgG fraction of the antiserum overnight

was followed by the elution of affinity-purified antibodies with

100 mM glycine-HCl (pH 2) and neutralized with 1 M Tris-HCl

(pH 9). Affinity-purified antibodies were supplemented with

10 mM NaN3, stored at 4uC, and diluted 1:1000 for immuno-

blotting. The anti-Ku70 and Ku80 antibodies were gifts of Dr. Y.

Hosoi, Niigata University. The following mouse monoclonal

antibodies were purchased from the vendors indicated in

parentheses: anti-myc, anti-V5 and anti-lamin B (Invitrogen) and

anti-a-tubulin (Sigma-Aldrich). The followning rabbit polyclonal

antibodies were purchased from the vendors indicated in

parentheses: anti-V5 (Millipore) and anti-myc (cell signaling).

Immunoblotting
Samples were separated by SDS–PAGE and transferred to

PVDF membranes (Immobilon-P; Millipore). The membranes

were blocked with 5% skim milk in PBS with 0.05% TweenH20
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(TPBS) for 1 h at room temperature and then incubated for 2 h at

room temperature or overnight at 4uC with primary antibodies in

5% skim milk. After washing, the membranes were incubated for

45 min with horseradish peroxidase (HRP)-conjugated secondary

antibodies (Cell Signaling) at room temperature. The immunore-

active bands were visualized by enhanced chemiluminescence

(ECL) and scanned by LAS 3000 (Fuji film co. LTD).

Immunoprecipitation
COS-7 cells were transfected with myc-dysbindin-1 and V5-

tagged constructs of Ku70 or Ku80 using FuGENE 6. Cells from

10-cm plates were homogenized in 1 ml of lysis buffer [50 mM

Tris-HCl (pH 7.5) containing 150 mM NaCl, 1 mM EDTA, 1%

(w/v) Triton X-100, 0.2 mM PMSF, and protease inhibitor

cocktail]. The lysates were then centrifuged at 16,0006g for

30 min at 4uC. The supernatant was precleared with protein G

Sepharose 4 fast flow beads (GE Healthcare) for 1 h, and then

incubated with 1 ml of anti-myc or V5 antibody for 2 h. The beads

(15 ml) were added to the lysate and incubated for 1 h. After the

beads were washed four times with lysis buffer, the precipitates

were analyzed by SDS–PAGE and immunoblotted with either the

anti-myc or anti-V5 antibody.

The immunoprecipitations of endogenous dysbindin-1 and

Ku70/80 were performed using the anti-dysbindin-1 antibody

linked to gel beads (SeizeH Primary Immunoprecipitation Kit,

PIERCE). The anti-dysbindin-1 antibody and normal rabbit IgG

(control) were coupled to the gel according to the manufacturer’s

protocol. Lysates from SH-SY5Y cells were mixed with the

antibody-coupled gel or with control IgG-coupled gel overnight at

4uC. The gels were washed four times with lysis buffer, and

immunoprecipitated proteins were eluted by 100 mM glycine-HCl

(pH 2.8). The eluted proteins were analyzed by SDS-PAGE and

immunoblotted with anti-Ku70, -Ku80, and -dysbindin-1 anti-

bodies, respectively.

Immunofluorescence
Cells grown on collagen-coated glass coverslips were washed

with PBS and fixed with ice-cold methanol (220uC) for 20 min.

The cells were permeabilized in PBS containing 0.5% (w/v)

Triton X-100 for 10 min and blocked in PBS containing 5%

normal goat serum (NGS), 0.02% Triton X-100, and 20% glycerol

for 1 h at room temperature. Incubations with the primary

antibody were performed overnight at 4uC in PBS containing 2%

NGS, 0.02% Triton X-100, and 20% glycerol. The cells were

washed and then incubated with the appropriate secondary

antibodies [Alexa 488 donkey anti-rabbit IgG (1:1000); Alexa 568

donkey anti-rabbit IgG (1:1000)] in PBS containing 2% NGS,

0.02% Triton X-100, and 20% glycerol for 1 h. Nuclei were

visualized by incubating with TOPRO3 (Invitrogen). After

washing with PBS, the cover slips were mounted using Mowiol

(Calbiochem, La Jolla, CA). Z-stacks of four to ten images were

acquired on a Zeiss LSM510 meta laser scanning confocal

microscope (Carl Zeiss, Jena, Germany). Brightest point projec-

tions of the Z-stacks were used for image analysis.

Cell Fractionation
Briefly, cells were supplemented with hypotonic buffer [10 mM

Tris-HCl (pH 7.2), 25 mM KCl, 10 mM NaCl, 1 mM MgCl2,

0.1 mM EDTA, 1 mM NaF, 1 mM DTT, 0.2 mM PMSF, and 1/

1000 volume of protease inhibitor cocktail] and were scraped,

passed through a 27-gauge needle ten times, and centrifuged at

1006g for 10 min at 4uC. The supernatant was the cytosolic

fraction. The resulting crude nuclear pellets were suspended in cell

lysis buffer [50 mM HEPES (pH 7.5), 10% glycerol, 0.5% Triton

X-100, 150 mM NaCl, 1 mM DTT, 0.2 mM PMSF, and 1/1000

volume of protease inhibitor cocktail] and centrifuged at 16,0006g

for 60 min at 4uC. The final nuclear pellets were dissolved in

RIPA buffer [50 mM HEPES (pH 7.5), 1% Triton X- 100, 0.1%

SDS, 150 mM NaCl, 1% deoxycholatic sodium, 1 mM NaF,

1 mM DTT, 0.2 mM PMSF, and 1/1000 volume of protease

inhibitor cocktail] and sonicated on ice.

In Vitro Kinase Assay
DNA-PK activity of SH-SY5Y cells transfected with myc-

dysbindin-1 was assayed using a synthetic peptide (EPPLSQEA-

FADLWKK) and [c-32P]-ATP according to the methods of Hosoi

[74]. Cell lysate (5 ml) and peptide substrate (5 mg) were mixed in

the kinase reaction buffer [20 mM HEPES-NaOH (pH 7.2),

100 mM NaCl, 5 mM MgCl2, 50 mM [c-32P]-ATP, 1 mM DTT,

and 0.5 mM each of NaF and b-sodium glycerophosphate]. The

reaction mixture was incubated at 37uC for 20 min, and the

reaction was stopped by addition of 300 mM phosphoric acid.

The reaction mixture was spotted onto a P81 paper disk

(Whatman), washed in 15% phosphoric acid, and counted in a

liquid scintillation counter (Beckman Coulter). Radioactivity was

defined as the counts per minute of 32P incorporated in the

presence of DNA. The counts per minute of 32P incorporated in

the absence of DNA were used as a control.

DNA-PK activity was assayed using purified GST-dysbindin-1,

DNA-PK (Promega), and [c-32P]-ATP. Purified GST-dysbindin-1

(10 mg) and DNA-PK (16 U) were mixed in kinase reaction buffer

and incubated at 37uC for 20 min. The reaction was stopped by

addition of SDS-sample buffer. To detect phosphorylated proteins,

the reaction products were separated on 10% polyacrylamide gels,

and the gels were stained with CBB. The gels were then dried, and

phosphoproteins were detected by autoradiography using BAS

2500 (Fuji film co.LTD).

Mn2+-Phos-tag SDS-PAGE and Immunoblotting
The samples were prepared from HeLa cells transfected with

V5-dysbindin-1 (isoform A, B and C) by immunoprecipitating with

the anti-V5 antibody. These samples were divided in half. One

half was treated with alkaline phosphatase (AP) (indicated by plus)

and the other wasn’t (indicated by minus). These samples were

separated by Mn2+-Phos-tag SDS-PAGE [75] and detected by

immunoblotting with the anti-dysbindin-1 antibody according to

manufactures’ instruction. In the Mn2+-Phos-tag SDS-PAGE,

Phos-tag acrylamide binds to phosphates in the gel and makes

phosphorylated proteins migrate more slowly than unphosphory-

lated forms of ones.
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